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Abstract

It is well-known that the Hartree-Fock (HF) interaction does not alter superconducting observables
in conventional superconductors, as its effect is mainly reduced to a chemical potential shift. De-
viations from this behavior can only arise in situations of translational symmetry breaking, such as
caused by the presence of external fields that induce spatial variations of the order parameter and
electron density. We demonstrate that this scenario changes fundamentally in quasicrystalline sys-
tems, where the intrinsic lack of translational symmetry leads to a fractal spatial distribution of the
superconducting condensate and electron density. By investigating a Fibonacci chain as a prototype
quasicrystal, we numerically solve the Bogoliubov-de Gennes (BdG) equations and show that be-
yond the half-filling, the HF potential significantly enhances the self-similar spatial oscillations of
the order parameter while simultaneously reducing its average value and altering its critical expo-
nent. Consequently, the critical temperature is suppressed; for our chosen microscopic parameters,
this suppression can reach up to 20%. Therefore, an accurate analysis of condensate distribution
and related quantities in quasicrystalline superconductors requires the comparison of results ob-

tained with and without the HF interaction.
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Introduction

It is well-known, dating back to the classical book by de Gennes [1], that in conventional super-
conducting materials, the Hartree-Fock interaction merely reduces to a shift of the chemical po-
tential, as the observables are not affected due to translational invariance. Hence, the Hartree-Fock
(HF) field is a kind of ’spectator’ that defines the single-particle states and chemical potential but
does not act on the pair formation and, thus, can be neglected, as in the standard formulation of
the BCS model [2,3]. Nevertheless, the HF potential cannot be neglected in the presence of exter-
nal fields [4], such as impurity potentials [5,6], quantum confinement in nanoscale superconduc-
tors [7], potential barriers at interfaces [8], etc. Such external fields break the translational invari-
ance, which is the condition for the HF field to make a contribution to the formation of the super-
conducting condensate.

This raises an interesting question about systems that exhibit an intrinsic lack of translational in-
variance even in the absence of any applied field. Among those are quasicrystals, which were first
discovered in 1984 [9-11]. Quasicrystals exhibit long-range orientational order - such as the five-
fold symmetry in AlggMn4 alloys [9,10] - but lack the translational invariance [11]. The supercon-
ductivity of quasicrystals was established in 2018 with the discovery of superconducting signatures
in an Al-Zn-Mg alloy below a critical temperature of 7, ~ 0.05 K [12]. More recently, in 2024
and 2025, much higher critical temperatures of 7, ~ 1 Kand 7T, ~ 5.47 K were reported in van
der Waals layered dodecagonal quasicrystals Ta; ¢Te [13] and in a monoclinic approximant to the
decagonal quasicrystal Al;30s4 [14].

The experimental observations of the superconductivity in quasicrystals ignited a big interest in
many open problems related to the superconducting condensate in quasiperiodic systems. Most

of the recent results were obtained for a superconducting Fibonacci chain, being a simplified one-



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

dimensional model for superconducting quasicrystals [15]. Using this model, researchers explored
a range of phenomena in quasiperiodic systems, including proximity effects in quasicrystal-metal
hybrids [16-18], enhanced superconductivity from staggered hopping amplitudes [19], and the in-
terplay between the Josephson effect and quasiperiodicity [20]. The model has also been used to
investigate topological superconductivity [21] and anomalous local critical temperatures (left-end,
right-end and at the chain center) in quasiperiodic chains [22]. These investigations demonstrate
that the spatial distribution of the superconducting condensate in quasiperiodic chains exhibits a
distinct fractal character, with significant oscillations of the order parameter along the system. A
similar fractal inhomogeneous distribution of the pair condensate has been calculated for the Pen-
rose and Ammann-Beenker tilings [23], being a well-known representation of two-dimensional
quasicrystals.

Recent studies confirm that the superconducting condensate in quasiperiodic systems possesses a
highly nontrivial spatial structure. This finding naturally raises the question of how sensitive the
theoretical predictions for quasicrystalline superconductors are to the inclusion of the HF potential
in the fundamental microscopic equations. Our work addresses this open problem through an in-

vestigation of the superconducting Fibonacci chain, a standard prototype for quasiperiodic systems.

