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Abstract6

Laser interferometry is a well-established and widely used technique for precise displacement mea-7

surements. In a non-contact atomic force microscope (NC-AFM) it facilitates the force measure-8

ment by recording the periodic displacement of an oscillating micro-cantilever. To understand sig-9

nal generation in a NC-AFM based on a Michelson-type interferometer, we evaluate the non-linear10

response of the interferometer to the harmonic displacement of the cantilever in the time domain.11

As the interferometer signal is limited in amplitude due to the spatial periodicity of the interfer-12

ometer light field, an increasing cantilever oscillation amplitude creates an output signal with an13

increasingly complex temporal structure. By the fit of a model to the measured time-domain signal,14

all parameters governing the interferometric displacement signal can precisely be determined. It is15

demonstrated, that such an analysis specifically allows the calibration of the cantilever oscillation16

amplitude with 0.15% accuracy.17

Keywords18

force microscopy, NC-AFM, displacement detection, interferometer signal, amplitude calibration19

Introduction20

Optical interferometry is a reliable technique utilizing light waves to measure distance and dis-21

placement with high precision [1,2]. With the light wavelength, as the length standard, a highly22
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stable interferometer can detect displacements with an accuracy far beyond nanometer resolution23

[3], where the final physical limit is set by the photon emission statistics of the light source [4]. In24

non-contact atomic force microscopy (NC-AFM) interferometry is used to measure the periodic25

displacement of a (quasi) harmonically oscillating micro-cantilever, acting as one mirror of the in-26

terferometer, while the second mirror is the even surface of an optical fiber delivering the light to27

the micro-cantilever [5-10].28

As illustrated in Fig.1, interference occurs in the optical fiber between the light beams, reflected29

from the fiber end (reference beam) and the cantilever (cavity beam), respectively, creating a stand-30

ing wave pattern in the fiber with a spatial periodicity given by the light wavelength 𝜆 and a phase31

𝜙 determined by the distance 𝑑 between the fiber end and the cantilever. Any variation in 𝑑 results32

in a variation of the intensity 𝐼𝑀 recorded by a detector placed at a fixed distance to the fiber end33

[11]. In our setup, there is a strong imbalance of reflectivity coefficients between fiber (𝑟 𝑓 ) and34

cantilever (𝑟𝑐) yielding an interferometer signal with a large constant intensity 𝐼𝑀 and a small in-35

tensity variation upon a change in 𝑑.36

As light exits the fiber with a certain divergence and the fiber core has a small diameter (4µm),37

there is a finite number of multiple reflections between the cantilever and fiber. At large distance38

𝑑, this number is small and the setup basically acts as a Michelson interferometer. Experiments re-39

ported here are performed with the dielectric/vacuum interface of the fiber end acting as the first40

mirror and a metal-coated silicon cantilever as the second mirror. We keep the fiber-cantilever dis-41

tance 𝑑 always large enough to work in the Michelson regime characterised by a low Fabry-Pérot42

enhancement factor [12].43

To obtain a model description of the interference light intensity at the detector, we virtually place44

the detector inside the fiber at its end and consider the electric field of the incident light beam 𝐸𝑖𝑛𝑐45

at this position, the electric field of the reference light beam 𝐸𝑟𝑒 𝑓 = 𝑟 𝑓 𝐸𝑖𝑛𝑐 and the electric field46

reflected from the cantilever and entering the fiber 𝐸𝑐𝑎𝑣 = 𝑡2
𝑓
𝑟𝑐𝑠𝑙𝑜𝑠𝑠 (2𝑑)𝑒𝑖(𝜙(𝑑)+𝜋)𝐸𝑖𝑛𝑐. As interfer-47

ence occurs in the fiber, the transmissivity can be represented as 𝑇 𝑓 = 𝑡2
𝑓

and it is independent of48

the polarisation for (quasi) normal incidence. The a priori unknown function 𝑠𝑙𝑜𝑠𝑠 (2𝑑) describes49
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the loss of light in the gap between the fiber end and the cantilever due to beam divergence. The50

spatial variation of the electric field strength due to interference is governed by the path difference51

2𝑑 determining the phase of the interference electric fields 𝜙 (𝑑) = 2𝜋 2𝑑
𝜆

.52

Figure 1: Michelson type interferometer formed by an optical fiber end and a micro-cantilever.
The graph and physical quantities are explained in the text.

