Photochromic diarylethene with turn-off fluorescent switching property

  1. Luna KonoORCID Logo,
  2. Yuma NakagawaORCID Logo,
  3. Ayako FujimotoORCID Logo,
  4. Ryo NishimuraORCID Logo,
  5. Yohei Hattori,
  6. Toshiki Mutai,
  7. Nobuhiro YasudaORCID Logo,
  8. Kenichi Koizumi,
  9. Satoshi YokojimaORCID Logo,
  10. Shinichiro Nakamura and
  11. Kingo Uchida ORCID Logo

Submitting author affiliation: Ryukoku University, Otsu, Japan

Beilstein Arch. 2019, 201966. doi:10.3762/bxiv.2019.66.v1

Published 11 Jul 2019

  • Preprint

Abstract

Background: Diarylethenes are well-known photochromic compounds, which undergo cyclization and cycloreversion reactions between open- and closed-ring isomers. Recently, diarylethene derivatives with photoswitchable fluorescent properties were prepared. They are applicable for imaging and bio-imaging. On the other hand, new system called “excited state intramolecular proton transfer (ESIPT)” is reported. In the system, absorption and emission bands are divided due to the proton transfer, hence it showed strong fluorescence even in the crystalline state. We aimed to construct the photochromic system incorporating the ESIPT mechanism.

Results: A diarylethene incorporating a fluorescent moiety that exhibit excited state intramolecular proton transfer (ESIPT) behavior was prepared. The ESIPT is one of the examples which express the mechanisms of aggregation-induced emission (AIE). This compound emits orange fluorescence with a large Stokes shift derived from ESIPT in aprotic solvents such as THF or hexane, while it exhibits only photochromic reaction in protic solvents such as methanol. In addition, it shows turn-off type fluorescence switching in an aprotic solvent and in crystals. The fluorescence is quenched as content of closed-ring isomers increases upon UV light irradiation.

Conclusions: A diarylethene containing ESIPT functional group was prepared. It showed fluorescent turn-off behavior during photochromism in aprotic solvents as well as crystalline state upon UV light irradiation. Furthermore, it showed AIE in THF/water mixtures with blue-shift of the emission.

Keywords: diarylethene; fluorescent switching; turn-off fluorescence; AIE; ESIPT

Supporting Information

Format: PDF Size: 189.9 KB Download

How to Cite

When a peer-reviewed version of this preprint is available in the Beilstein Journals, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:

Kono, L.; Nakagawa, Y.; Fujimoto, A.; Nishimura, R.; Hattori, Y.; Mutai, T.; Yasuda, N.; Koizumi, K.; Yokojima, S.; Nakamura, S.; Uchida, K. Beilstein Arch. 2019, 201966. doi:10.3762/bxiv.2019.66.v1

Download Citation
Download RIS (Reference Manager) Download BIB (BIBTEX)

© 2019 Kono et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.
The license is subject to the Beilstein Archives terms and conditions: (https://www.beilstein-archives.org/xiv/terms)

Other Beilstein-Institut Open Science Activities

Logo
Logo
Logo
Symposia