Bogoliubov-de Gennes equations for superconducting Fibonacci

chains

To investigate the superconducting properties of a Fibonacci chain, we use an attractive Hubbard
model with the grand-canonical Hamiltonian (absorbing the chemical potential u) given by [4-6,8,

19,22]

I:I = — l‘l’jCj-O_ng- - Z ﬂﬁia' — 8 Z ﬁiTﬁil’ M
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where ¢, and cj(r are the annihilation and creation operators of an electron with the spin projection
o= (T,]) atsitesi = 1,..., N, t;; is the hopping amplitude, 7, = c?gcig, and g > 0 is the on-site
attractive electron-electron interaction.

Within the mean-field approximation, the Hamiltonian (1) is reduced [4] to the effective BCS-

Bogoliubov Hamiltonian in the form (for the s-wave pairing)

A= ) hijcipeio + ) [AG)ccl + A (Deiyen]. @)
ijo [
where
hij = —l’i]' — 611 [,Ll - UHF(Z)], (3)

with ¢;; the Kronecker delta, and A(i) and Uyr(i) are the superconducting order parameter and the

HF interaction potential, respectively. The latter obey the self-consistency relations

A(D) = glcirciy),  Unr(i) = —g{an) = —g{niy), 4)

here we exclude spin-imbalanced regimes when (7;1) # (7).
It is well-known that the effective Hamiltonian is diagonalized by applying the Bogoliubov-Valatin
transformation [4]
cin uy(i) —vy(Q) 4%
=Y At (5)
T . %/ +
c, v \v, (1) ul(@) |\y
il v vl
where u, (i) and v, (i) are the particle-like and hole-like quasiparticle (bogolon) wavefunctions, and

Yvo and yi(, are the annihilation and creation operators for bogolon state v, 0. The quasiparticle
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wave functions obey the Bogoliubov-de Gennes equations

D hijin () + AWy () = ey (0), (6a)
J

A Dy (i) = Y By () = vy (D), (6b)
J
where ¢, is the quasiparticle energy. As a result of the diagonalization, one obtains

D) =) = fe ) =0, (7)

where f, is the Fermi-Dirac distribution of bogolons with the quasiparticle energy €,. The quan-
tum number v enumerates the quasiparticle states in the ascending energy order. In our study, we
employ the open boundary conditions [5,8,22] for the quasiparticle wavefunctions u, (i) and v, (i),
which corresponds to the physical scenario of electrons being quantum-confined within the chain.
When using Eqgs. (5) and (7), the self-consistency relations given by Eq. (4) are represented in the

form

AW =g Y uy (O[T =24, Une() = =g ). [lusOPf + P = £)]. @)

In addition, the averaged occupation number of electrons is given by

ne = %me =23 [P + (1= v @P]. ©)

which defines the chemical potential u. The summation in Egs. (8) and (9) is over the quasiparticle
species with the positive energies. In addition, the summation in A(7) is limited to the states in the
Debye window around the Fermi level, i.e. 0 < €, < fiwp. However, in the current study, we
assume #fiwp is much larger than the half-bandwidth. This assumption renders the Debye energy
constraint ineffective, as all solutions of the BdG equations with positive quasiparticle energies

consequently fall within the Debye window.
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The self-consistent calculation procedure follows the same protocol as for the periodic Hubbard
model. First, we solve the BdG equations (6) using an initial guess for u, A(7), and Ugp(i). Sec-
ond, using the resulting quasiparticle energies and wave functions, we compute new values for A(7)
and Uyp(i) from Eq. (8). Third, we adjust u to achieve the desired average occupation number 7,
from Eq. (9). The new values of u, A(i), and Uyg(i) are then reinserted into the BdG equations,
and the entire procedure is repeated until convergence is achieved. The calculation is considered
converged when the relative changes in the order parameter and the HF field are below 107,

To model quasicrystal superconducting properties, as the first step, we consider a finite Fibonacci
sequence (Fibonacci approximant) S,, with n being the characteristic sequence number [15]. This
is a sequence of symbols A and B, which is the concatenation of sequences S,_; and S,,—», i.e.,

