
License and Terms: This document is copyright 2025 the Author(s); licensee Beilstein-Institut.

This is an open access work under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse,
redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.
The license is subject to the Beilstein Archives terms and conditions: https://www.beilstein-archives.org/xiv/terms.
The definitive version of this work can be found at https://doi.org/10.3762/bxiv.2025.60.v1

This open access document is posted as a preprint in the Beilstein Archives at https://doi.org/10.3762/bxiv.2025.60.v1 and is
considered to be an early communication for feedback before peer review. Before citing this document, please check if a final,
peer-reviewed version has been published.

This document is not formatted, has not undergone copyediting or typesetting, and may contain errors, unsubstantiated scientific
claims or preliminary data.

Preprint Title Hartree-Fock interaction in superconducting condensate fractals

Authors Edward Nikonov, Yajiang Chen, Mauro Doria and Arkady Shanenko

Publication Date 30 Okt. 2025

Article Type Full Research Paper

ORCID® iDs Mauro Doria - https://orcid.org/0000-0001-7207-7697; Arkady
Shanenko - https://orcid.org/0000-0002-6031-5106

https://creativecommons.org/licenses/by/4.0
https://www.beilstein-archives.org/xiv/terms
https://doi.org/10.3762/bxiv.2025.60.v1
https://orcid.org/0000-0001-7207-7697
https://orcid.org/0000-0002-6031-5106


Hartree-Fock interaction in superconducting condensate fractals1

Edward G. Nikonov1, 2, Yajiang Chen∗3, Mauro M. Doria4 and Arkady A. Shanenko∗5
2

Address: 1HSE University, 101000 Moscow, Russia; 2Meshcheryakov Laboratory of Information3

Technologies, Joint Institute for Nuclear Research, Dubna, Russia; 3Zhejiang Key Laboratory of4

Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech5

University, 310018 Hangzhou, China; 4Instituto de Física, Universidade Federal do Rio de Janeiro,6

21941-972 Rio de Janeiro, Brazil and 5HSE University, 101000 Moscow, Russia7

Email: Yajiang Chen - yjchen@zstu.edu.cn; Arkady A. Shanenko - ashanenko@hse.ru8

∗ Corresponding author9

Abstract10

It is well-known that the Hartree-Fock (HF) interaction does not alter superconducting observables11

in conventional superconductors, as its effect is mainly reduced to a chemical potential shift. De-12

viations from this behavior can only arise in situations of translational symmetry breaking, such as13

caused by the presence of external fields that induce spatial variations of the order parameter and14

electron density. We demonstrate that this scenario changes fundamentally in quasicrystalline sys-15

tems, where the intrinsic lack of translational symmetry leads to a fractal spatial distribution of the16

superconducting condensate and electron density. By investigating a Fibonacci chain as a prototype17

quasicrystal, we numerically solve the Bogoliubov-de Gennes (BdG) equations and show that be-18

yond the half-filling, the HF potential significantly enhances the self-similar spatial oscillations of19

the order parameter while simultaneously reducing its average value and altering its critical expo-20

nent. Consequently, the critical temperature is suppressed; for our chosen microscopic parameters,21

this suppression can reach up to 20%. Therefore, an accurate analysis of condensate distribution22

and related quantities in quasicrystalline superconductors requires the comparison of results ob-23

tained with and without the HF interaction.24
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Introduction28

It is well-known, dating back to the classical book by de Gennes [1], that in conventional super-29

conducting materials, the Hartree-Fock interaction merely reduces to a shift of the chemical po-30

tential, as the observables are not affected due to translational invariance. Hence, the Hartree-Fock31

