Search for "structural features" in Full Text gives 225 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.
Beilstein J. Org. Chem. 2014, 10, 1166–1196, doi:10.3762/bjoc.10.117
Graphical Abstract
Scheme 1: Pioneer works of Atherton, Openshaw and Todd reporting on the synthesis of phosphoramidate starting...
Scheme 2: Mechanisms 1 (i) and 2 (ii) suggested by Atherton and Todd in 1945; adapted from [1].
Scheme 3: Two reaction pathways (i and ii) to produce chlorophosphate 2. Charge-transfer complex observed whe...
Scheme 4: Mechanism of the Atherton–Todd reaction with dimethylphosphite according to Roundhill et al. (adapt...
Scheme 5: Synthesis of dialkyl phosphate from dialkyl phosphite (i) and identification of chloro- and bromoph...
Scheme 6: Synthesis of chiral phosphoramidate with trichloromethylphosphonate as the suggested intermediate (...
Scheme 7: Selection of results that address the question of the stereochemistry of the AT reaction (adapted f...
Scheme 8: Synthesis of phenoxy spirophosphorane by the AT reaction (adapted from [34]).
Scheme 9: Suggested mechanism of the Atherton–Todd reaction, (i) and (ii) formation of chlorophosphate with a...
Scheme 10: AT reaction in biphasic conditions (adapted from [38]).
Scheme 11: AT reaction with iodoform as halide source (adapted from [37]).
Scheme 12: AT reaction with phenol at low temperature in the presence of DMAP (adapted from [40]).
Scheme 13: Synthesis of a triphosphate by the AT reaction starting with the preparation of chlorophosphate (ad...
Scheme 14: AT reaction with sulfonamide (adapted from [42]).
Scheme 15: Synthesis of a styrylphosphoramidate starting from the corresponding aniline (adapted from [43]).
Scheme 16: Use of hydrazine as nucleophile in AT reactions (adapted from [48]).
Scheme 17: AT reaction with phenol as a nucleophilic species; synthesis of dioleyl phosphate-substituted couma...
Scheme 18: Synthesis of β-alkynyl-enolphosphate from allenylketone with AT reaction (adapted from [58]).
Scheme 19: Synthesis of pseudohalide phosphate by using AT reaction (adapted from [67]).
Scheme 20: AT reaction with hydrospirophosphorane with insertion of CO2 in the product (adapted from [69]).
Scheme 21: AT reaction with diaryl phosphite (adapted from [70]).
Scheme 22: AT reaction with O-alkyl phosphonite (adapted from [71]).
Scheme 23: Use of phosphinous acid in AT reactions (adapted from [72]).
Scheme 24: AT reaction with secondary phosphinethiooxide (adapted from [76]).
Scheme 25: Use of H-phosphonothioate in the AT reaction (adapted from [78]).
Scheme 26: AT-like reaction with CuI as catalyst and without halide source (adapted from [80]).
Scheme 27: Reduction of phenols after activation as phosphate derivatives (adapted from [81] i ; [82], ii; and [83], iii).
Scheme 28: Synthesis of medium and large-sized nitrogen-containing heterocycles (adapted from [85]).
Scheme 29: Synthesis of arylstannane from aryl phosphate prepared by an AT reaction (adapted from [86]).
Scheme 30: Synthesis and use of aryl dialkyl phosphate for the synthesis of biaryl derivatives (adapted from [89])....
Scheme 31: Synthesis of aryl dialkyl phosphate by an AT reaction from phenol and subsequent rearrangement yiel...
Scheme 32: Selected chiral phosphoramidates used as organocatalyst; i) chiral phosphoramidate used in the pion...
Scheme 33: Determination of ee of H-phosphinate by the application of the AT reaction with a chiral amine (ada...
Scheme 34: Chemical structure of selected flame retardants synthesized by AT reactions; (BDE: polybrominated d...
Scheme 35: Transformation of DOPO (i) and synthesis of polyphosphonate (ii) by the AT reaction (adapted from [117] ...
Scheme 36: Synthesis of lipophosphite (bisoleyl phosphite) and cationic lipophosphoramidate with an AT reactio...
Scheme 37: Use of AT reactions to produce cationic lipids characterized by a trimethylphosphonium, trimethylar...
Scheme 38: Cationic lipid synthesized by the AT reaction illustrating the variation of the structure of the li...
Scheme 39: Helper lipids for nucleic acid delivery synthesized with the AT reaction (adapted from [130]).
Scheme 40: AT reaction used to produce red/ox-sensitive cationic lipids (adapted from [135]).
Scheme 41: Alkyne and azide-functionalized phosphoramidate synthesized by AT reactions,(i); illustration of so...
Scheme 42: Cationic lipids exhibiting bactericidal action – arrows indicate the bond formed by the AT reaction...
Scheme 43: β-Cyclodextrin-based lipophosphoramidates (adapted from [138]).
Scheme 44: Polyphosphate functionalized by an AT reaction (adapted from [139]).
Scheme 45: Synthesis of zwitterionic phosphocholine-bound chitosan (adapted from [142]).
Scheme 46: Synthesis of AZT-based prodrug via an AT reaction (adapted from [143]).
Beilstein J. Org. Chem. 2014, 10, 544–598, doi:10.3762/bjoc.10.50
Graphical Abstract
Scheme 1: The proposed mechanism of the Passerini reaction.
Scheme 2: The PADAM-strategy to α-hydroxy-β-amino amide derivatives 7. An additional oxidation provides α-ket...
Scheme 3: The general accepted Ugi-mechanism.
Scheme 4: Three commonly applied Ugi/cyclization approaches. a) UDC-process, b) UAC-sequence, c) UDAC-combina...
Scheme 5: Ugi reaction that involves the condensation of Armstrong’s convertible isocyanide.
Scheme 6: Mechanism of the U-4C-3CR towards bicyclic β-lactams.
Scheme 7: The Ugi 4C-3CR towards oxabicyclo β-lactams.
Scheme 8: Ugi MCR between an enantiopure monoterpene based β-amino acid, aldehyde and isocyanide resulting in...
Scheme 9: General MCR for β-lactams in water.
Scheme 10: a) Ugi reaction for β-lactam-linked peptidomimetics. b) Varying the β-amino acid resulted in β-lact...
Scheme 11: Ugi-4CR followed by a Pd-catalyzed Sn2 cyclization.
Scheme 12: Ugi-3CR of dipeptide mimics from 2-substituted pyrrolines.
Scheme 13: Joullié–Ugi reaction towards 2,5-disubstituted pyrrolidines.
Scheme 14: Further elaboration of the Ugi-scaffold towards bicyclic systems.
Scheme 15: Dihydroxyproline derivatives from an Ugi reaction.
Scheme 16: Diastereoselective Ugi reaction described by Banfi and co-workers.
Scheme 17: Similar Ugi reaction as in Scheme 16 but with different acids and two chiral isocyanides.
Scheme 18: Highly diastereoselective synthesis of pyrrolidine-dipeptoids via a MAO-N/MCR-procedure.
Scheme 19: MAO-N/MCR-approach towards the hepatitis C drug telaprevir.
Scheme 20: Enantioselective MAO-U-3CR procedure starting from chiral pyrroline 64.
Scheme 21: Synthesis of γ-lactams via an UDC-sequence.
Scheme 22: Utilizing bifunctional groups to provide bicyclic γ-lactam-ketopiperazines.
Scheme 23: The Ugi reaction provided both γ- as δ-lactams depending on which inputs were used.
Scheme 24: The sequential Ugi/RCM with olefinic substrates provided bicyclic lactams.
Scheme 25: a) The structural and dipole similarities of the triazole unit with the amide bond. b) The copper-c...
Scheme 26: The Ugi/Click sequence provided triazole based peptidomimetics.