Linear superposition of reference and cavity beams yields as the intensity measured by the detector53

𝐼𝑀 =
[
𝐸𝑖𝑛𝑐 (𝑟 𝑓 − 𝑇 𝑓 𝑟𝑐𝑠𝑙𝑜𝑠𝑠 (2𝑑)𝑒𝑖𝜙(𝑑))

]2
. (1)54

By introducing the incoming light intensity 𝐼0 = 1
2𝑐𝜀0𝐸

2
𝑖𝑛𝑐

, where 𝑐 is the speed of light in vacuum55

and 𝜀0 is the vacuum permittivity, and the reflectivities 𝑅 𝑓 = (𝑟 𝑓 )2, 𝑅𝑐 = (𝑟𝑐)2 and cavity loss56

𝑆𝑙𝑜𝑠𝑠 (2𝑑) = (𝑠𝑙𝑜𝑠𝑠 (2𝑑))2, Eq. (1) is transformed into57

𝐼𝑀 (𝑑) =𝐼0
[
𝑅 𝑓 +

(
1 − 𝑅 𝑓

)2
𝑅𝑐𝑆𝑙𝑜𝑠𝑠 (2𝑑) − 2

√︁
𝑅 𝑓 𝑅𝑐

(
1 − 𝑅 𝑓

)
·
√︁
𝑆𝑙𝑜𝑠𝑠 (2𝑑) cos

(
2𝜋

2𝑑
𝜆

)]
,

(2)58

where the transmissivity 𝑇 𝑓 is substituted by 1 − 𝑅 𝑓 representing the law of energy conservation. A59

sketch of the intensity measured at the detector of the Michelson type interferometer 𝐼𝑀 as a func-60

tion of 𝑑 is shown in the right part of Fig. 1, where the distance dependence 𝑆𝑙𝑜𝑠𝑠 (2𝑑) has been ne-61
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glected. The interference pattern has a periodicity of 𝜆/2, while the curve crosses the mean value62

of intensity 𝐼𝑀 every 𝑛𝜆/4, where 𝑛 is a positive integer. Usually, the interferometer is adjusted to63

positions 𝑑0 = 𝑚𝜆/8, where 𝑚 is an odd integer representing inflection points of the interference64

curve, where the slope of 𝐼𝑀 (𝑑) is a maximum. Such an adjustment facilitates a most sensitive65

displacement detection. Note, that it is not possible to adjust the interferometer to 𝑑0 with a small66

number 𝑚 due to limitations in positioning the fiber end face parallel to the cantilever surface.67

Upon excitation, the freely oscillating cantilever exhibits a harmonic displacement 𝑞(𝑡) as a func-68

tion of time. If a tip-surface force 𝐹𝑡𝑠 is present, this will introduce a slight anharmonicity and69

there will be a static displacement 𝑞𝑠[13]. Within the harmonic approximation, that is well justi-70

fied for small tip-surface forces, the cantilever displacement is [13]71

𝑞(𝑡) = 𝑞𝑠 + 𝐴 sin(2𝜋 𝑓𝑒𝑥𝑐𝑡), (3)72

where 𝐴 is the cantilever oscillation amplitude and 𝑓𝑒𝑥𝑐 is the excitation frequency kept at the reso-73

nance frequency of the cantilever for frequency modulation NC-AFM. Further taking into account74

that the interferometer may be misaligned by the amount 𝑑𝑒𝑟𝑟 , we find for the time-dependent fiber-75

