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Abstract14

We demonstrate programmable control of kinetic soliton dynamics in all-Josephson-junction (all-15

JJ) networks through a novel tunable cell design. This cell enables on-demand switching of trans-16

mission lines and operates across defined parameter regimes supporting diverse dynamical modes.17

By introducing a structural asymmetry into a transmission line, we implement a Josephson diode18

that enforces unidirectional soliton propagation. The programmability of the kinetic inductance19

then provides a crucial mechanism to selectively enable or disable this diode functionality. By20

engineering artificial inhomogeneity into the circuit architecture, we enhance robustness in all-JJ21

logic circuits, 2D transmission line all-JJ lattices, and neuromorphic computing systems.22
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Introduction26

The rapid advancement of Josephson junction (JJ) logic circuits [1-5] and neuromorphic networks27

[6-9] holds transformative potential for ultra-low-power computing. However, achieving scalable28

integration remains a critical bottleneck, as conventional JJ-based architectures face fundamental29

density constraints imposed by magnetic flux manipulation requirements and complex mutual in-30

ductive crosstalks.31

Circuits composed entirely of Josephson junctions (all-JJ circuits) [10-16] represent a promising32

platform for energy-efficient, high-speed and scalable computing. In these systems, the propaga-33

tion of information is associated with the movement of a current wave / topological soliton, which34

is clearly visible in the model by a 2𝜋-jump of the so-called Josephson phase, 𝜑. In contrast to con-35

ventional Rapid Single Flux Quantum (RSFQ) logic, the phase drop for the considered Single Ki-36

netic Soliton (SKS) occurs not on the relatively large connecting geometric inductors, but on the37

Josephson junctions. SKS is a propagating wave of phase change with limited from below kinetic38

energy, the corresponding current pulse "dissipates" if its motion is interrupted, for example, by a39

structural inhomogeneity in a transmission line. Traditionally, this sensitivity to structural inhomo-40

geneities has been viewed as a challenge for robust circuit design.41

In this work, we propose to exploit the sensitivity mentioned above. We base our proposal on the42

concept of applying a small number of key cells, which should create precisely engineered tun-43

able inhomogeneities. Such inhomogeneity may be designed as an element of tunable kinetic44

inductance [17]. This element has high inductance at small scales and can be controlled using45

currents [18,19], voltage [20] or magnetic fields [21,22]. At the same time, the use of hybrid46

superconductor-normal metal structures makes it possible to increase the effect of frequency tun-47

ing [23,24], while the addition of ferromagnetic layers permits the non-volatile control [25,26].48
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The another feature of tunable kinetic inductance element is the linear behaviour for weak signals,49

which excludes formation of parasitic processes in the transmission line. This permits to apply tun-50

able kinetic inductance in the resonators with shifting resonance frequency [19,21,22], as well as in51

sensitive all-JJ digital circuits.52

This idea enables us to use the ’flaws’ of the structure as its important features, opening up a path-53

way to creating programmable and reconfigurable large circuits. An obvious and widely required54

application of this technology is in the development of superconductive programmable gate arrays55

(SPGA) [27-30], an active area of current research. Another important application of this idea lies56

in the promising neuromorphic direction [31-33]. Earlier in [34], we have already proposed using57

kinetic inductances to control neuron dynamics in networks based on radial basis functions (RBF-58

networks). Moreover, this approach can be extended to hardware realisations of bio-inspired spik-59

ing neural networks [35-42] by solving the challenges of creating controllable synapses to realize60

the effect of spike-timing-dependent plasticity and unidirectional feedbacks for self-regulation. Fur-61

thermore, the physical resemblance between solitons and the action potentials (spikes of voltage)62

generated in biological nervous systems makes all-JJ structures tempting candidates for construct-63

ing neuromorphic hardware [43].64

In this paper, we investigate the use of controlled kinetic inductance to create an engineered inho-65

mogeneous medium for kinetic solitons. We demonstrate that by tuning this inhomogeneity, dis-66

tinct dynamical modes can be induced, fundamentally altering the soliton’s behavior. Furthermore,67

we explore how structural asymmetry within this medium can be exploited to achieve a diode ef-68

fect, enabling non-reciprocal soliton propagation. Building upon these foundational concepts, we69

then propose two specific architectural solutions: a programmable switch and a versatile routing70

matrix, which we term the "WayMatrix". We suggest that these architectures provide a framework71

for the flexible configuration of advanced logic and neuromorphic circuits.72
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Results73