Scheme 27: The Ugi/Click reaction as described by Nanajdenko.
Scheme 28: The Ugi/Click-approach by Pramitha and Bahulayan.
Scheme 29: The Ugi/Click-combination by Niu et al.
Scheme 30: Triazole linked peptidomimetics obtained from two separate MCRs and a sequential Click reaction.
Scheme 31: Copper-free synthesis of triazoles via two MCRs in one-pot.
Scheme 32: The sequential Ugi/Paal–Knorr reaction to afford pyrazoles.
Scheme 33: An intramolecular Paal–Knorr condensation provided under basic conditions pyrazolones.
Scheme 34: Similar cyclization performed under acidic conditions provided pyrazolones without the trifluoroace...
Scheme 35: The Ugi-4CR towards 2,4-disubstituted thiazoles.
Scheme 36: Solid phase approach towards thiazoles.
Scheme 37: Reaction mechanism of formation of thiazole peptidomimetics containing an additional β-lactam moiet...
Scheme 38: The synthesis of the trisubstituted thiazoles could be either performed via an Ugi reaction with pr...
Scheme 39: Performing the Ugi reaction with DMB-protected isocyanide gave access to either oxazoles or thiazol...
Scheme 40: Ugi/cyclization-approach towards 2,5-disubstituted thiazoles. The Ugi reaction was performed with d...
Scheme 41: Further derivatization of the thiazole scaffold.
Scheme 42: Three-step procedure towards the natural product bacillamide C.
Scheme 43: Ugi-4CR to oxazoles reported by Zhu and co-workers.
Scheme 44: Ugi-based synthesis of oxazole-containing peptidomimetics.
Scheme 45: TMNS3 based Ugi reaction for peptidomimics containing a tetrazole.
Scheme 46: Catalytic cycle of the enantioselective Passerini reaction towards tetrazole-based peptidomimetics.
Scheme 47: Tetrazole-based peptidomimetics via an Ugi reaction and a subsequent sigmatropic rearrangement.
Scheme 48: Resin-bound Ugi-approach towards tetrazole-based peptidomimetics.
Scheme 49: Ugi/cyclization approach towards γ/δ/ε-lactam tetrazoles.
Scheme 50: Ugi-3CR to pipecolic acid-based peptidomimetics.
Scheme 51: Staudinger–Aza-Wittig/Ugi-approach towards pipecolic acid peptidomimetics.
Figure 1: The three structural isomers of diketopiperazines. The 2,5-DKP isomer is most common.
Scheme 52: UDC-approach to obtain 2,5-DKPs, either using Armstrong’s isocyanide or via ethylglyoxalate.
Scheme 53: a) Ugi reaction in water gave either 2,5-DKP structures or spiro compounds. b) The Ugi reaction in ...
Scheme 54: Solid-phase approach towards diketopiperazines.
Scheme 55: UDAC-approach towards DKPs.
Scheme 56: The intermediate amide is activated as leaving group by acid and microwave assisted organic synthes...
Scheme 57: UDC-procedure towards active oxytocin inhibitors.
Scheme 58: An improved stereoselective MCR-approach towards the oxytocin inhibitor.
Scheme 59: The less common Ugi reaction towards DKPs, involving a Sn2-substitution.
Figure 2: Spatial similarities between a natural β-turn conformation and a DKP based β-turn mimetic [158].
Scheme 60: Ugi-based syntheses of bicyclic DKPs. The amine component is derived from a coupling between (R)-N-...
Scheme 61: Ugi-based synthesis of β-turn and γ-turn mimetics.
Figure 3: Isocyanide substituted 3,4-dihydropyridin-2-ones, dihydropyridines and the Freidinger lactams. Bio-...
Scheme 62: The mechanism of the 4-CR towards 3,4-dihydropyridine-2-ones 212.
Scheme 63: a) Multiple MCR-approach to provide DHP-peptidomimetic in two-steps. b) A one-pot 6-CR providing th...
Scheme 64: The MCR–alkylation–MCR procedure to obtain either tetrapeptoids or depsipeptides.
Scheme 65: U-3CR/cyclization employing semicarbazone as imine component gave triazine based peptidomimetics.
Scheme 66: 4CR towards triazinane-diones.
Scheme 67: The MCR–alkylation–IMCR-sequence described by our group towards triazinane dione-based peptidomimet...
Scheme 68: Ugi-4CR approaches followed by a cyclization to thiomorpholin-ones (a) and pyrrolidines (b).
Scheme 69: UDC-approach for benzodiazepinones.
Scheme 70: Ugi/Mitsunobu sequence to BDPs.
Scheme 71: A UDAC-approach to BDPs with convertible isocyanides. The corresponding amide is cleaved by microwa...
Scheme 72: microwave assisted post condensation Ugi reaction.
Scheme 73: Benzodiazepinones synthesized via the post-condensation Ugi/ Staudinger–Aza-Wittig cyclization.
Scheme 74: Two Ugi/cyclization approaches utilizing chiral carboxylic acids. Reaction (a) provided the product...
Scheme 75: The mechanism of the Gewald-3CR includes three base-catalysed steps involving first a Knoevnagel–Co...
Scheme 76: Two structural 1,4-thienodiazepine-2,5-dione isomers by U-4CR/cyclization.
Scheme 77: Tetrazole-based diazepinones by UDC-procedure.
Scheme 78: Tetrazole-based BDPs via a sequential Ugi/hydrolysis/coupling.
Scheme 79: MCR synthesis of three different tricyclic BPDs.
Scheme 80: Two similar approaches both involving an Ugi reaction and a Mitsunobu cyclization.
Scheme 81: Mitsunobu–Ugi-approach towards dihydro-1,4-benzoxazepines.
Scheme 82: Ugi reaction towards hetero-aryl fused 5-oxo-1,4-oxazepines.
Scheme 83: a) Ugi/RCM-approach towards nine-membered peptidomimetics b) Sequential peptide-coupling, deprotect...
Scheme 84: Ugi-based synthesis towards cyclic RGD-pentapeptides.
Scheme 85: Ugi/MCR-approach towards 12–15 membered macrocycles.
Scheme 86: Stereoselective Ugi/RCM approach towards 16-membered macrocycles.
Scheme 87: Passerini/RCM-sequence to 22-membered macrocycles.
Scheme 88: UDAC-approach towards 12–18-membered depsipeptides.
Figure 4: Enopeptin A with its more active derivative ADEP-4.
Scheme 89: a) The Joullié–Ugi-approach towards ADEP-4 derivatives b) Ugi-approach for the α,α-dimethylated der...
Scheme 90: Ugi–Click-strategy for 15-membered macrocyclic glyco-peptidomimetics.
Scheme 91: Ugi/Click combinations provided macrocycles containing both a triazole and an oxazole moiety.
Scheme 92: a) A solution-phase procedure towards macrocycles. b) Alternative solid-phase synthesis as was repo...
Scheme 93: Ugi/cyclization towards cyclophane based macrocycles.
Scheme 94: PADAM-strategy towards eurystatin A.
Scheme 95: PADAM-approach for cyclotheanamide.
Scheme 96: A triple MCR-approach affording RGD-pentapeptoids.
Scheme 97: Ugi-MiBs-approach towards peptoid macrocycles.
Scheme 98: Passerini-based MiB approaches towards macrocycles 345 and 346.
Scheme 99: Macrocyclic peptide formation by the use of amphoteric aziridine-based aldehydes.
Beilstein J. Org. Chem. 2014, 10, 194–208, doi:10.3762/bjoc.10.15
Graphical Abstract
Figure 1: Structures of the 4,4,8-trimethyl-17-furanylsteroid core structure I and the representative B-seco ...
Scheme 1: Retrosynthetic analysis of the B-seco limonoid framework employing a [3,3]-sigmatropic rearrangemen...