cantilever distance76

𝑑 (𝑡) = 𝑑0 + 𝑑𝑒𝑟𝑟 − 𝑞(𝑡) = 𝑑0 + 𝑑𝑒𝑟𝑟 − 𝑞𝑠 − 𝐴 · sin (2𝜋 𝑓𝑒𝑥𝑐𝑡) . (4)77

Combining Eqs. (2) and (4) yield the time dependence of the light intensity at the detector. As the78

detector measures the total incident light power, we introduce the circular illuminated effective area79

of the detector 𝜋𝑟2
𝑒 𝑓 𝑓

. The factor 𝑓𝑙𝑜𝑠𝑠 takes all optical losses into account occurring in the fiber de-80

livering the light to the cantilever and to the detector. The time domain signal of the interferometer81

is then given as82

𝑃𝑀 (𝑡) = 𝑓𝑙𝑜𝑠𝑠𝜋𝑟
2
𝑒 𝑓 𝑓 𝐼0

[
𝑅 𝑓 +

(
1 − 𝑅 𝑓

)2
𝑅𝑐𝑆𝑙𝑜𝑠𝑠 (2𝑑 (𝑡)) + 2

√︁
𝑅 𝑓 𝑅𝑐

(
1 − 𝑅 𝑓

) √︁
𝑆𝑙𝑜𝑠𝑠 (2𝑑 (𝑡))·

· sin
(
4𝜋
𝜆
(𝑑0 + 𝑑𝑒𝑟𝑟 − 𝑞𝑠 − 𝐴 · sin (2𝜋 𝑓𝑒𝑥𝑐𝑡)) −

𝜋

2

)]
.
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(5)83

Analysing the result, we find that the characteristics of the oscillatory part of 𝑃𝑀 is determined by84

the ratio between the cantilever oscillation amplitude 𝐴 and the wavelength 𝜆. For 𝐴 ≪ 𝜆/8, the85

detector signal oscillates quasi-sinusoidal with the fundamental frequency 𝑓𝑒𝑥𝑐, for 𝐴 ≈ 𝜆/8, the86

signal is a strongly distorted sine and when increasing the amplitude further, the signal is more and87

more dominated by higher frequency oscillations. Exemplary waveforms are shown schematically88

in Fig. 4.89

Figure 2: (a) Photo of the AFM scanhead showing the fiber and fiber coarse approach assembly
(top), the removable cantilever holder (middle) and the sample plate with a mirror inserted for in-
spection purposes (bottom). (b) Coordinates for fiber movement 𝑧 𝑓 and cantilever displacement 𝑑
in relation to the tip-sample coordinate 𝑧 [14]. The cantilever is shown in its relaxed position where
𝑞𝑠 = 0 and 𝐴 sin (2𝜋 𝑓𝑒𝑥𝑐𝑡) = 0. Note, that the origin of the 𝑑-axis is fixed at the fiber end.

Results and Discussion90

The interferometer used for our experiments is part of a home-built NC-AFM, operated under ultra-91

high vacuum (UHV) conditions [15]. The cantilever is a highly reflective (𝑅𝑐 = 0.81) aluminum-92

coated silicon micro-cantilever (type NCHR, NanoWorld AG, Neuchâtel, Switzerland) with an93

eigenfrequency of 𝑓0 = 169.67622 kHz and a quality factor of Q = 9000. After transfer of the94

cantilever, that is glued to a cantilever holder, the cantilever is mechanically firmly attached to the95
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AFM scan head, while the optical fiber and the sample are approached to the cantilever and the tip96

by piezoelectric motors for coarse motion [16] and tube piezos [17] for fine positioning in all direc-97

tions. The scanhead with cantilever, sample support, and the respective motion elements is shown98

in Fig. 2(a). The fine adjustment of 𝑑 is accomplished by the fiber tube piezo, which is in its re-99

laxed position for 𝑧 𝑓 = 0, according to the coordinate system given in Fig. 2(b). Note, that the tube100

piezo allows for an adjustment of 𝑑 with high accuracy, however, the absolute distance between the101

fiber end and the cantilever can practically neither be set nor measured. The interferometer is ad-102

justed to a fairly large value 𝑑0 to assure operation in the Michelson mode resulting in a detector103

signal 𝐼𝑀 that is much smaller than what could be obtained by working in the Fabry-Pérot mode104