Sy = [Sn-1,Sn—2], where S; = [B] and S, = [A] include the only symbol, see [15]. Based on
this Fibonacci rule, we have S3 = [AB], S4 = [ABA], Ss = [ABAAB], S¢ = [ABAABABA] etc.
The number of symbols in S, is F,,, and {F, F», F3, F4, Fs5,...} = {1, 1, 2, 3, 5,...}, which are
the Fibonacci numbers. We then map this sequence onto a physical lattice using the off-diagonal
model. Each symbol A or B in the sequence defines the hopping parameter 74 or 75, respectively,
between adjacent lattice sites. This results in a one-dimensional chain with atotal of N = F,, + 1
sites, following the well-established off-diagonal formulation of the Fibonacci model [15,19,24,25].
All energy-related quantities — A(7), Ungr(i), 1, T, t4, and g — are expressed in units of the hopping
parameter tg. We set g = 2 and consider two different values of the Fibonacci sequence index, n =
12 and 13, for a more detailed illustration. Furthermore, we investigate two variants of the hopping
amplitudes: 14 = 0.5and 4 = 1.5 (in units of ¢3). Our calculations are performed away from
half-filling, as this regime was shown to produce a uniform electronic distribution in Fibonacci
chains [22], where the HF potential does not alter superconducting properties. Here, we adopt an
electron density of n, = 0.5. Our conclusions are robust and not sensitive to the specific choice of

these model parameters.
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Results and Discussion

Figure 1 shows results of numerically solving the BdG equations in a self-consistent manner for

n =12 and t4 = 1.5. In this case, F,,—1» = 233 and, so, the number of atomic sites in the chain is
N = 234. In panel (a), one can see the spatial profile of the order parameter A(7) calculated at zero
temperature by taking into account the HF interaction. The order parameter exhibits significant
oscillations due to the quasiperiodic character of the system. These oscillations in the Fibonacci
approximant with n = 12 are connected with the fractal distribution of the condensate in the infinite
Fibonacci chain. In agreement with the previous investigation [22], there are three spatial regions
with clearly different averages of the order parameter: the left-end domain, the center of the chain,
and the right-end region. The order parameter is enhanced up to 0.43 near the left end, while it is
reduced to 0.16 near the right end. The average value of A(7) near the chain center (averaging in
the interval from i = 70 to 170) is 0.28. This feature is related to the presence of the three critical
temperatures - the left-end, the right-end, and the center (bulk) superconducting temperature, as

reported in paper [22].

TC: 0.17, =0.86
without HF

A(D)

0.1 with HF
Tc.H.l': 0’14ﬁm =0.87
(a) without HIF (c)
OAO 1 1 X 1 X 1
1 80 160 234 1 80 160 234 0.00 0.05 0.10 0.15 0.20
site i site i T

Figure 1: The spatial distribution of the order parameter in the Fibonacci chain with n = 12 and
t4 = 1.5, taking into account the HF potential (a) and neglecting it (b). Panel (c) represents the
temperature dependence of the average order parameter in the chain center with (triangles) and
without (squares) the HF interaction. The critical temperatures with and without the HF interac-
tion are T, gr = 0.14 and 7, = 0.17; the corresponding critical exponents of the averaged order
parameter Syr = 0.87 (with HF) and 8 = 0.86 (without HF).

We now examine the zero-temperature order parameter for the system with the HF potential, as
shown in Fig. 1(b). The oscillations of the order parameter are immediately apparent and are sig-

nificantly more pronounced than in the system without the HF potential. In Fig. 1(a), the total

7
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range of the oscillations (from their minimum to their maximum in a given region) is approxi-
mately 30% of the average order parameter value, whereas in Fig. 1(b), this reaches nearly 100%.
Furthermore, including the HF interaction qualitatively alters the spatial distribution of the con-
densate near the chain edges. Specifically, the enhancement of the order parameter near the left
end, which is clearly present without the HF potential, is suppressed when the HF interaction is
included, as seen in Fig. 1(b). Concurrently, the suppression of the order parameter near the left
chain end becomes even more pronounced in the system with the HF interaction.

To further analyze the system, Fig. 1(c) shows the temperature dependence of the order parameter
averaged over the center of the chain, (A) (in the interval from i = 80 to 160). The inclusion of the
HF interaction results in a significant decrease of both the order parameter in the chain center and
the corresponding critical temperature. When the HF potential is included, the zero-temperature
order parameter is (A)r—our = 0.19, compared to a value of approximately 0.28 without it. The
critical temperatures are 7, = 0.17 and 7, yr = 0.14, respectively. The ratio (A)r=0.ur/T.ur = 1.36

is notably smaller than the corresponding ratio without the HF field, (A)7r-o/T. = 1.64. Further-

more, both values are smaller than the universal BCS prediction of A(0)/T, = 1.76.
07 T T T 07 T T T
. ol T'= 0304, f=0.65 |
hw uuw .\ n ‘ \_ w Il JL [ ’ without HF
= —~04 “ A 0.4 4
= 0.6 = <
“osf ' %;‘“”*’m/'ﬂnf‘-vﬁvﬁfx»‘-’ 1 o3 1} I Vsl 1,-03018, -057 ]
05 HUMMWI | | . | Il with HF
02} 1 : SRR : 02} 1
0.4 |
150 160 170 180 190 200 ]
0.1} 1 0.1 01}
(a) without HIF (b) with HF (c)
0.0 ' ' ' 0.0 - ' - 0.0 - -
1 100 200 300 378 1 100 200 300 378 0.0 0.1 02 03
site i site i T