Scheme 2: Retrosynthetic analysis of the B-seco limonoid scaffold employing a Claisen rearrangement as key st...
Scheme 3: Synthesis of alcohols 19, 20 and 22. Reagents and conditions: a) CSA, 2,3-butanedione, trimethyl or...
Scheme 4: Retrosynthetic analysis of the B-seco limonoid scaffold employing an Ireland–Claisen rearrangement ...
Scheme 5: Synthesis and Ireland–Claisen rearrangement of the allyl esters 27, 28, 29 and 30. Reagents and con...
Figure 2: Conformation of rearrangement precursor 30 and possible transition state involved in the Ireland–Cl...
Scheme 6: Synthesis of model C rings 40, 41 and 42. Reagents and conditions: a) TBDPSCl, DMAP, NEt3, CH2Cl2, ...
Scheme 7: β-Substituted allyl esters tested in the Ireland–Claisen and the Carroll rearrangement.
Scheme 8: Synthesis and Ireland–Claisen rearrangement of bicyclic allyl ester precursor 66. Reagents and cond...
Figure 3: Conformations of rearrangement precursors 66 and 77 and possible transition states involved in the ...
Scheme 9: Synthesis and Ireland–Claisen rearrangement of allyl ester 70. Reagents and conditions: a) DIPEA, M...
Scheme 10: Synthesis and Ireland–Claisen rearrangement of allyl ester 72. Reagents and conditions: a) TIPSOTf,...
Scheme 11: Synthesis of the C14-epi and C14/C9-epi B-seco limonoid scaffolds 78 and 79. Reagents and condition...
Scheme 12: Synthesis of fully functionalized A ring 87. Reagents and conditions: a) HO(CH2)2OH, THF, Pd/C, H2,...
Scheme 13: and Attempted Ireland–Claisen rearrangement of allyl ester 88. R1 = MOM, R2 = CO2H.
Scheme 14: Synthesis and attempted Ireland–Claisen rearrangement of allyl ester 93. Reagents and conditions: a...
Scheme 15: Allyl esters tested in the Ireland–Claisen rearrangement.
Beilstein J. Org. Chem. 2014, 10, 127–133, doi:10.3762/bjoc.10.9
Graphical Abstract
Figure 1: Bisamides as building blocks for flavaglins.
Figure 2: (+)-Grandiamide D, gigantamide A and dasyclamide.
Scheme 1: Retrosynthetic analysis: A unified synthetic approach for the synthesis of grandiamide D, dasyclami...
Scheme 2: Preparation of N-(4-aminobutyl)cinnamamide.
Scheme 3: Synthesis of (±)-grandiamide D.
Scheme 4: Asymmetric synthesis of natural (+)-grandiamide D.
Scheme 5: Various approaches for the synthesis of (E)-N-(4-cinnamamidobutyl)-4-((4-methoxybenzyl)oxy)-2-methy...
Scheme 6: Synthesis of dasyclamide.
Beilstein J. Org. Chem. 2014, 10, 12–17, doi:10.3762/bjoc.10.3
Graphical Abstract
Scheme 1: Azetidine formation from the interaction of imines with isocyanides.
Scheme 2: Reaction conditions.
Figure 1: X-ray diffraction analysis of azetidine 3a.
Scheme 3: Stepwise mechanism for the formation of azetidine 3a.
Scheme 4: Manifold reaction mechanism.
Beilstein J. Org. Chem. 2013, 9, 2821–2833, doi:10.3762/bjoc.9.317
Graphical Abstract
Figure 1: Unique structural features of (−)-isosteviol.
Figure 2: Triphenylene ketal based on (−)-isosteviol.
Figure 3: Structural features of triptycene derivatives.
Scheme 1: Functionalization of triphenylene ketal 2a.
Figure 4: Hexaammoniumtriptycene hexachloride 4 and 15-oxo-derivatives 5a–c of (–)-isosteviol.
Scheme 2: Quinoxalines based on diketone 5b.
Scheme 3: Condensation of 5b with hexaammoniumtriptycene hexachloride.
Figure 5: Molecular modelling structures (Spartan ’08 V1.0.0) of (a) all-syn-8 and (b) anti,anti,syn-8.
Scheme 4: Synthesis of nitrobenzylic ester derivatives 10 and 11, starting from (−)-isosteviol 1.
Scheme 5: Condensation of the nitrobenzyl esters 10 and 11 with hexaammoniumtriptycene hexachloride 4.
Scheme 6: Hydrogenolysis to tricarboxylic acid all-syn-16.
Scheme 7: Alkylation of all-syn-16 renders terminal alkene all-syn-17.
Figure 6: (a) Top view on the molecular structure of all-syn-17 with the terminal alkene fragments labelled i...
Scheme 8: Alkylation of (−)-isosteviol diketone 9 with 5-bromo-1-pentene.
Scheme 9: Direct synthesis of alkylated triptycene 17 by condensation of 18 with hexaammoniumtriptycene hexac...
Scheme 10: Olefin metathesis of all-syn-17.
Figure 7: Extracts of the 13C NMR spectra of starting material and product.
Figure 8: Molecular modelling structure (MacroModel 9.3.5) of collapsed 19, (a) top view; (b) side view.
Figure 9: Screening of aromatic analytes with affinity materials 3, 7, 8, 17 and 19.
Figure 10: Primary data of anti,anti,syn-8 and a [3 + 2] cage compound (increasing pseudocumene concentrations...
Figure 11: Screening of protic analytes with affinity materials 3, 8, 14 and 15.
Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265
Graphical Abstract
Scheme 1: Scaled industrial processes for the synthesis of simple pyridines.
Scheme 2: Synthesis of nicotinic acid from 2-methyl-5-ethylpyridine (1.11).
Scheme 3: Synthesis of 3-picoline and nicotinic acid.
Scheme 4: Synthesis of 3-picoline from 2-methylglutarodinitrile 1.19.
Scheme 5: Picoline-based synthesis of clarinex (no yields reported).
Scheme 6: Mode of action of proton-pump inhibitors and structures of the API’s.
Scheme 7: Hantzsch-like route towards the pyridine rings in common proton pump inhibitors.
Figure 1: Structures of rosiglitazone (1.40) and pioglitazone (1.41).
Scheme 8: Synthesis of rosiglitazone.
Scheme 9: Syntheses of 2-pyridones.
Scheme 10: Synthesis and mechanism of 2-pyrone from malic acid.
Scheme 11: Polymer-assisted synthesis of rosiglitazone.
Scheme 12: Synthesis of pioglitazone.
Scheme 13: Meerwein arylation reaction towards pioglitazone.
Scheme 14: Route towards pioglitazone utilising tyrosine.
Scheme 15: Route towards pioglitazone via Darzens ester formation.
Scheme 16: Syntheses of the thiazolidinedione moiety.
Scheme 17: Synthesis of etoricoxib utilising Negishi and Stille cross-coupling reactions.
Scheme 18: Synthesis of etoricoxib via vinamidinium condensation.
Figure 2: Structures of nalidixic acid, levofloxacin and moxifloxacin.
Scheme 19: Synthesis of moxifloxacin.
Scheme 20: Synthesis of (S,S)-2,8-diazabicyclo[4.3.0]nonane 1.105.
Scheme 21: Synthesis of levofloxacin.
Scheme 22: Alternative approach to the levofloxacin core 1.125.
Figure 3: Structures of nifedipine, amlodipine and clevidipine.
Scheme 23: Mg3N2-mediated synthesis of nifedipine.
Scheme 24: Synthesis of rac-amlodipine as besylate salt.
Scheme 25: Aza Diels–Alder approach towards amlodipine.
Scheme 26: Routes towards clevidipine.
Figure 4: Examples of piperidine containing drugs.