[12].105

A temperature and intensity stabilized laser diode light source (type 48TA-1-42037, Schäfter +106

Kirchhoff GmbH, Hamburg, Germany) operating at a vacuum wavelength of 𝜆 = 796.42 nm deliv-107

ers the light to the cantilever via a single-mode optical fiber (type Hi780, Corning Inc., New York,108

USA) with a core having a refractive index of 𝑛 𝑓 = 1.45 and 4 µm diameter. Before entering the109

UHV system, the light passes a 3 dB beam splitter, where it is divided into two beams with almost110

identical power. The first part is directed to a power meter for control purposes, while the second111

part is guided to the interferometer in the UHV [11]. The fiber end in the interferometer is care-112

fully cleaved to achieve high optical quality for the dielectric/vacuum interface having a reflectivity113

of 𝑅 𝑓 = 0.04. The fourth end of the 3 dB coupler is connected to the detector that is a photore-114

ceiver (model HBPR-200M-30K-SI-FC, FEMTO Messtechnik, Berlin, Germany) converting the115

incoming light power into a voltage signal. The photoreceiver allows for high sensitivity low-noise116

measurements of DC and AC signals with a bandwidth of 200 MHz.117

The interferometer is precisely aligned via a tube piezo controlled by the R9 control system (RHK118

Technology Inc., Troy, MI, USA). Cantilever excitation with a sine wave voltage with a well-119

defined amplitude 𝑉𝑒𝑥𝑐 and overall experiment control is accomplished by a HF2LI (Zurich In-120

struments, Zürich, Switzerland). Experiments are performed with the freely oscillating cantilever.121

Therefore, the cantilever excitation frequency 𝑓𝑒𝑥𝑐 is set to the eigenfrequency of the cantilever that122
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is determined by taking a resonance curve before each experiment. By temperature stabilisation of123

the laboratory and the scan head, care is taken to avoid any thermal drift of the cantilever eigenfre-124

quency that might compromise measurements. A model MDO3000 oscilloscope (Tektronix Inc.,125

Beaverton, OR, USA) is used to record the AC output signal of the photoreceiver 𝑉𝑠𝑖𝑔 that is a volt-126

age between 0 and 10 m𝑉𝑝𝑝 with a typical noise level of less than 150 µ𝑉𝑅𝑀𝑆. Time traces with a127

length of 4 µs at a sampling rate of 250 MS/s are taken and quantised with a resolution of 10 bits.128

Each experiment comprises a set of 20 to 30 measurements with the excitation voltage amplitude129

𝑉𝑒𝑥𝑐 ramped from 0 to 7 V. This voltage is reduced by a 100:1 voltage divider before it is applied130

to the excitation piezo. For each amplitude, 512 traces of 𝑉𝑠𝑖𝑔 are taken and averaged, where the131

start of sampling is triggered by the zero crossing of the low noise sinusoidal cantilever excitation132

voltage signal recorded on the second oscilloscope channel.133

For data evaluation, a simplified form of Eq. (5) is fitted to the averaged trace for each amplitude.134

In the fit function of Eq. (6) linearly depending parameters are gathered into one135