(HF) field is a kind of ’spectator’ that defines the single-particle states and chemical potential but32

does not act on the pair formation and, thus, can be neglected, as in the standard formulation of33

the BCS model [2,3]. Nevertheless, the HF potential cannot be neglected in the presence of exter-34

nal fields [4], such as impurity potentials [5,6], quantum confinement in nanoscale superconduc-35

tors [7], potential barriers at interfaces [8], etc. Such external fields break the translational invari-36

ance, which is the condition for the HF field to make a contribution to the formation of the super-37

conducting condensate.38

This raises an interesting question about systems that exhibit an intrinsic lack of translational in-39

variance even in the absence of any applied field. Among those are quasicrystals, which were first40

discovered in 1984 [9-11]. Quasicrystals exhibit long-range orientational order - such as the five-41

fold symmetry in Al86Mn14 alloys [9,10] - but lack the translational invariance [11]. The supercon-42

ductivity of quasicrystals was established in 2018 with the discovery of superconducting signatures43

in an Al-Zn-Mg alloy below a critical temperature of 𝑇𝑐 ∼ 0.05 K [12]. More recently, in 202444

and 2025, much higher critical temperatures of 𝑇𝑐 ∼ 1 K and 𝑇𝑐 ∼ 5.47 K were reported in van45

der Waals layered dodecagonal quasicrystals Ta1.6Te [13] and in a monoclinic approximant to the46

decagonal quasicrystal Al13Os4 [14].47

The experimental observations of the superconductivity in quasicrystals ignited a big interest in48

many open problems related to the superconducting condensate in quasiperiodic systems. Most49

of the recent results were obtained for a superconducting Fibonacci chain, being a simplified one-50

2



dimensional model for superconducting quasicrystals [15]. Using this model, researchers explored51

a range of phenomena in quasiperiodic systems, including proximity effects in quasicrystal-metal52

hybrids [16-18], enhanced superconductivity from staggered hopping amplitudes [19], and the in-53

terplay between the Josephson effect and quasiperiodicity [20]. The model has also been used to54

investigate topological superconductivity [21] and anomalous local critical temperatures (left-end,55

right-end and at the chain center) in quasiperiodic chains [22]. These investigations demonstrate56

that the spatial distribution of the superconducting condensate in quasiperiodic chains exhibits a57

distinct fractal character, with significant oscillations of the order parameter along the system. A58

similar fractal inhomogeneous distribution of the pair condensate has been calculated for the Pen-59

rose and Ammann-Beenker tilings [23], being a well-known representation of two-dimensional60

quasicrystals.61

Recent studies confirm that the superconducting condensate in quasiperiodic systems possesses a62

highly nontrivial spatial structure. This finding naturally raises the question of how sensitive the63

theoretical predictions for quasicrystalline superconductors are to the inclusion of the HF potential64

in the fundamental microscopic equations. Our work addresses this open problem through an in-65

vestigation of the superconducting Fibonacci chain, a standard prototype for quasiperiodic systems.66

Bogoliubov-de Gennes equations for superconducting Fibonacci67

chains68

To investigate the superconducting properties of a Fibonacci chain, we use an attractive Hubbard69

model with the grand-canonical Hamiltonian (absorbing the chemical potential 𝜇) given by [4-6,8,70

19,22]71

𝐻̂ = −
∑︁
𝑖 𝑗𝜎

𝑡𝑖 𝑗𝑐
†
𝑖𝜎
𝑐 𝑗𝜎 −

∑︁
𝑖𝜎

𝜇𝑛̂𝑖𝜎 − 𝑔
∑︁
𝑖

𝑛̂𝑖↑𝑛̂𝑖↓, (1)72
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where 𝑐𝑖𝜎 and 𝑐
†
𝑖𝜎

are the annihilation and creation operators of an electron with the spin projection73

𝜎 = (↑, ↓) at sites 𝑖 = 1, . . . , 𝑁 , 𝑡𝑖 𝑗 is the hopping amplitude, 𝑛̂𝑖𝜎 = 𝑐
†
𝑖𝜎
𝑐𝑖𝜎, and 𝑔 > 0 is the on-site74

attractive electron-electron interaction.75

Within the mean-field approximation, the Hamiltonian (1) is reduced [4] to the effective BCS-76