Figure 5: Discovery of tiagabine based on early leads.
Scheme 27: Synthetic sequences to tiagabine.
Figure 6: Structures of solifenacin (2.57) and muscarine (2.58).
Scheme 28: Enantioselective synthesis of solifenacin.
Figure 7: Structures of DPP-4 inhibitors of the gliptin-type.
Scheme 29: Formation of inactive diketopiperazines from cis-rotameric precursors.
Figure 8: Co-crystal structure of carmegliptin bound in the human DPP-4 active site (PDB 3kwf).
Scheme 30: Improved route to carmegliptin.
Figure 9: Structures of lamivudine and zidovudine.
Scheme 31: Typical routes accessing uracil, thymine and cytosine.
Scheme 32: Coupling between pyrimidones and riboses via the Vorbrüggen nucleosidation.
Scheme 33: Synthesis of lamivudine.
Scheme 34: Synthesis of raltegravir.
Scheme 35: Mechanistic studies on the formation of 3.22.
Figure 10: Structures of selected pyrimidine containing drugs.
Scheme 36: General preparation of pyrimidines and dihydropyrimidones.
Scheme 37: Synthesis of imatinib.
Scheme 38: Flow synthesis of imatinib.
Scheme 39: Syntheses of erlotinib.
Scheme 40: Synthesis of erlotinib proceeding via Dimroth rearrangement.
Scheme 41: Synthesis of lapatinib.
Scheme 42: Synthesis of rosuvastatin.
Scheme 43: Alternative preparation of the key aldehyde towards rosuvastatin.
Figure 11: Structure comparison between nicotinic acetylcholine receptor agonists.
Scheme 44: Syntheses of varenicline and its key building block 4.5.
Scheme 45: Synthetic access to eszopiclone and brimonidine via quinoxaline intermediates.
Figure 12: Bortezomib bound in an active site of the yeast 20S proteasome ([114], pdb 2F16).
Scheme 46: Asymmetric synthesis of bortezomib.
Figure 13: Structures of some prominent piperazine containing drugs.
Figure 14: Structural comparison between the core of aplaviroc (4.35) and a type-1 β-turn (4.36).
Scheme 47: Examplary synthesis of an aplaviroc analogue via the Ugi-MCR.
Scheme 48: Syntheses of azelastine (5.1).
Figure 15: Structures of captopril, enalapril and cilazapril.
Scheme 49: Synthesis of cilazapril.
Figure 16: Structures of lamotrigine, ceftriaxone and azapropazone.
Scheme 50: Synthesis of lamotrigine.
Scheme 51: Alternative synthesis of lamotrigine (no yields reported).
Figure 17: Structural comparison between imiquimod and the related adenosine nucleoside.
Scheme 52: Conventional synthesis of imiquimod (no yields reported).
Scheme 53: Synthesis of imiquimod.
Scheme 54: Synthesis of imiquimod via tetrazole formation (not all yields reported).
Figure 18: Structures of various anti HIV-medications.
Scheme 55: Synthesis of abacavir.
Figure 19: Structures of diazepam compared to modern replacements.
Scheme 56: Synthesis of ocinaplon.
Scheme 57: Access to zaleplon and indiplon.
Scheme 58: Different routes towards the required N-methylpyrazole 6.65 of sildenafil.
Scheme 59: Polymer-supported reagents in the synthesis of key aminopyrazole 6.72.
Scheme 60: Early synthetic route to sildenafil.
Scheme 61: Convergent preparations of sildenafil.
Figure 20: Comparison of the structures of sildenafil, tadalafil and vardenafil.
Scheme 62: Short route to imidazotriazinones.
Scheme 63: Alternative route towards vardenafils core imidazotriazinone (6.95).
Scheme 64: Bayer’s approach to the vardenafil core.
Scheme 65: Large scale synthesis of vardenafil.
Scheme 66: Mode of action of temozolomide (6.105) as methylating agent.
Scheme 67: Different routes to temozolomide.
Scheme 68: Safer route towards temozolomide.
Figure 21: Some unreported heterocyclic scaffolds in top market drugs.
Beilstein J. Org. Chem. 2013, 9, 2233–2241, doi:10.3762/bjoc.9.262
Graphical Abstract
Figure 1: Selected biocatalytic allylic and benzylic oxidations with the lyophilisate of Pleurotus sapidus (P...
Scheme 1: Biocatalytic allylic oxidation of theaspirane (1) with lyophilisates of PSA. Only one enantiomer of...
Figure 2: Selected bioactive terpenoids based on spiroether backbones [38,39].
Scheme 2: Intramolecular silyl modified Sakurai reaction to spiroethers 7–9 and 11–13.
Scheme 3: Biocatalytic allylic oxidation of spiroethers 7, 8, 11 and 12 with the lyophilisate of PSA. Convers...
Figure 3: Bond-dissociation enthalpies for three allylic C–H bonds in 11. Double stabilization of the radical...
Scheme 4: Improved 3-step synthesis of vitispirane (23) from theaspirane (1). Only one enantiomer of racemic ...
Scheme 5: Oxidation of vitispirane (23) with PSA gave enone 24 and two diastereomeric allyl alcohols 26a and ...
Beilstein J. Org. Chem. 2013, 9, 2048–2078, doi:10.3762/bjoc.9.243
Graphical Abstract
Figure 1: a) Structural features and b) selected examples of non-natural congeners.
Scheme 1: Synthesis of isoindole 18.
Scheme 2: Staining amines with 1,4-diketone 19 (R = H).
Figure 2: Representative members of the indolocarbazole alkaloid family.
Figure 3: Staurosporine (26) bound to the adenosine-binding pocket [19] (from pdb1stc).
Figure 4: Structure of imatinib (34) and midostaurin (35).
Scheme 3: Biosynthesis of staurosporine (26).
Scheme 4: Wood’s synthesis of K-252a via the common intermediate 48.
Scheme 5: Synthesis of 26, 27, 49 and 50 diverging from the common intermediate 48.
Figure 5: Selected members of the cytochalasan alkaloid family.
Scheme 6: Biosynthesis of chaetoglobosin A (57) [56].
Scheme 7: Synthesis of cytochalasin D (70) by Thomas [63].
Scheme 8: Synthesis of L-696,474 (78).
Scheme 9: Synthesis of aldehyde 85 (R = TBDPS).
Scheme 10: Synthesis of (+)-aspergillin PZ (79) by Tanis.
Figure 6: Representative Berberis alkaloids.
Scheme 11: Proposed biosynthetic pathway to chilenine (93).
Scheme 12: Synthesis of magallanesine (97) by Danishefsky [84].
Scheme 13: Kurihara’s synthesis of magallanesine (85).
Scheme 14: Proposed biosynthesis of 113, 117 and 125.
Scheme 15: DNA lesion caused by aristolochic acid I (117) [102].
Scheme 16: Snieckus’ synthesis of piperolactam C (131).
Scheme 17: Synthesis of aristolactam BII (104).
Figure 7: Representative cularine alkaloids.
Scheme 18: Proposed biosynthesis of 136.
Scheme 19: The syntheses of 136 and 137 reported by Castedo and Suau.
Scheme 20: Synthesis of 136 by Couture.
Figure 8: Representative isoindolinone meroterpenoids.
Scheme 21: Postulated biosynthetic pathway for the formation of 156 (adopted from George) [143].
Scheme 22: Synthesis of stachyflin (156) by Katoh [144].
Figure 9: Selected examples of spirodihydrobenzofuranlactams.
Scheme 23: Synthesis of stachybotrylactam I (157).
Scheme 24: Synthesis of pestalachloride A (193) by Schmalz.
Scheme 25: Proposed mechanism for the BF3-catalyzed metal-free carbonyl–olefin metathesis [149].