𝑉𝑠𝑖𝑔 = 𝑉𝐷𝐶 +𝑉0 sin
(
4𝜋
𝜆

(𝐷 − 𝐴 sin (2𝜋 𝑓𝑠𝑡 − 𝜑)) − 𝜋

2

)
, (6)136

where 𝑉𝐷𝐶 represents the constant part of the interferometer signal voltage, 𝑉0 the voltage ampli-137

tude of the interference signal oscillation, 𝐷 = 𝑑0 + 𝑑𝑒𝑟𝑟 − 𝑞𝑠 the actual distance of the center of os-138

cillation from the fiber end, 𝑓𝑠 the frequency reference to the time base of the oscilloscope and 𝜑 a139

phase factor covering any phase shift introduced by the electronics in the signal path. The time de-140

pendence of 𝑆𝑙𝑜𝑠𝑠 is neglected, as it is of minute influence for the amplitudes used here. However,141

for experiments with a very large amplitude, this is expected to influence the interference signal.142

We find, that Eq. (6) fits the experimental data for all amplitudes perfectly, as demonstrated for143

one example in Fig. 3. However, for lower amplitudes, the fit does not yield physically meaningful144

results due to the mutual dependence of the parameters 𝑉0, 𝐴 and 𝜑. We find, for instance, that the145

fit value of 𝑉0 exhibits a dependence on 𝑉𝑒𝑥𝑐, while it is evident from Eq. (5) that 𝑉0 should be a146

constant solely determined by system parameters. To yield the correct value 𝑉 𝑙𝑖𝑚
0 , we plot the peak-147

to-peak amplitude 𝑉𝑝𝑝 of the 𝑉𝑠𝑖𝑔 fit curve (see Fig. 3) as a function of 𝑉𝑒𝑥𝑐 as shown in Fig. 4. We148
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Figure 3: Fit of the model for the interferometer signal voltage according to Eq.(6) to experimen-
tal data. The cantilever excitation piezo voltage amplitude is 𝑉𝑒𝑥𝑐 = 4.25𝑉 corresponding to an
amplitude A=86.61 nm.

find that 𝑉𝑝𝑝 first rises with amplitude and then saturates at the amplitude limit 2𝑉 𝑙𝑖𝑚
0 . A parameter149

that can reliably be deduced from the fit is 𝑓𝑠 as this is the characteristic fundamental frequency150

of the signal. In the second step of data evaluation, we perform a fit of the same fit function to the151

same experimental data, however, with a reduced number of fit parameters. In this fit, 𝑉 𝑙𝑖𝑚
0 and152

𝑓𝑠 are taken over as fixed values from the first fit, while the other parameters are treated as free fit153

parameters. This two-step procedure allows to determine all signal parameters with high accuracy.154

Figure 4: Peak-to-peak amplitude 𝑉𝑝𝑝 of 𝑉𝑠𝑖𝑔 (see Fig. 3) as a function of the cantilever excitation
voltage amplitude 𝑉𝑒𝑥𝑐. The insets show three typical waveforms for 𝐼𝑀 (𝑡) (𝑉𝑒𝑥𝑐=1.75 V, 4 V and 7
V) and the central part of the laser diode mode spectrum.

As the interferometric method is perfectly suited for the calibration of the cantilever oscillation155
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amplitude, we exemplify the fit procedure and accuracy limits for the fit parameter 𝐴. Amplitude156

calibration means to relate the cantilever oscillation amplitude 𝐴 to the voltage 𝑉𝑒𝑥𝑐 to yield the157

calibration factor 𝑆 = 𝐴/𝑉𝑒𝑥𝑐 [14]. An accurate calibration is essential for quantitative NC-AFM158

and, therefore, various methods have been suggested to determine the calibration factor [10,18-21].159