Model description74

To model the dynamics of kinetic solitons [43], we employ the Resistively and Capacitively75

Shunted Junction (RCSJ) model [1], where the total current 𝐼 across a Josephson junction is the76

sum of the supercurrent, the quasi-particle current, and the displacement current:77

𝐼 = 𝐼𝑐 sin(𝜑) + 𝑉

𝑅𝑁

+ 𝐶
𝑑𝑉

𝑑𝑡
. (1)78

Here, 𝜑 is the phase difference for the complex superconducting order parameter across the junc-79

tion, 𝑉 is the voltage, 𝐼𝑐 is the critical current, 𝑅𝑁 is the resistance in normal state and 𝐶 is the80

capacitance. For analysis, it is convenient to express this equation in a dimensionless form. We81

normalize the time to the inverse of a reference plasma frequency, 𝜏 = �̃�𝑝𝑡, where �̃�𝑝 =82 √︁
2𝜋𝐼𝑐/(Φ0�̃�), and normalise the current to a reference critical current 𝐼𝑐. This yields:83

𝑖 = 𝐴 · sin(𝜑) + 𝛼 ¤𝜑 + ¥𝜑. (2)84

In this normalized equation, the dots above the phases indicate differentiation over time with re-85

spect to 𝜏. The dimensionless damping coefficient is 𝛼 = Φ0�̃�𝑝/(2𝜋𝐼𝑐𝑅𝑁 ). The term ¤𝜑 represents86

the voltage normalized by the characteristic voltage 𝑉0 = Φ0�̃�𝑝/(2𝜋). The parameter 𝐴 = 𝐼𝑐/𝐼𝑐 is87

the normalized amplitude of the critical current for junctions with the critical current 𝐼𝑐 that differs88

from the reference normalization value 𝐼𝑐.89

To analyze the circuit dynamics, we adopt a nodal analysis approach. In this approach, the gauge-90

invariant phase difference across any element is expressed in terms of the nodal phases at its termi-91

nals, 𝜑 = 𝜑𝑘 − 𝜑 𝑗 . The phase of the ground node is set to zero by convention. This formulation92

inherently satisfies Kirchhoff’s Current Law (KCL) at each node. For any node 𝑘 connected to 𝐻93
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elements, KCL dictates that the algebraic sum of currents is zero:94

𝐻∑︁
ℎ=1

𝐼𝑘, 𝑗 (ℎ) = 0, (3)95

where the index ℎ runs over all elements connected to node 𝑘 , 𝑗 (ℎ) is the index of the node at the96

other end of element ℎ, and 𝐼𝑘, 𝑗 (ℎ) is the normalised current flowing from the node 𝑘 to the node97

𝑗 (ℎ). Each current is described by the RCSJ model (Eq. 2):98

𝐼𝑘, 𝑗 (ℎ)/𝐼𝑐 = 𝐴ℎ sin(𝜑𝑘 − 𝜑 𝑗 (ℎ)) + 𝛼ℎ ( ¤𝜑𝑘 − ¤𝜑 𝑗 (ℎ)) + ( ¥𝜑𝑘 − ¥𝜑 𝑗 (ℎ)). (4)99

With this approach, the current across the inductance is defined by the expression100

𝐼𝐿
𝑘, 𝑗 (ℎ)/𝐼𝑐 =

Φ0

2𝜋𝐿𝐼𝑐
(𝜑𝑘 − 𝜑 𝑗 (ℎ)) = (𝜑𝑘 − 𝜑 𝑗 (ℎ))/𝑙, (5)101

where 𝑙 = 𝐿/𝐿𝐽 is inductance normalised to the Josephson inductance 𝐿𝐽 = Φ0/(2𝜋𝐼𝑐).102