Scheme 26: Preparation of the isoindoline core of muironolide A (204).
Scheme 27: Proposed biosynthesis of 208.
Scheme 28: Model for the biosynthesis of 215 and 217.
Scheme 29: Synthesis of lactonamycin (215) and lactonamycin Z (217).
Figure 10: Hetisine alkaloids 225–228.
Scheme 30: Biosynthetic proposal for the formation of the hetisine core [167].
Scheme 31: Synthesis of nominine (225).
Beilstein J. Org. Chem. 2013, 9, 1826–1836, doi:10.3762/bjoc.9.213
Graphical Abstract
Figure 1: Structures of the 2,3-dihydroxycholestane isomers studied in this work.
Figure 2: 3D plots for LMOG 1 and solvent parameters of the tested solvents a) Hansen solubility parameters (δ...
Figure 3: Tg-vs-concentration plots for gels of 1.
Figure 4: SEM images of xerogels from a,b) dichloromethane, and c,d) from dioxane.
Figure 5: Powder X-ray diffraction pattern of the xerogels of 1 from a) n-hexane and b) dichloromethane.
Figure 6: Self-assembly models proposed for LMOG 1, only the left handed helix is shown, head to head hydroge...
Figure 7: SEM images of nanostructured silica obtained from gels of LMOG 1 under the following conditions: 0....
Beilstein J. Org. Chem. 2013, 9, 1677–1695, doi:10.3762/bjoc.9.192
Graphical Abstract
Figure 1: The catalyzed enantioselective desymmetrization.
Figure 2: Cinchona alkaloid-derived catalysts OC-1 to OC-11.
Scheme 1: The enantioselective desymmetrization of meso-aziridines in the presence of selected Cinchona alkal...
Figure 3: Cinchona alkaloid-derived catalysts OC-12 to OC-19.
Scheme 2: The enantioselective ring-opening of aziridines in the presence of OC-16.
Scheme 3: OC-16 catalyzed enantioselective ring-opening of aziridines.
Figure 4: The chiral phosphoric acids catalysts OC-20 and OC-21.
Scheme 4: OC-20 and OC-21 catalyzed enantioselective desymmetrization of meso-aziridines.
Figure 5: The proposed mechanism for chiral phosphorous acid-induced enantioselctive desymmetrization of meso...
Scheme 5: OC-21 catalyzed enantioselective desymmetrization of meso-aziridines by Me3SiSPh.
Scheme 6: OC-21 catalyzed the enantioselective desymmetrization of meso-aziridines by Me3SiSePh/PhSeH.
Figure 6: L-Proline and its derivatives OC-22 to OC-27.
Scheme 7: OC-23 catalyzed enantioselective desymmetrization of meso-aziridines.
Figure 7: Proposed bifunctional mode of action of OC-23.
Figure 8: The chiral thioureas OC-28 to OC-44 for the desymmetrization of meso-aziridines.
Scheme 8: Desymmetrization of meso-aziridines with OC-41.
Figure 9: The chiral guanidines (OC-45 to OC-48).
Scheme 9: OC-46 catalyzed desymmetrization of meso-aziridines by arylthiols.
Scheme 10: Desymmetrization of cis-aziridine-2,3-dicarboxylate.
Figure 10: The proposed activation mode of OC-46.
Scheme 11: The enantioselective desymmetrization of meso-aziridines by amine/CS2 in the presence of OC-46.
Figure 11: The chiral 1,2,3-triazolium chlorides OC-49 to OC-55.
Scheme 12: The enantioselective desymmetrization of meso-aziridines by Me3SiX (X = Cl or Br) in the presence o...
Figure 12: Early organocatalysts for enantioselective desymmetrization of meso-epoxides.
Scheme 13: Attempts of enantioselective desymmetrization of meso-epoxides in the presence of OC-58 or OC-60.
Scheme 14: The enantioselective desymmetrization of a meso-epoxide containing one P atom.
Figure 13: Some chiral phosphoramide and chiral phosphine oxides.
Scheme 15: OC-62 catalyzed enantioselective desymmetrization of meso-epoxides by SiCl4.
Figure 14: The proposed mechanism of the chiral HMPA-catalyzed desymmetrization of meso-epoxides.
Scheme 16: The enantioselective desymmetrization of meso-epoxides in the presence of OC-63.
Figure 15: The Chiral phosphine oxides (OC-70 to OC-77) based on an allene backbone.
Scheme 17: OC-73 catalyzed enantioselective desymmetrization of meso-epoxides by SiCl4.
Figure 16: Chiral pyridine N-oxides used in enantioselective desymmetrization of meso-epoxides.
Scheme 18: Catalyzed enantioselective desymmetrization of meso-epoxides in the presence of OC-80 or OC-82.
Figure 17: Chiral pyridine N-oxides OC-85 to OC-94.
Scheme 19: Enantioselective desymmetrization of cis-stilbene oxide by using OC-85 to OC-92 as catalysts.
Figure 18: A novel family of helical chiral pyridine N-oxides OC-95 to OC-97.
Scheme 20: Desymmetrization of meso-epoxides catalyzed by OC-95 to OC-97.
Scheme 21: OC-98 catalyzed enantioselective desymmetrization of meso-epoxides by SiCl4.
Beilstein J. Org. Chem. 2013, 9, 1352–1382, doi:10.3762/bjoc.9.153
Graphical Abstract
Figure 1: Qualitative orbital diagram for a d8 metal in ML4 square-planar and ML3 T-shaped complexes.
Figure 2: Walsh diagram for the d-block of a d8 ML3 complex upon bending of one L–M–L angle.
Figure 3: Neutral Y-shaped Pt complex Y1 [15]. Angles are given in degrees.
Figure 4: General classification of T-shaped Pt(II) structures according to the fourth coordination site.
Figure 5: Hydride, boryl and borylene true T-shaped Pt(II) complexes.
Figure 6: NHC-based true T-shaped Pt(II) complexes.
Figure 7: Phosphine-based agostic T-shaped Pt(II) complexes. Compounds in brackets correspond with hydrido–al...
Figure 8: Phenylpyridine and NHC-based agostic T-shaped Pt(II) complexes.
Figure 9: Counteranion coordination in T-shaped Pt(II) complexes.
Figure 10: Phosphine-based solvento Pt(II) complexes.
Figure 11: Nitrogen-based solvento Pt(II) complexes.
Figure 12: Pincer-based solvento Pt(II) complexes.
Figure 13: Structure of the QM/MM optimized cisplatin–protein adduct [94].
Figure 14: NMR coupling constants used for the characterization of three-coordinate Pt(II) species.
Figure 15: The chemical formula of the complexes discussed in Table 2.
Scheme 1: Halogen abstraction from 1.
Scheme 2: Halogen abstraction from 2 forming the dicationic complex T3 [22].
Scheme 3: Hydrogenation of complexes A5a and A5b [39].
Scheme 4: Hydrogenation of complexes 3 and A5c [40].
Scheme 5: Intermolecular C–H bond activation from T5a [28].
Scheme 6: Protonation of complexes 4 [35,36].
Scheme 7: Cyclometalation of 5 [43].
Scheme 8: Protonation of 6.
Scheme 9: Reductive elimination of ethane from 7.
Scheme 10: Reductive elimination of methane from six-coordinate Pt(IV) complexes.
Scheme 11: Proposed dissociative mechanism for the fluxional motion of dmphen in [Pt(Me)(dmphen)(PR3)]+ comple...
Figure 16: Feasible interactions for unsaturated intermediates 11b (left) and 12b (right) during fluxional mot...
Scheme 12: Halogen abstraction from 13a,b and subsequent cyclometalation to yield complexes A5a,b [39].
Scheme 13: Proposed mechanism for the acid-catalyzed cyclometalation of 14 via intermediate 15 [41].