Figure 2: The same as in Figure 1 but for the Fibonacci chain with n = 13 and t4 = 0.5. Here, the
critical temperatures of the systems with and without the HF interaction are only slightly different:
T. = 0.304 and T, gr = 0.301. However, the order-parameter critical exponent for the case with the
HF potential, Byr = 0.57, is notably smaller than the value of 8 = 0.65 for the chain without the
HF interaction.

Finally, using the temperature-dependent data from Fig. 1(c), we calculate the critical exponent 8



168

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

of the order parameter near the critical temperature:

(Ay o« T8 | (10)

where 7 = 1 — T/T, (or T, g for the chain with the HF interaction). Our analysis shows that

B = 0.86 without the HF field, while Syr = 0.87 with it. These values are only slightly differ-
ent. However, both of them are significantly larger than the BCS order-parameter critical exponent
of 0.5. This observation agrees with previous expectations [26,27] of power-law scaling with non-
standard exponents for thermodynamic properties of superconducting quasicrystals near 7. Here
we note an early investigation of another quasiperiodic one-dimensional quantum system, namely,
the Ising model on a transverse applied field, that study the phase transition occurring in its cou-
pling parameter and related critical indexes. [28].

For a further illustration, we consider a numerical solution of the BdG equations for a different
parametric set, i.e., forn = 13 andr4 = 0.5 (other microscopic parameters are the same). In
this case F,=;3 = 377 and N = 378. The corresponding results are shown in Fig. 2. Panels (a)
and (b) of this figure demonstrate the order-parameter spatial distribution without (a) and with the
HF interaction (b), as calculated for zero temperature. Similarly to the previous case, one observes
significant oscillations of the order parameter, and these oscillations are notably enhanced when in-
cluding the HF interaction. The maximal difference between the order-parameter minima and max-
ima in Fig. 2(a) is about 20% of the spatially averaged order parameter. In Fig. 2(b) this becomes
about 60%.

However, despite a significant enhancement of the spatial oscillations of the order parameter in the
presence of the HF interaction, its spatially averaged value (in the interval from i = 140 to 240)
does not exhibit a significant drop, reducing by less than 10%. Even a smaller difference is ob-
served between the two critical temperatures, 7. = 0.304 and 7. g¢ = 0.301. In addition, for the
present case, we have (A)r—=o nr/Tcur = 1.82, which is larger than the corresponding ratio without
the HF field, (A)7—¢/T, = 1.67. In this case, the BCS value of the ratio of the zero-temperature

order parameter to the critical temperature 1.76 is between the two values calculated for the Fi-
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bonacci approximant. Finally, the critical order-parameter exponents for the system with the HF
interaction Bgr = 0.57 and without S = 0.65 are still larger than the corresponding BCS value 0.5,

yet this difference is less pronounced than for the previous parametric choice.

Conclusions

Based on a numerical solution of the BAG equations for superconducting Fibonacci chains, we
demonstrate that including the HF interaction significantly enhances the spatial oscillations of the
order parameter when the averaged electron density is beyond the half-filling regime. These os-
cillations are a direct consequence of the system’s quasiperiodicity, reflecting a general feature of
superconducting quasicrystals. The enhancement of these oscillations leads to a reduction of the
critical temperature, which can be pronounced depending on the model’s microscopic parameters.
We also find that the critical exponent S of the order parameter differs significantly from that of a
uniform BCS condensate. Moreover, the value of S changes when the HF interaction is included.
Finally, the ratio of the zero-temperature order parameter to the critical temperature is also sensi-
tive to the HF potential and deviates notably from the universal BCS value. Consequently, a rig-
orous analysis of the condensate distribution in quasicrystalline superconductors requires a direct
comparison of results with and without the HF interaction.

Finally, we remark that our results are obtained in the regime beyond the half-filling. The half-
filling is the special regime with uniform density of electrons so that the HF field appears to be just
a shift of the chemical potential, not altering other thermodynamic quantities, see the discussion in

paper [22].
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