After substituting the expressions for the current into the formula for the current balance at the103

node, we get:104

𝑀𝑘,𝑘 ¥𝜑𝑘 −
𝐻∑︁
ℎ=1

𝑀𝑘, 𝑗 (ℎ) ¥𝜑𝑘, 𝑗 (ℎ) = 𝐹𝑘 (𝜑𝑘 , 𝜑𝑘, 𝑗 (ℎ) , ¤𝜑𝑘 , ¤𝜑𝑘, 𝑗 (ℎ)), (6)105

where 𝑀𝑘,𝑘 is the sum of the coefficients before ¥𝜑𝑘 , 𝑀𝑘, 𝑗 (ℎ) are the coefficients before ¥𝜑𝑘, 𝑗 (ℎ) , 𝐹𝑘106

contains the sum of all summands except those that do not contain the second derivative. In 𝐹𝑘 ,107

all summands with 𝜑𝑘 are written with a minus sign, and all summands with 𝜑𝑘, 𝑗 (ℎ) are written108

with a plus sign. Additional currents (e.g. the bias current or the time-dependent current from the109

generator) are also included as components. After writing down the equations 6 for each node, a110

system of second-order diffeomorphic equations are obtained, which can be represented in matrix111
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form:112

�̂�𝜑 =

©­­­­­­­­«

𝑀11 𝑀12 . . . 𝑀1𝑁

𝑀21 𝑀22 . . . 𝑀2𝑁
...

...
. . .

...

𝑀𝑁1 𝑀𝑁2 . . . 𝑀𝑁𝑁

ª®®®®®®®®¬

©­­­­­­­­«

¥𝜑1

¥𝜑2
...

¥𝜑𝑁

ª®®®®®®®®¬
= F(𝜑, 𝜑). (7)113

The resulting system of 𝑁 ordinary differential equations is expressed in the matrix form shown in114

Eq. 7. In this equation, ®𝜑 is the vector of nodal phases, 𝑁 is the total number of non-ground nodes,115

and �̂� is the 𝑁 × 𝑁 mass matrix (also known as the capacitance matrix), which is defined by the116

capacitive coupling coefficients from Eq. 6. A key property of �̂� is its sparsity, which arises di-117

rectly from the local connectivity of the circuit topology; each node is connected to a small sub-118

set of other nodes. To increase computational efficiency, we exploit this sparsity when solving the119

system. The equations are integrated numerically using an adaptive-step-size solver based on the120

explicit Runge-Kutta (4𝑡ℎ and 5𝑡ℎ order) formula, commonly known as the Dormand-Prince pair121

[44,45], which is well-suited for this class of non-stiff problems.122

The Kinetic Inductance Controllable Key123

The fundamental building block of our design is the Kinetic Inductance Controllable Key (KICK),124

which is constructed from the two modified unit cells of an all-Josephson Junction Transmission125

Line (all-JJTL). As depicted in Figure 1a, each cell is modified by incorporating a controlled ki-126

netic inductance in series with one of its Josephson junctions connected to the ground plane. There127

are some operational regimes inherent to such KICK governed by the value of this inductance and128

by the damping parameter of junctions within the transmission line. The damping parameter is a129

critical factor as it dictates the kinetic soliton’s propagation rate.130

As a preliminary step, we characterized the dependence of the kinetic soliton propagation velocity131

on the damping parameter of the connecting junctions, 𝛼 (see 1b). We define the velocity as the132

number of grounded junctions traversed per unit of normalized time, 𝜏. Our simulations revealed133
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a critical damping threshold at 𝛼𝑐𝑟𝑖𝑡 ≈ 0.8; below this value stable soliton propagation is not sup-134

ported. Besides, under this condition the energy dissipation rate is too high relative to the energy135

transfer between adjacent junctions, causing the soliton to decay. In case when 𝛼 > 𝛼𝑐𝑟𝑖𝑡 , the soli-136

ton velocity is a monotonically increasing function of the damping. This dependence falls into an137

approximately linear regime for 𝛼 > 3. The physical mechanism for this velocity increase can be138

understood from the RCSJ model: a higher value of 𝛼 enhances the resistive quasiparticle current139

