Helium Ion Microscopy with Secondary Ion Mass Spectrometry (HIM-SIMS) for the analysis and quantitation of polyolefins

  1. Olga S. OvchinnikovaORCID Logo,
  2. Nikolay Borodinov,
  3. Artem A. Trofimov,
  4. Stephen T. KingORCID Logo,
  5. Matthias Lorenz,
  6. William Lamberti,
  7. David Abmayr and
  8. Anton V. IevlevORCID Logo

Submitting author affiliation: ORNL, Oak Ridge, United States

Beilstein Arch. 2020, 202076. doi:10.3762/bxiv.2020.76.v1

Published 18 Jun 2020

  • Preprint

Abstract

Petroleum based polyolefin plastics makeup a large part of the multicomponent/multiphase plastics we use in our daily lives.  Multiple plastics are often compounded, laminated or coextruded in these multicomponent systems creating multiple phases and interfaces of varying strengths. Significant opportunity exists in developing strategies for enhancing interfacial properties as well as facilitating disposal of polyolefin plastics by upcycling of polymeric products for reuse. Thus, interfaces and chemically distinct phases in these materials need to be probed structurally and chemically at the relevant length scales. To date, chemical imaging of polymer and polymer blends has been primarily accomplished using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to directly visualize the distribution of components in a complex material with spatial resolution ranging from 100 nm to 5μm. However, in many cases this resolution falls far short of visualizing interfaces directly. To overcome these limitations recent work has focused on developing a SIMS detection system based on the helium ion microscope (HIM) enabling chemical imaging to ~14 nm. Here, we utilize the HIM-SIMS for quantitative differentiation between the olefin-based polymers of polyethylene (PE) and polypropylene (PP). We illustrate both quantitative analysis for separating PE and PP using specific mass fragment ratios as well as demonstrate spatially resolved imaging of phase separated domains within PE thin films with ~14 nm chemical and ~2 nm morphological spatial resolutions. Overall, we demonstrate HIM-SIMS as a multimodal chemical technique for imaging and quantification of polyolefin interfaces, that could be more broadly applied to the analysis of multicomponent/multiphase polymeric systems.

Keywords: helium-ion microscope, polymer, polyolefins, ToF-SIMS, secondary ion mass-spectrometry

How to Cite

When a peer-reviewed version of this preprint is available in the Beilstein Journals, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:

Ovchinnikova, O. S.; Borodinov, N.; Trofimov, A. A.; King, S. T.; Lorenz, M.; Lamberti, W.; Abmayr, D.; Ievlev, A. V. Beilstein Arch. 2020, 202076. doi:10.3762/bxiv.2020.76.v1

Download Citation
Download RIS (Reference Manager) Download BIB (BIBTEX)

© 2020 Ovchinnikova et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.
The license is subject to the Beilstein Archives terms and conditions: (https://www.beilstein-archives.org/xiv/terms)

Other Beilstein-Institut Open Science Activities

Logo
Logo
Logo
Symposia