Bogoliubov Hamiltonian in the form (for the s-wave pairing)77

𝐻̂eff =
∑︁
𝑖 𝑗𝜎

ℎ𝑖 𝑗𝑐
†
𝑖𝜎
𝑐 𝑗𝜎 +

∑︁
𝑖

[
Δ(𝑖)𝑐†

𝑖↑𝑐
†
𝑖↓ + Δ∗(𝑖)𝑐𝑖↓𝑐𝑖↑

]
, (2)78

where79

ℎ𝑖 𝑗 = −𝑡𝑖 𝑗 − 𝛿𝑖 𝑗
[
𝜇 −𝑈HF(𝑖)

]
, (3)80

with 𝛿𝑖 𝑗 the Kronecker delta, and Δ(𝑖) and 𝑈HF(𝑖) are the superconducting order parameter and the81

HF interaction potential, respectively. The latter obey the self-consistency relations82

Δ(𝑖) = 𝑔⟨𝑐𝑖↑𝑐𝑖↓⟩, 𝑈HF(𝑖) = −𝑔⟨𝑛̂𝑖↑⟩ = −𝑔⟨𝑛̂𝑖↓⟩, (4)83

here we exclude spin-imbalanced regimes when ⟨𝑛̂𝑖↑⟩ ≠ ⟨𝑛̂𝑖↓⟩.84

It is well-known that the effective Hamiltonian is diagonalized by applying the Bogoliubov-Valatin85

transformation [4]86

©­­«
𝑐𝑖↑

𝑐
†
𝑖↓

ª®®¬ =
∑︁
𝜈

©­­«
𝑢𝜈 (𝑖) −𝑣∗𝜈 (𝑖)

𝑣𝜈 (𝑖) 𝑢∗𝜈 (𝑖)

ª®®¬
©­­«
𝛾𝜈↑

𝛾
†
𝜈↓

ª®®¬ , (5)87

where 𝑢𝜈 (𝑖) and 𝑣𝜈 (𝑖) are the particle-like and hole-like quasiparticle (bogolon) wavefunctions, and88

𝛾𝜈𝜎 and 𝛾
†
𝜈𝜎 are the annihilation and creation operators for bogolon state 𝜈, 𝜎. The quasiparticle89
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wave functions obey the Bogoliubov-de Gennes equations90

∑︁
𝑗

ℎ𝑖 𝑗𝑢𝜈 ( 𝑗) + Δ(𝑖)𝑣𝜈 (𝑖) = 𝜖𝜈𝑢𝜈 (𝑖), (6a)91

Δ∗(𝑖)𝑢𝜈 (𝑖) −
∑︁
𝑗

ℎ∗𝑖 𝑗𝑣𝜈 ( 𝑗) = 𝜖𝜈𝑣𝜈 (𝑖), (6b)92

where 𝜀𝜈 is the quasiparticle energy. As a result of the diagonalization, one obtains93

⟨𝛾†
𝜈↑𝛾𝜈↑⟩ = ⟨𝛾†

𝜈↓𝛾𝜈↓⟩ = 𝑓𝜈, ⟨𝛾𝜈↑𝛾𝜈↓⟩ = 0, (7)94

where 𝑓𝜈 is the Fermi-Dirac distribution of bogolons with the quasiparticle energy 𝜀𝜈. The quan-95

tum number 𝜈 enumerates the quasiparticle states in the ascending energy order. In our study, we96

employ the open boundary conditions [5,8,22] for the quasiparticle wavefunctions 𝑢𝜈 (𝑖) and 𝑣𝜈 (𝑖),97

which corresponds to the physical scenario of electrons being quantum-confined within the chain.98

When using Eqs. (5) and (7), the self-consistency relations given by Eq. (4) are represented in the99

form100

Δ(𝑖) = 𝑔
∑︁
𝜈

𝑢𝜈 (𝑖)𝑣∗𝜈 (𝑖)
[
1 − 2 𝑓𝜈

]
, 𝑈HF(𝑖) = −𝑔

∑︁
𝜈

[
|𝑢𝜈 (𝑖) |2 𝑓𝜈 + |𝑣𝜈 (𝑖) |2(1 − 𝑓𝜈)