(𝛼 ¤𝜑) that flows as a junction switches. This larger current provides a stronger driving force to the140

next junction in the line, causing it to reach its critical threshold and switch more rapidly, thus in-141

creasing the overall propagation velocity of the soliton.142

The functionality of the KICK is determined by the interplay between the damping 𝛼 and the nor-143

malized kinetic inductance 𝐿/𝐿𝐽 . Figure 1c summarizes the behavior of the device in a parameter144

map, which reveals four distinct operational regimes.145

• Open Mode: The KICK is effectively transparent, allowing an incident kinetic soliton to146

propagate through it with minimal perturbation.147

• Close Mode: The KICK acts as a terminator, blocking and destroying the incoming soliton.148

• T-Mode: The KICK functions as a T-flip-flop. It possesses two stable states, and each arriv-149

ing soliton toggles the cell from its current state to the other. Every second soliton passes to150

the exit.151

• M-Mode (Multy-State Mode): This regime is characterized by the formation of more than152

two stable states and other complex dynamics, which fall outside the scope of this study.153

An essential feature of the KICK is the ability to switch between different modes at a fixed alpha154

value: thus, by fixing alpha (for example, 𝛼 = 2) and varying the kinetic inductance, we can switch155

between all modes (Open Mode → Close Mode → Open Mode → T-Mode → M-Mode)156

represented on the parameter map (see Figure 1).157

To illustrate the operational modes of the KICK, we simulated the propagation of a kinetic soliton158

through the all-JJTL. The simulated line comprises 31 grounded junctions with a uniform damping159
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Figure 1: a) An equivalent scheme for the Kinetic Inductance Controllable Key (KICK) as a part
of an all-Josephson transmission line. A soliton which dynamics is controlled by the key developed
is represented schematically. b) Dependence of the single kinetic soliton (SKS) propagation ve-
locity, measured in Josephson junctions per normalized time unit, on the damping parameter 𝛼; c)
Map of different modes depending on the damping parameter and kinetic inductance measurement.
Close mode (red zone): the KICK does not allow SKS to pass through. Open mode (blue zone):
the KICK passes SKS. T-mode (green zone): the KICK has two stable states and every second SKS
passes through it. M-mode (purple zone): the KICK has many stable states.
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parameter of connecting junctions 𝛼 = 1. The KICK is implemented by inserting a controlled160

kinetic inductance in series with the ground junction at the line’s center (node 𝑘 = 16). Figure161

2 presents the results for different values of this inductance, corresponding to distinct operational162

modes. Each panel displays two key physical quantities on dual y-axes:163

1) The spatial profile of the nodal Josephson phases (𝜑𝑘 ) as a function of the node index 𝑘 .164

2) The normalized currents flowing through the series junctions connecting the nodes. The current165

between nodes 𝑘 and 𝑘 + 1 (𝐼𝑐/𝐼𝑐𝑠𝑖𝑛(𝜑𝑘+1 − 𝜑𝑘 )) is plotted at the midpoint index 𝑘 + 0.5 for visual166

clarity. This visualization allows for a direct comparison of the system’s state before and after soli-167

ton interaction. The solid lines depict the initial state (before the soliton reaches the KICK), and the168

dashed lines show the final state (after the soliton has passed and the system has settled).169

For a low inductance of 𝐿/𝐿𝐽 = 0.1 (see Figure 2a), corresponding to the Open Mode, the KICK170

causes only slight disturbance in the transmission line. The incident soliton propagates through171

it unimpeded, and the entire line returns to its initial physical state. However, increasing the in-172

ductance to 𝐿/𝐿𝐽 = 2 (see Figure 2b) switches the system to the Close Mode. In this mode, the173