Scheme 14: Proposed mechanism for the formation of 19 [102].
Scheme 15: Cyclometalation of 20 via thioether dissociation [117].
Figure 17: Gibbs energy profile (in chloroform solvent) for the cyclometalation of 23 [120].
Scheme 16: Coordination of tmtu to 29 and subsequent C–H bond activation via three-coordinate species 31 and 32...
Scheme 17: Cyclometalation process of NHC-based Pt(II) complexes [28,44].
Scheme 18: Cyclometalation process of complex A9 [43].
Scheme 19: “Rollover” reaction of 38 and subsequent oligomerization [123].
Scheme 20: Proposed mechanism for the formation of cyclometalated species 44 [124].
Scheme 21: Self-assembling process of 45 by “rollover” reaction [126].
Scheme 22: “Rollover” reaction of A9. Energies (solvent) in kcal mol−1 [127].
Scheme 23: Proposed mechanisms for the “rollover” cyclometalation of 52 in gas-phase ion-molecule reactions [128].
Scheme 24: β-H elimination and 1,2-insertion equilibrium involving A1d and the subsequent generation of 57 [35].
Scheme 25: Proposed mechanism for thermolysis of 7b and 7c in benzene-d6 and cyclohexane-d12 solvents [101].
Scheme 26: β-H elimination process of A11a [28].
Scheme 27: Intermolecular C–H bond activation from 62 [95].
Scheme 28: Reductive elimination of methane from 65 followed by CD3CN coordination or C–D bond-activation proc...
Figure 18: DFT-optimized structures describing the κ2 (69, left) and κ3 (69’, right) coordination modes of [Pt...
Scheme 29: Intermolecular arene C–H bond activation from NHC-based complexes [28].
Figure 19: Energy profiles (in benzene solvent) for the benzene C–H bond activation from A11a, A11b, T5a and T...
Scheme 30: Intermolecular arene C–H bond activation from PNP-based complex 71 [12].
Scheme 31: Intermolecular C–H bond-activation by gas-phase ion-molecule reactions of 74 [7,142].
Scheme 32: Dihydrogen activation through complexes A5a, A5b [39], A5c [40] and S1a [54].
Scheme 33: Dihydrogen activation through complexes A7 and 16 [41]. For a: see Scheme 13.
Scheme 34: Br2 and I2 bond activations through complexes A11a and T5a [143].
Scheme 35: Detection and isolation of the Pt(III) complex 81a [143].
Scheme 36: Cl2 bond activation through complexes 82 and 83 [144].
Scheme 37: cis–trans Isomerization mechanism of the solvento Pt(II) complexes S5 [2,61].
Figure 20: Energy profiles for the isomerization of complexes [Pt(R)(PMe3)2(NCMe)]+ where R means Me (85a, red...
Figure 21: DFT-optimized structure of intermediate 86 [62]. Bond distances in angstrom and angles in degrees.
Scheme 38: Proposed dissociative ligand-substitution mechanism of cis-[Pt(R)2S2] complexes (87) [117].
Scheme 39: Proposed mechanisms for the ligand substitution of the dinuclear species 91 [146].
Beilstein J. Org. Chem. 2013, 9, 1319–1325, doi:10.3762/bjoc.9.148
Graphical Abstract
Scheme 1: Formation of (Z)-chloro-exo-methyleneketals.
Scheme 2: Mechanism of formation of (Z)-chloro-exo-methylenetetrahydrofurans.
Scheme 3: Stepwise formation of (Z)-chloro-exo-methylenetetrahydrofurans.
Scheme 4: Optimized protocols to form (Z)-chloro-exo-methylenetetrahydrofurans.
Scheme 5: Hydration of (Z)-chloro-exo-methylenetetrahydrofurans.
Scheme 6: Formation of dioxanes.
Figure 1: X-ray diffraction analysis of dioxanes 35 and 36.
Scheme 7: Formation of a new spirocyclic dimer.
Scheme 8: Mechanism leading to dioxanes and spirocycles.
Scheme 9: (S,S)-syn and (S,R)-syn approaches.
Scheme 10: Formation of a bridged dimer and a triene.
Figure 2: X-ray diffraction analysis of two new dimers.
Scheme 11: Mechanism leading to bridged and dienic dimers.
Beilstein J. Org. Chem. 2013, 9, 991–1001, doi:10.3762/bjoc.9.114
Graphical Abstract
Scheme 1: Synthesis of hexaethyl dialkylaminomethylidynetrisphosphonates 1 from dichloromethylene dialkylammo...
Scheme 2: Synthesis and some transformations of trisphosphonate 2.
Scheme 3: Attempt to synthesize trisphosphonates by the combination of Arbuzov reaction and dialkyl phosphite...
Scheme 4: Synthesis of hexaethylmethylidynetrisphosphonate 6 via phosphinylation of tetraethyl methylenebisph...
Scheme 5: Synthetic approach to methylidynetrisphosphonate ester 9.
Scheme 6: Synthesis of alkylidyne-1,1,1-trisphosphonate esters 12.
Scheme 7: Two-step one-pot synthesis of propargyl-substituted trisphosphonate 15.
Scheme 8: Synthetic route to trisphosphonate 18 via 7,7-bisphosphonyl-3,5-di-tert-butylquinone methide 17.
Scheme 9: Synthesis of trisphosphonate 18 starting from 2,6-di-tert-butyl-4-(dichloromethyl)phenol.
Scheme 10: Synthesis of triphosphorus derivatives 20 via quinone methides 17 and 19.
Scheme 11: Unexpected phosphonylation of the aromatic nucleus in reactions of quinone methides 19 and 21.
Scheme 12: Multistep synthesis of trisphosphonate 18 starting from quinone methide 25.
Scheme 13: Synthesis of hexaethyl methylidynetrisphosphonate (6) via metal-carbenoid-mediated P–H insertion re...
Scheme 14: Reaction between tert-butylphosphaethyne and diethyl phosphite in the presence of sodium metal.
Scheme 15: Cross metathesis of trisphosphonates 12 with 2-methyl-2-butene and the Grubbs second-generation cat...
Scheme 16: Hydroboration–oxidation of trisphosphonates 12b,e.
Scheme 17: Reaction of 3-butyn-1-ylidenetrisphosphonate 15 with benzyl azide.
Scheme 18: The use of the transsilylation reaction for the synthesis of trisphosphonate salts 37.
Scheme 19: Synthesis of the sodium salt of the acid-labile trisphosphonic acid 38.
Scheme 20: Acidic hydrolysis of trisphosphonate ester 1a.
Scheme 21: Methylation of trisphosphonate 1a.
Scheme 22: Synthesis of the free methylidynetrisphosphonic acid via trisphosphonate salt 38.
Scheme 23: Synthesis of halomethylidynetrisphosphonate salts 43 and 44 by modified Gross’s procedure.
Scheme 24: Synthesis of trisphosphonate modified nucleotides. Reagents: i, 5'-O-tosyl adenosine, MeCN; ii, AMP...
Figure 1: Bond angles and bond distances in pyrophosphate, methylene-1,1-bisphosphonate and fluoromethylidyne...
Beilstein J. Org. Chem. 2013, 9, 81–88, doi:10.3762/bjoc.9.11
Graphical Abstract
Figure 1: FDA approved HDAC inhibitors for the treatment of CTCL.
Scheme 1: SAR of psammaplin A against zinc-dependant HDACs. Adapted from Baud et al. [20].
Scheme 2: Synthesis of 7–9. Conditions: (i) HCl·H2NOMe, pyridine, rt, 12 h; (ii) EDC, NHS, dioxane, rt, 3 h; ...
Scheme 3: Top: Generation of the fluorescent adduct 11 after reaction of probe 10 with thiols. Bottom left: F...