]
. (8)101

In addition, the averaged occupation number of electrons is given by102

𝑛𝑒 =
1
𝑁

∑︁
𝑖𝜎

⟨𝑛̂𝑖𝜎⟩ = 2
∑︁
𝑖𝜈

[
𝑓𝜈 |𝑢𝜈 (𝑖) |2 + (1 − 𝑓𝜈) |𝑣𝜈 (𝑖) |2

]
, (9)103

which defines the chemical potential 𝜇. The summation in Eqs. (8) and (9) is over the quasiparticle104

species with the positive energies. In addition, the summation in Δ(𝑖) is limited to the states in the105

Debye window around the Fermi level, i.e. 0 ≤ 𝜖𝜈 ≤ ℏ𝜔𝐷 . However, in the current study, we106

assume ℏ𝜔𝐷 is much larger than the half-bandwidth. This assumption renders the Debye energy107

constraint ineffective, as all solutions of the BdG equations with positive quasiparticle energies108

consequently fall within the Debye window.109
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The self-consistent calculation procedure follows the same protocol as for the periodic Hubbard110

model. First, we solve the BdG equations (6) using an initial guess for 𝜇, Δ(𝑖), and 𝑈HF(𝑖). Sec-111

ond, using the resulting quasiparticle energies and wave functions, we compute new values for Δ(𝑖)112

and 𝑈HF(𝑖) from Eq. (8). Third, we adjust 𝜇 to achieve the desired average occupation number 𝑛𝑒113

from Eq. (9). The new values of 𝜇, Δ(𝑖), and 𝑈HF(𝑖) are then reinserted into the BdG equations,114

and the entire procedure is repeated until convergence is achieved. The calculation is considered115

converged when the relative changes in the order parameter and the HF field are below 10−7.116

To model quasicrystal superconducting properties, as the first step, we consider a finite Fibonacci117

sequence (Fibonacci approximant) 𝑆𝑛, with 𝑛 being the characteristic sequence number [15]. This118

is a sequence of symbols 𝐴 and 𝐵, which is the concatenation of sequences 𝑆𝑛−1 and 𝑆𝑛−2, i.e.,119

𝑆𝑛 = [𝑆𝑛−1, 𝑆𝑛−2], where 𝑆1 = [𝐵] and 𝑆2 = [𝐴] include the only symbol, see [15]. Based on120

this Fibonacci rule, we have 𝑆3 = [𝐴𝐵], 𝑆4 = [𝐴𝐵𝐴], 𝑆5 = [𝐴𝐵𝐴𝐴𝐵], 𝑆6 = [𝐴𝐵𝐴𝐴𝐵𝐴𝐵𝐴] etc.121

The number of symbols in 𝑆𝑛 is 𝐹𝑛, and {𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, ...} = {1, 1, 2, 3, 5, ...}, which are122

the Fibonacci numbers. We then map this sequence onto a physical lattice using the off-diagonal123

model. Each symbol 𝐴 or 𝐵 in the sequence defines the hopping parameter 𝑡𝐴 or 𝑡𝐵, respectively,124

between adjacent lattice sites. This results in a one-dimensional chain with a total of 𝑁 = 𝐹𝑛 + 1125

sites, following the well-established off-diagonal formulation of the Fibonacci model [15,19,24,25].126

All energy-related quantities – Δ(𝑖), 𝑈HF(𝑖), 𝜇, 𝑇 , 𝑡𝐴, and 𝑔 – are expressed in units of the hopping127

parameter 𝑡𝐵. We set 𝑔 = 2 and consider two different values of the Fibonacci sequence index, 𝑛 =128

12 and 13, for a more detailed illustration. Furthermore, we investigate two variants of the hopping129

amplitudes: 𝑡𝐴 = 0.5 and 𝑡𝐴 = 1.5 (in units of 𝑡𝐵). Our calculations are performed away from130

half-filling, as this regime was shown to produce a uniform electronic distribution in Fibonacci131

chains [22], where the HF potential does not alter superconducting properties. Here, we adopt an132

electron density of 𝑛𝑒 = 0.5. Our conclusions are robust and not sensitive to the specific choice of133

these model parameters.134
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Results and Discussion135