KICK serve as a significant barrier; when the soliton arrives, the large inductance impedes the nec-174

essary current dynamics, halting the propagation and causing the soliton to be annihilated. Conse-175

quently, the 2𝜋 phase slip, which signifies the soliton’s passage, only traverses the first half of the176

line (nodes 1 to 15), while the segment beyond the KICK remains entirely unperturbed. Remark-177

ably, a further increase of inductance to 𝐿/𝐿𝐽 = 4 (see Figure 2c) leads to the re-emergence of the178

Open Mode. This non-trivial effect is governed by transient energy storage in the inductor 𝐿. Al-179

though the soliton is momentarily halted at the KICK, the subsequent release of stored magnetic180

energy provides the necessary "kick" to complete the phase slip at node 16. This re-initiates the181

propagation, allowing the soliton to effectively re-form and travel down the rest of the line. Sim-182

ilarly to the low inductance case, the soliton successfully traverses the entire line, and the system183

returns to its initial physical state.184

The behavior of the KICK in the T-Mode, which enables its use as a T-flip-flop, is detailed in Fig-185

ure 2d. This mode is defined by the existence of two distinct stable states, physically correspond-186
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Figure 2: Spatial distributions of the Josephson phase (blue curves) and current (red curves) in:
(a,c) open mode, 𝐿𝑘/𝐿𝐽 = 0.1 (a) and 𝐿𝑘/𝐿𝐽 = 4 (c); (b) close mode, 𝐿𝑘/𝐿𝐽 = 2; and (d) T-
mode, 𝐿𝑘/𝐿𝐽 = 6. Solid lines show initial profiles, dashed lines represent distributions after soliton
passage. The Josephson phase is plotted against the integer node index 𝑘 , whereas the current is
plotted at the midpoint index 𝑘 + 0.5 to represent the junction between nodes 𝑘 and 𝑘 + 1, see
Figure 1a.
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ing to a bistable potential landscape created by the KICK architecture. These two states are distin-187

guished by the presence of persistent, static currents of opposite polarity flowing from the central188

node (𝑘 = 16). This physical difference leads to an fundamentally state-dependent and asymmetric189

toggling action. When the KICK is in the first stable state, an incoming soliton successfully flips it190

to the second state and is transmitted, continuing its propagation down the line. Conversely, when191

starting from the second state, an arriving soliton again flips the KICK back to the first state, but is192

annihilated in the process and does not propagate further. This state-dependent transmission and193

annihilation is the core mechanism that allows the KICK to function as a memory element or a dy-194

namic routing switch.195

Beyond primary operational modes, the system exhibits other notable behavior types in specific196

regions of its parameter space. The M-Mode, for instance, is characterized by complex responses,197

depend on previous events. This can include such behavior when an initial soliton is annihilated,198

effectively "priming" the cell to transmit all subsequent solitons, a feature potentially useful for199

tasks like sequential filtering. Furthermore, in the transition regions between the primary modes,200

we observe phenomena such as soliton reflection back towards the source.201

Finally, the asymptotic behavior in the high-damping (𝛼) limit is particularly significant. As 𝛼 in-202

creases, so does the soliton’s velocity and kinetic energy. Consequently, for sufficiently high 𝛼, the203

soliton’s energy is large enough to overcome any potential barrier presented by the KICK, ensur-204

ing transmission regardless of the inductance value. This results in a universal Open Mode at high205

rates. Crucially, this high-energy passage is not inert; if the KICK is in a bistable regime (such as206

the T-Mode), the "passing" soliton can still deliver enough of an impulse to toggle the cell’s state.207

The Soliton Diode208

What is even more interesting is that the KICK architecture can be engineered to function as a soli-209

ton diode, a device the function of which is similar to that of a semiconductor diode, allowing the210

soliton to pass in only one direction. This is achieved by introducing a structural asymmetry into211

the cell’s design. It is important to note that such non-reciprocal behavior can be achieved even212
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without the kinetic inductance (𝐿 = 0). However, the inclusion of one (a tunable inductance) is a213

key innovation, as it allows to dynamically switch this directional property on and off.214