Figure 2: rHDAC1 was incubated with a predetermined IC50 concentration of 7 (left) and 9 (right) for 1–60 min...
Beilstein J. Org. Chem. 2012, 8, 1884–1889, doi:10.3762/bjoc.8.217
Graphical Abstract
Figure 1: Structures of selaginellins from S. tamariscina.
Figure 2: Key HMBC correlations of compound 1.
Beilstein J. Org. Chem. 2012, 8, 1523–1527, doi:10.3762/bjoc.8.172
Graphical Abstract
Figure 1: The chemical structures of DMP (1), 2-iodobenzoic acid (2), IBX (3) and 4.
Figure 2: ORTEP diagram (50% probability level) of 1 with numbering scheme.
Figure 3: Supramolecular structure of 1 with halogen bonds and selected hydrogen bonds.
Figure 4: Further hydrogen-bond interactions in the supramolecular structure of 1.
Figure 5: Supramolecular structure of 1 viewed along axis b.
Beilstein J. Org. Chem. 2012, 8, 1191–1199, doi:10.3762/bjoc.8.132
Graphical Abstract
Scheme 1: Diverse synthesis of indoles using Bartoli reactions. aSee [24].
Figure 1: Nitroarenes on solid supports. In red: Nitroarenes failed to give indoles. aResin has been reported...
Figure 2: Temperature optimization with Grignard reagent 2{b}.
Figure 3: Temperature optimization with Grignard reagent 2{a}. Isolated yield.
Figure 4: Optimization studies of ester 1{h} with a Grignard reagent 2{d} to give indole 3{h,d} and methyl 3-...
Scheme 2: Stille reaction on solid supports.
Scheme 3: Suzuki reaction on solid supports.
Scheme 4: Sonogashira–Hagihara reaction on solid supports.
Beilstein J. Org. Chem. 2012, 8, 1146–1160, doi:10.3762/bjoc.8.128
Graphical Abstract
Figure 1: Molecular-descriptor-based cluster analysis; single-linkage Euclidean distances. Clustering of comp...
Scheme 1: Preparation of dicarboxylic benzotriazole derivatives.
Scheme 2: Preparation of pyridine-based cysteine-containing macrocycles.
Scheme 3: Preparation of pyridine–cysteine-containing macrocycle 39.
Beilstein J. Org. Chem. 2012, 8, 1037–1047, doi:10.3762/bjoc.8.116
Graphical Abstract
Scheme 1: β-diketonate complexes (left), homoleptic complexes (middle) and planned homoleptic complexes of eu...
Scheme 2: Pyrrole–pyridine-based structures synthesized in this study.
Scheme 3: Retrosynthetic approach for structures 1–3.
Scheme 4: Synthesis of the heteroaryl bromides used in the coupling reaction.
Scheme 5: Generation of the borate intermediate 21/22.
Scheme 6: In situ Suzuki coupling reactions of the heteroaryl bromides 8–10.
Figure 1: The structure of compound 1 in the crystal. Ellipsoids correspond to 50% probability levels.
Figure 2: Packing diagram of compound 1, viewed parallel to the y-axis in the range y ≈ 1/4. Hydrogen bonds a...
Figure 3: The structure of compound 2·CH3OH in the crystal. Ellipsoids correspond to 50% probability levels. ...
Figure 4: Packing diagram of compound 2·CH3OH showing the formation of inversion-symmetric "stacked" dimers. ...
Figure 5: The structure of compound 3·C2H5OH in the crystal. Ellipsoids correspond to 50% probability levels....
Figure 6: Packing diagram of compound 3·C2H5OH. Hydrogen bonds are shown as thick dashed lines. Hydrogen atom...
Beilstein J. Org. Chem. 2012, 8, 1003–1017, doi:10.3762/bjoc.8.113
Graphical Abstract
Figure 1: Some important families of photochromic compounds and their photochromic reactions.
Figure 2: Photochromism of azobenzene derivatives and energetic profile for the switching process.
Figure 3: General overview of the different types of azoderivatives presented in this review.
Figure 4: Changes in the electronic spectrum of a 3 cis-to-trans isomerising ethanol solution at 45 °C (Δt = ...
Figure 5: Chemical structure and thermal relaxation time in ethanol at 298 K, τ, for the slow thermally-isome...
Figure 6: Rotation and inversion mechanisms proposed for the thermal cis-to-trans isomerisation processes of ...
Figure 7: Effect of the presence of the electron-withdrawing cyano and nitro groups on the thermal relaxation...
Figure 8: Transient absorption generated by UV irradiation (λ = 355 nm) for azo-dyes 8 (right) and 9 (left) i...
Figure 9: Effect of the presence of a positively charged nitrogen as an electron-withdrawing group on the the...
Figure 10: Mechanism proposed for the thermal cis-to-trans isomerisation process for the push–pull azopyridini...
Figure 11: Comparison between the thermal relaxation time at 298 K, τ, for the azoderivative 4 (type-I) and th...
Figure 12: Solvent effect on the thermal relaxation time at 298 K, τ, for the type-II azophenols 11–13.
Figure 13: Transient generated by irradiation with UV-light (λ = 355 nm) for the type-II azophenol 12 in ethan...
Figure 14: Proposed isomerisation mechanisms for the thermal cis-to-trans isomerisation of the alkoxy-substitu...
Figure 15: Solvent effect on the thermal relaxation time at 298 K, τ, for the type-II ortho-substituted azophe...
Figure 16: Cooperative effect of the para- and ortho-hydroxyl groups in azophenol 17.
Figure 17: Effect of the poly-hydroxylation of the azobenzene core on the thermal relaxation time at 298 K, τ,...
Figure 18: Transients generated by irradiation with UV-light (λ = 355 nm) for the poly-substituted azophenol 18...
Figure 19: Effect of the introduction of electron-withdrawing groups in the position 4’ of the azophenol struc...
Figure 20: Transient absorptions generated by UV irradiation (λ = 355 nm) of azo-dyes 11 (type-II), 19 (type-I...
Figure 21: Effect of the introduction of the hydroxyl group in the position 2’ of the push–pull azo-dye on the...
Figure 22: Effect of the substitution of a benzene ring by a pyridine one on the thermal relaxation time in et...
Figure 23: Influence of the introduction of additional electron-withdrawing nitro groups in the pyridine ring ...
Figure 24: Chemical structure and thermal relaxation time in ethanol at 298 K, τ, for the type-III azoderivati...
Figure 25: Oscillation of the optical density of an ethanol solution of azo-dye 26 generated by UV-light irrad...
Beilstein J. Org. Chem. 2012, 8, 597–605, doi:10.3762/bjoc.8.66
Graphical Abstract
Scheme 1: Orthogonal strategy introduced by Ogawa et al.
Scheme 2: Determination of the AP activation pathways.
Scheme 3: AP building blocks in oligosaccharide synthesis.
Beilstein J. Org. Chem. 2012, 8, 514–521, doi:10.3762/bjoc.8.58
Graphical Abstract
Figure 1: Structure of trehalose (1), validoxylamine A (2), 1-thiatrehazolin (3), trehalostatin (4), casuarin...
Figure 2: Structure of nojirimycin-based (7, 8) and pyrrolidine-based (9) leads.
Figure 3: Structures of potential inhibitors 10–21.
Scheme 1: Synthesis of nojirimycin-based inhibitors 10,12 and 13. Reagents and conditions: (a) H2, Pd/C, NH4O...
Scheme 2: Synthesis of pyrrolidine derivatives 14, 16, 17 and 19. Reagents and conditions: (a) H2, Pd(OH)2/C,...
Scheme 3: Synthesis of pyrrolidines 20 and 21. Reagents and conditions: (a) H2, Pd/C, MeOH, HCl; (b) octanal,...