Figure 1 shows results of numerically solving the BdG equations in a self-consistent manner for136

𝑛 = 12 and 𝑡𝐴 = 1.5. In this case, 𝐹𝑛=12 = 233 and, so, the number of atomic sites in the chain is137

𝑁 = 234. In panel (a), one can see the spatial profile of the order parameter Δ(𝑖) calculated at zero138

temperature by taking into account the HF interaction. The order parameter exhibits significant139

oscillations due to the quasiperiodic character of the system. These oscillations in the Fibonacci140

approximant with 𝑛 = 12 are connected with the fractal distribution of the condensate in the infinite141

Fibonacci chain. In agreement with the previous investigation [22], there are three spatial regions142

with clearly different averages of the order parameter: the left-end domain, the center of the chain,143

and the right-end region. The order parameter is enhanced up to 0.43 near the left end, while it is144

reduced to 0.16 near the right end. The average value of Δ(𝑖) near the chain center (averaging in145

the interval from 𝑖 = 70 to 170) is 0.28. This feature is related to the presence of the three critical146

temperatures - the left-end, the right-end, and the center (bulk) superconducting temperature, as147

reported in paper [22].148

Figure 1: The spatial distribution of the order parameter in the Fibonacci chain with 𝑛 = 12 and
𝑡𝐴 = 1.5, taking into account the HF potential (a) and neglecting it (b). Panel (c) represents the
temperature dependence of the average order parameter in the chain center with (triangles) and
without (squares) the HF interaction. The critical temperatures with and without the HF interac-
tion are 𝑇𝑐,HF = 0.14 and 𝑇𝑐 = 0.17; the corresponding critical exponents of the averaged order
parameter 𝛽HF = 0.87 (with HF) and 𝛽 = 0.86 (without HF).

We now examine the zero-temperature order parameter for the system with the HF potential, as149

shown in Fig. 1(b). The oscillations of the order parameter are immediately apparent and are sig-150

nificantly more pronounced than in the system without the HF potential. In Fig. 1(a), the total151

7



range of the oscillations (from their minimum to their maximum in a given region) is approxi-152

mately 30% of the average order parameter value, whereas in Fig. 1(b), this reaches nearly 100%.153

Furthermore, including the HF interaction qualitatively alters the spatial distribution of the con-154

densate near the chain edges. Specifically, the enhancement of the order parameter near the left155

end, which is clearly present without the HF potential, is suppressed when the HF interaction is156

included, as seen in Fig. 1(b). Concurrently, the suppression of the order parameter near the left157

chain end becomes even more pronounced in the system with the HF interaction.158

To further analyze the system, Fig. 1(c) shows the temperature dependence of the order parameter159

averaged over the center of the chain, ⟨Δ⟩ (in the interval from 𝑖 = 80 to 160). The inclusion of the160

HF interaction results in a significant decrease of both the order parameter in the chain center and161

the corresponding critical temperature. When the HF potential is included, the zero-temperature162

order parameter is ⟨Δ⟩𝑇=0,HF = 0.19, compared to a value of approximately 0.28 without it. The163

critical temperatures are 𝑇𝑐 = 0.17 and 𝑇𝑐,HF = 0.14, respectively. The ratio ⟨Δ⟩𝑇=0,HF/𝑇𝑐,HF = 1.36164

is notably smaller than the corresponding ratio without the HF field, ⟨Δ⟩𝑇=0/𝑇𝑐 = 1.64. Further-165

more, both values are smaller than the universal BCS prediction of Δ(0)/𝑇𝑐 = 1.76.166

Figure 2: The same as in Figure 1 but for the Fibonacci chain with 𝑛 = 13 and 𝑡𝐴 = 0.5. Here, the
critical temperatures of the systems with and without the HF interaction are only slightly different:
𝑇𝑐 = 0.304 and 𝑇𝑐,HF = 0.301. However, the order-parameter critical exponent for the case with the
HF potential, 𝛽HF = 0.57, is notably smaller than the value of 𝛽 = 0.65 for the chain without the
HF interaction.