We demonstrate this principle through simulation of a KICK with 𝐿/𝐿𝐽 = 2. In our model, the215

transmission line’s series junctions have a nominal critical current of 𝐼𝑐 = 0.7𝐼𝑐. The asymmetry216

is created by increasing the critical current of the specific junction connecting nodes 15 and 16 to217

𝐼𝑐 = 𝐼𝑐 (i.e., to 1 in normalized units). The effect of this asymmetric potential barrier is that a218

soliton initiated in the forward direction (from node 1) successfully overcomes it and is transmitted219

along the entire line. In contrast, a soliton propagating in the reverse direction (from node 31) is220

unable to pass the barrier and is annihilated at node 17.221

Figure 3 demonstrates the non-reciprocal behavior of the soliton diode by showing a sequence222

of five snapshots of the nodal Josephson phase distribution at successive moments in time, ar-223

ranged from top to bottom. The process begins with the line in its initial state (top panel), after224

which a soliton is initiated from the left side (node 1). As shown in the second panel, this forward-225

propagating soliton successfully passes through the diode, resulting in a 2𝜋 phase advance across226

all nodes. Immediately after, a new soliton is initiated from the right side (node 31) to test the227

reverse direction. The third panel reveals that this soliton is blocked; its propagation is halted at228

the diode, and the corresponding 2𝜋 phase slip is confined to nodes 17 through 31. The fourth229

panel confirms the robustness of this blocking action, as a second, subsequent reverse-propagating230

soliton is also annihilated in the same manner. To complete the demonstration, another forward-231

propagating soliton is sent from the left. The fifth panel confirms that the diode once again allows232

it to pass, resulting in another full 2𝜋 phase advance across the entire line. It is crucial to note that233

although the absolute phase values accumulate in multiples of 2𝜋 throughout this sequence, the234

physical state of the structure remains unchanged after each full transmission, a direct consequence235

of the 2𝜋 periodicity of the Josephson energy.236

A significant feature of this structure is the ability to disable the diode effect. By increasing the237

inductance to 𝐿/𝐿𝐽 = 3, the device becomes bi-directionally transparent, effectively turning the238

diode function "off". This demonstrates how the introduced structural asymmetry alters the oper-239
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Figure 3: Temporal evolution of Josephson phase asymmetry in a soliton diode: (a) Initial state;
(b) After left-propagating soliton passage; (c,d) Sequential right-propagating soliton interactions;
(e) Final left-propagating soliton recurrence.
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ational landscape of the device: an inductance value that would normally correspond to the Close240

Mode in a symmetric KICK now matches to a bi-directional Open Mode for the asymmetric diode241

structure. Furthermore, it is worth noting that the the asymmetry required for diode-like behavior242

can be achieved through alternative means, such as by creating a local mismatch in the damping243

parameter — for instance, by increasing 𝛼 from 1 to 3 for one of the series junctions instead of the244

critical current.245

The ability to enforce a specific direction of soliton flow makes the soliton diode an essential com-246

ponent for complex circuit design. This is particularly critical in architectures involving feedback247

loops, where it is necessary to unambiguously define the direction of signal propagation. This con-248

cept can be extended by cascading two such tunable diodes with opposing forward directions. This249

configuration creates a programmable transmission line where the permitted direction of soliton250

travel can be pre-configured by setting the inductance values of each diode.251

Discussion252

Implementation of reconfigurable networks253

On the basis of the operational principles of the Kinetic Inductance Controllable Key and the soli-254

ton diode, we now demonstrate how these fundamental building blocks can be integrated to create255

reconfigurable soliton-based logic circuits. We begin by proposing a specific proof-of-concept de-256

sign for a signal routing network and then introduce a generalized, scalable architecture suitable for257

complex computational tasks.258

As a direct application of the KICK’s switching capabilities, we first propose the 3-input, 3-output259

routing network illustrated in Figure 3a. The proposed architecture is based on a grid where each260

path depicted is itself a complete all-Josephson-junction transmission line (all-JJTL). The routing261

mechanism would depend on the incorporation of KICKs into specific segments of these all-JJTLs.262