Figure 4: Histogram of the inhibitory activity of compounds 7–10, 12–14, 16 and 20. Derivatives 10, 14 and 16...
Beilstein J. Org. Chem. 2012, 8, 390–397, doi:10.3762/bjoc.8.42
Graphical Abstract
Scheme 1: Reaction of p-bromanil (1) with 1-butylimidazole (2).
Figure 1: 1H NMR spectrum of mesomeric betaine 3.
Figure 2: 13C NMR spectrum of dipole 3.
Figure 3: Solid-state molecular structure of compound 3. Selected bond distances [Å]: O(1)–C 1.228(4), O(2)–C...
Figure 4: Formation of molecular layers in the crystal packing.
Figure 5: Higuchi–Connors phase diagram of 3/m-β-CD complex.
Scheme 2: Mechanism of molecular association of the complex.
Figure 6: Classification of betaine 3.
Scheme 3: Synthesis of polymer 6 and oligomer 7 based on imidazolium-enolate structures.
Figure 7: Thermogravimetric analyses of polymer networks 6a–c and oligomers 7a,b.
Beilstein J. Org. Chem. 2012, 8, 201–226, doi:10.3762/bjoc.8.22
Graphical Abstract
Figure 1: Calixarenes and expanded calixarenes: p-tert-Butylcalix[4]arene (1), p-tert-butyldihomooxacalix[4]a...
Figure 2: Conventional nomenclature for oxacalix[n]arenes.
Scheme 1: Synthesis of oxacalix[3]arenes: (i) Formaldehyde (37% aq), NaOH (aq), 1,4-dioxane; glacial acetic a...
Figure 3: p-tert-Butyloctahomotetraoxacalix[4]arene (4a) [16].
Figure 4: X-ray crystal structure of 3a showing phenolic hydrogen bonding (IUCr ID AS0508) [17].
Scheme 2: Stepwise synthesis of asymmetric oxacalix[3]arenes: (i) MOMCl, Adogen®464; (ii) 2,2-dimethoxypropan...
Figure 5: X-ray crystal structure of heptahomotetraoxacalix[3]arene 5 (CCDC ID 166088) [21].
Scheme 3: Oxacalix[3]arene synthesis by reductive coupling: (i) Me3SiOTf, Et3SiH, CH2Cl2; R1, R2 = I, Br, ben...
Scheme 4: Oxacalix[3]naphthalene: (i) HClO4 (aq), wet CHCl3 (R = tert-butyl, 6a, H, 6b) [20].
Figure 6: Conformers of 3a.
Scheme 5: Origin of the 25:75 cone:partial-cone statistical distribution of O-substituted oxacalix[3]arenes (p...
Scheme 6: Synthesis of alkyl ethers 7–10: (i) Alkyl halide, NaH, DMF [24].
Scheme 7: Synthesis of a pyridyl derivative 11a: (i) Picolyl chloride hydrochloride, NaH, DMF [26,27].
Figure 7: X-ray crystal structure of partial-cone 11a (CCDC ID 150580) [26].
Scheme 8: Lower-rim ethyl ester synthesis: (i) Ethyl bromoacetate, NaH, t-BuOK or alkali metal carbonate, THF...
Scheme 9: Forming chiral receptor 13: (i) Ethyl bromoacetate, NaH, THF; (ii) NaOH, H2O/1,4-dioxane; (iii) S-P...
Figure 8: X-ray crystal structure of 16 (IUCr ID PA1110) [32].
Scheme 10: Lower rim N,N-diethylamide 17a: (i) N,N-Diethylchloroacetamide, NaH, t-BuOK or alkali metal carbona...
Scheme 11: Capping the lower rim: (i) N,N-Diethylchloroacetamide, NaH, THF; (ii) NaOH, H2O/1,4-dioxane; (iii) ...
Figure 9: X-ray crystal structure of 18 (CCDC ID 142599) [33].
Scheme 12: Extending the lower rim: (i) Glycine methyl ester, HOBt, dicyclohexycarbodiimide (DCC), CH2Cl2; (ii...
Scheme 13: Synthesis of N-hydroxypyrazinone derivative 23: (i) 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide...
Scheme 14: Synthesis of 24: (i) 1-Adamantyl bromomethyl ketone, NaH, THF [39].
Scheme 15: Synthesis of 25 and 26: (i) (Diphenylphosphino)methyl tosylate, NaH, toluene; (ii) phenylsilane, to...
Figure 10: X-ray crystal structure of 27 in the partial-cone conformer (CCDC ID SUP 90399) [41].
Scheme 16: Synthesis of strapped oxacalix[3]arene derivatives 28 and 29: (i) N,N’-Bis(chloroacetyl)-1,2-ethyle...
Figure 11: A chiral oxacalix[3]arene [45].
Figure 12: X-ray crystal structure of asymmetric oxacalix[3]arene 30 incorporating t-Bu, iPr and Et groups (CC...
Scheme 17: Reactions of an oxacalix[3]arene incorporating an upper-rim Br atom with (i) Pd(OAc)2, PPh3, HCO2H,...
Scheme 18: Synthesis of acid 39: (i) NaOH, EtOH/H2O, HCl (aq) [47].
Figure 13: Two forms of dimeric oxacalix[3]arene 40 [47].
Scheme 19: Capping the upper rim: (i) t-BuLi, THF, −78 °C; (ii) NaBH4, THF/EtOH; (iii) 1,3,5-tris(bromomethyl)...
Figure 14: Oxacalix[3]arene capsules 46 and 47 formed through coordination chemistry [52,53].
Figure 15: X-ray crystal structure of the 3b-vanadyl complex (CCDC ID 240185) [57].
Scheme 20: Effect of Ti(IV)/SiO2 on 3a: (i) Ti(OiPr)4, toluene; (ii) triphenylsilanol, toluene; (iii) partiall...
Figure 16: X-ray crystal structures of oxacalix[3]arene complexes with rhenium: 3b∙Re(CO)3 (CCDC ID 620981, le...
Figure 17: X-ray crystal structure of the La2·3a2 complex (CSD ID TIXXUT) [60].
Figure 18: X-ray crystal structures of [3a∙UO2]− with a cavity-bound cation (CCDC ID 135575, left) and without...
Figure 19: X-ray crystal structure of a supramolecule comprising two [3g·UO2]− complexes that encapsulate a di...
Figure 20: X-ray crystal structure of oxacalix[3]arene 49 capable of chiral selectivity (CSD ID HIGMUF) [65].
Figure 21: The structure of derivative 50 incorporating a Reichardt dye [66].
Figure 22: Phosphorylated oxacalix[3]arene complexes with transition metals: (Left to right) 26∙Au, 26∙Mo(CO)3...
Figure 23: X-ray crystal structure of [17a·HgCl2]2 (CCDC ID 168653) [69].
Figure 24: X-ray crystal structures of 3f with C60 (CCDC ID 182801, left) [76] and a 1,4-bis(9-fluorenyl) C60 deri...
Figure 25: X-Ray crystal structure of 3i and 6a encapsulating C60 (CCDC ID 102473 and 166077) [23,79].
Figure 26: A C60 complexing cationic oxacalix[3]arene 51 [81].
Figure 27: An oxacalix[3]arene-C60 self-associating system 53 [87].
Scheme 21: Synthesis of fluorescent pyrene derivative 55: (i) Propargyl bromide, acetone; (ii) CuI, 1-azidomet...
Scheme 22: Synthesis of responsive rhodamine derivative 57: (i) DCC, CH2Cl2 [91].
Scheme 23: Synthesis of nitrobenzyl derivative 58: (i) 1-Bromo-4-nitrobenzyl acetate, K2CO3, refluxing acetone...
Figure 28: X-ray crystal structure of [Na2∙17a](PF6)2 (CCDC ID 116656) [97].