Finally, using the temperature-dependent data from Fig. 1(c), we calculate the critical exponent 𝛽167
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of the order parameter near the critical temperature:168

⟨Δ⟩ ∝ 𝜏𝛽 , (10)169

where 𝜏 = 1 − 𝑇/𝑇𝑐 (or 𝑇𝑐,HF for the chain with the HF interaction). Our analysis shows that170

𝛽 = 0.86 without the HF field, while 𝛽HF = 0.87 with it. These values are only slightly differ-171

ent. However, both of them are significantly larger than the BCS order-parameter critical exponent172

of 0.5. This observation agrees with previous expectations [26,27] of power-law scaling with non-173

standard exponents for thermodynamic properties of superconducting quasicrystals near 𝑇𝑐. Here174

we note an early investigation of another quasiperiodic one-dimensional quantum system, namely,175

the Ising model on a transverse applied field, that study the phase transition occurring in its cou-176

pling parameter and related critical indexes. [28].177

For a further illustration, we consider a numerical solution of the BdG equations for a different178

parametric set, i.e., for 𝑛 = 13 and 𝑡𝐴 = 0.5 (other microscopic parameters are the same). In179

this case 𝐹𝑛=13 = 377 and 𝑁 = 378. The corresponding results are shown in Fig. 2. Panels (a)180

and (b) of this figure demonstrate the order-parameter spatial distribution without (a) and with the181

HF interaction (b), as calculated for zero temperature. Similarly to the previous case, one observes182

significant oscillations of the order parameter, and these oscillations are notably enhanced when in-183

cluding the HF interaction. The maximal difference between the order-parameter minima and max-184

ima in Fig. 2(a) is about 20% of the spatially averaged order parameter. In Fig. 2(b) this becomes185

about 60%.186

However, despite a significant enhancement of the spatial oscillations of the order parameter in the187

presence of the HF interaction, its spatially averaged value (in the interval from 𝑖 = 140 to 240)188

does not exhibit a significant drop, reducing by less than 10%. Even a smaller difference is ob-189

served between the two critical temperatures, 𝑇𝑐 = 0.304 and 𝑇𝑐,HF = 0.301. In addition, for the190

present case, we have ⟨Δ⟩𝑇=0,HF/𝑇𝑐,HF = 1.82, which is larger than the corresponding ratio without191

the HF field, ⟨Δ⟩𝑇=0/𝑇𝑐 = 1.67. In this case, the BCS value of the ratio of the zero-temperature192

order parameter to the critical temperature 1.76 is between the two values calculated for the Fi-193
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bonacci approximant. Finally, the critical order-parameter exponents for the system with the HF194

interaction 𝛽HF = 0.57 and without 𝛽 = 0.65 are still larger than the corresponding BCS value 0.5,195

yet this difference is less pronounced than for the previous parametric choice.196

Conclusions197

Based on a numerical solution of the BdG equations for superconducting Fibonacci chains, we198

demonstrate that including the HF interaction significantly enhances the spatial oscillations of the199

order parameter when the averaged electron density is beyond the half-filling regime. These os-200

cillations are a direct consequence of the system’s quasiperiodicity, reflecting a general feature of201

superconducting quasicrystals. The enhancement of these oscillations leads to a reduction of the202

critical temperature, which can be pronounced depending on the model’s microscopic parameters.203

We also find that the critical exponent 𝛽 of the order parameter differs significantly from that of a204

uniform BCS condensate. Moreover, the value of 𝛽 changes when the HF interaction is included.205

Finally, the ratio of the zero-temperature order parameter to the critical temperature is also sensi-206

tive to the HF potential and deviates notably from the universal BCS value. Consequently, a rig-207

orous analysis of the condensate distribution in quasicrystalline superconductors requires a direct208

comparison of results with and without the HF interaction.209

Finally, we remark that our results are obtained in the regime beyond the half-filling. The half-210

filling is the special regime with uniform density of electrons so that the HF field appears to be just211

a shift of the chemical potential, not altering other thermodynamic quantities, see the discussion in212

paper [22].213
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