By programming each KICK to be in either its Open Mode (transmitting) or Close Mode (block-263

ing), one could control the flow of solitons through the network and define a unique path from264

any input to any output. To prevent collisions between solitons traveling along different routes,265
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the design incorporates auxiliary buffer lines. These lines make it possible to define a set of non-266

intersecting paths for all required connections, thus ensuring collision-free operation. This design267

serves to validate the fundamental principle of using KICKs as programmable switches.268

With this idea, we propose a more general and powerful architecture, which we term the "Way-269

Matrix", shown schematically in Figure 3b. This versatile 𝑁𝑥𝑀 routing matrix is conceived as a270

core component of larger soliton-based processors. Its enhanced functionality would be predicated271

on the synergistic action of its core components. Firstly, KICKs integrated into the line segments272

would act as programmable switches controlling the signal flow. Secondly, the directionality of273

soliton propagation would be rigorously enforced by integrated soliton diodes. Thus, the diodes274

and switches placed in the all-JJTL lines determine the direction of soliton propagation in the line.275

Finally, to solve the problem of collisions in a dense matrix, we propose dedicated vertical lines276

that enable row-skipping connections. For the same purposes, horizontal lines can also be used for277

column-skipping connections.278

At first glance, it may seem that the proposed architecture is a complicated version of a memris-279

tive crossbar, but this is not the case. The main distinction is in the organization of interconnections280

between lines: in a memristive crossbar, as the name follows, these connections are formed by the281

intersection of signal lines and the corresponding memristive layer. In the proposed WayMatrix,282

however, the lines are combined into a single node at the intersection point, the current direction283

of which can be controlled by switches and diodes. The power of the WayMatrix architecture lies284

in its potential use as a universal framework for creating programmable and reconfigurable con-285

nections between different circuit blocks. WayMatrix makes it easy to set up feedback loops be-286

tween these blocks, change their connection order, and perform logical operations. We envision it287

serving as a reconfigurable "backbone" to link various specialized functional units within a larger288

integrated circuit. For example, the WayMatrix could be configured to connect arrays of memory289

cells to arithmetic logic units or to route data between different processing cores. Another key ap-290

plication is the creation of programmable clock distribution networks. In such a role, the WayMa-291

trix could manage signal timing across a chip by introducing precise, configurable delays into the292
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Figure 4: a) Schematic of an all-Josephson-junction transmission line (all-JJTL) network with
three inputs (In 1, In 2, In 3), three outputs (Out 1, Out 2, Out 3), and three auxiliary buffer lines.
Black arrows on the lines indicate soliton propagation paths. Input-output connections are config-
ured by setting operation modes of kinetic inductance controllable keys (KICKs), where each cell
either transmits or blocks solitons based on its programmed state. b) The schematic shows a trans-
mission line matrix where path selection is governed by KICKs and signal directionality is ensured
by soliton diodes. Specific vertical lines enable row-skipping connections to prevent soliton colli-
sions during signal propagation.
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clock paths, which is crucial for asynchronous circuit design. This would allow a single hardware293

platform to be flexibly repurposed for different algorithms by simply re-programming the routing294

paths, a paradigm central to the development of superconducting programmable gate arrays (SP-295

GAs).296

The true potential of this architecture, however, is most evident in its application as an axon-297

synaptic connection matrix for neuromorphic computing. The ability to program connections, en-298

force directionality, and reconfigure paths makes the WayMatrix an ideal candidate for emulating299

the complex and plastic connectivity of a biological neural network. In such a system, each soliton300

acts as a "spike", and the WayMatrix serves as the synaptic network that routes these spikes be-301

tween artificial neurons. This lays the groundwork for building powerful, event-driven and energy-302

efficient spiking neural networks based on the principles we have outlined. In addition to using the303

WayMatrix, we can reconfigure the neural network itself, program connections between different304

neurons, implement synaptic pruning, and even "kill" part of the artificial brain.305

Human or animal brain contains a huge number of synapses, many times greater than the num-306

ber of neurons (e.g. the Norwegian rat brain contains about 200 million neurons, each of which307

roughly has an average of about 1000 synapses [46]). The ability of a living being to solve certain308

tasks depends precisely on the number of inter-neuronal connections. In their attempts to imple-309

ment such complex systems in hardware, engineers and scientists inevitably face the problem of310

interconnects and the implementation of a huge number of synaptic connections. The supercon-311

ducting axon-synaptic matrix based on the WayMatrix concept seems to be a promising solution to312

the problem [47-50].313

As mentioned above repeatedly, the field applications of kinetic inductance and, in particular,314

KICK, are also extended to bio-inspired neuromorphic spiking networks. One important feature315

of living nervous tissues is the ability to modulate the synaptic delay of signal propagation from316

one neuron to another. This feature is equally important to implement in hardware artificial real-317

isations of neuromorphic networks. The signal propagation delay is also affected by a length and318

a conductivity of an axon, which is quite simply imitated by means of a standard Josephson trans-319
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mission line, as well as by means of all-JJTL, discussed at the beginning of this article. A simple320

solution to modulate the propagation delay is to change the length (number of JTL cells) of such an321

artificial axon, but there is another way. The inductance connected in parallel with the Josephson322

junctions determines the amount of magnetic energy stored within each JTL cell. Consequently, a323

larger inductance value results in a longer propagation delay.324

Conclusions325

This study demonstrates the programmable control of kinetic soliton dynamics in all-Josephson-326

junction networks through a novel tunable element, the Kinetic Inductance Controllable Key327

(KICK). By engineering inhomogeneity via controlled kinetic inductance, we induce distinct dy-328

namical modes (Open, Close, T-Mode) that fundamentally alter soliton propagation. Furthermore,329

the features of the proposed cell enable a soliton diode effect, achieving non-reciprocal signal trans-330

mission. Building on these principles, we propose two scalable architectures: a programmable331

switch for reconfigurable routing and the WayMatrix, a versatile 𝑁 ∗ 𝑀 routing matrix. These so-332

lutions establish a framework for robust, high-speed superconducting logic that addresses critical333

bottlenecks in this type of computing.334

We realize that the time required to "reprogram" kinetic inductance significantly exceeds the pi-335

cosecond timescales of Josephson junction dynamics. However, this re-configuration time should336

be considered in the context of hardware development cycles. From this point of view, the re-337

configuration time is orders of magnitude lower than the time required to design, fabricate, and test338

a new application-specific integrated circuit (ASIC), offering a compelling advantage in flexibility339

and prototyping rate.340

The superconducting diodes proposed in this work can be used as a part of synaptic connections341

in neuromorphic networks to prevent the backward influence of a postsynaptic neuron on a presy-342

naptic neuron through the same connection link. It should also be noted that the signal propagation343

time between neurons can be controlled by modulating the bias currents, the value of which di-344

rectly affects the potential barrier in Josephson line (standard JTL or All-JJTL). Thus, the choice of345
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a particular method of signal propagation delay influence depends on the realization of interneuron346

interactions and the need to adjust a particular interneuron connection. Moreover, these approaches347

can be combined into one by using a chain of superconductor diodes. Using cells with kinetic in-348

ductances, we can change the local propagation speed of spikes in inter-neuronal signal transmis-349

sion circuits by smoothly adjusting the delay time. The integration of the WayMatrix will make it350

possible to change the length of the axonal line as a whole, and thus introduce a delay. Besides, it351

is really interesting to examine how the dynamics of voltage spike formation in a bio-inspired neu-352

ron, proposed in [42], will change if we substitute geometric inductances for kinetic ones. Further353

development of the idea presented in this article will also address this aspect.354

The proposed technique allows for a more compact design and new (diode) functionality of various355

superconducting computing modules, and makes possible further increase of integration density356

compared to well-known RSFQ technology.357
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