There is a simple and rough, but commonly used method of calibration of the cantilever displace-160

ment by an interferometer, that is based on the measurement shown in Fig. 4. This method uses161

just the data point for the excitation amplitude 𝑉𝑒𝑥𝑐 (𝐴 = 𝜆/8), where saturation in 𝑉𝑝𝑝 occurs in-162

dicating that the oscillation exactly covers one fringe with −𝜆/8 ⩽ 𝑞 ⩽ +𝜆/8. For the experiment163

discussed here, such calibration yields 𝑆 = 20.38 nm/V. However, from Fig. 4 it is clear that the164

precision of this value is limited as the 𝜆/8 point is not well defined.165

Figure 5: (a) The cantilever oscillation amplitude 𝐴 is derived from the linear fit of Eq. (6) to ex-
perimental time traces 𝑉𝑠𝑖𝑔 (𝑡) as a function of the excitation voltage amplitude 𝑉𝑒𝑥𝑐 (squares, cir-
cles, triangles). Straight lines are linear fits of 𝐴(𝑉𝑒𝑥𝑐) data. (b) Residuals of the oscillation ampli-
tudes with respect to the linear fit. Note, that the green and blue data are shifted by 1V along the x
axis for better visibility of the graphs.

Figure 5 illustrates the enhancement in accuracy that can be achieved by applying the two-step fit166

procedure for data analysis. In this plot of 𝐴(𝑉𝑒𝑥𝑐), measurements taken at all amplitudes are in-167
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cluded and fitted by a straight line. The green and blue curves represent measurements taken over168

two days, where the optical fiber has slightly been re-adjusted in between the measurements. The169

curves (circle and triangle) represent data analysed by a single fit, where the green curve represents170

the same data as those shown in Fig. 4. Both measurements yield a linear behaviour, however, with171

a somewhat different slope and, therefore, different calibration factors, which is due to the fiber re-172

adjustment. The residuals plotted in the lower part of the figure demonstrate that measurements are173

free of any significant noise [22], however, we find a smooth undulation of the experimental val-174

ues around zero that stems from the residual mutual dependence of fit parameters. The red curve175

(squares) represents fit results for the data from the green curve treated with the two-step proce-176

dure. The analysis of the residuals reveals that the second step of data processing significantly re-177

duces, but cannot fully remove the undulation.178

At first sight, the undulation as a systematic error appears as the major limitation for the accuracy179

in determining the calibration factor 𝑆. An extended analysis of several sets of data covering a large180

range of amplitudes yields, however, that the effect of the undulation can be reduced to a negligible181

effect by a proper choice of the analysed range of amplitudes. This is achieved by restricting the182

analysis to a range of amplitudes, where the undulating behaviour yields a compensation of positive183

and negative deviations from the straight line. To obtain limits for the precision and accuracy of the184

result for the amplitude calibration factor, we consider four contributions to the error in 𝑆 that are185

expressed in the following formula of error propagation for the linear fit [23]186

𝛿𝑆 = 𝑆

√︄(
𝛿𝑉𝑒𝑥𝑐

𝑉𝑒𝑥𝑐

)2
+
(
𝛿𝐴

𝐴

)2
+
(
𝛿𝜆

𝜆

)2
+
(
𝛿𝑙𝑐

𝑙𝑐

)2
, (7)187

where 𝛿𝑉𝑒𝑥𝑐/𝑉𝑒𝑥𝑐 = 0.010 is the excitation voltage output uncertainty according to the HF2 spec-188

ification taken as systematic error of device and 𝛿𝐴/𝐴 = 0.0004 is the mean of the residuals in 𝐴189

divided by the mean value of 𝐴, determined as a oscilllation amplitude error. The relative error in190

the wavelength measurement is 𝛿𝜆/𝜆 = 0.00075, as discussed below, and the relative error in the191

adjustment of the light spot on the cantilever with length 𝑙𝑐 as indicated in Fig. 1. The positioning192
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error 𝛿𝑙𝑐 is estimated from visual inspection of a CCD camera image of the fiber-cantilever gap.193

To estimate the wavelength error 𝛿𝜆, we performed a careful measurement of the laser diode light194

wavelength 𝜆 with a spectrograph (Acton series SP-2500i-2556, Princeton Instruments, USA) that195

has been calibrated by 40 atomic lines distributed over the entire visible spectrum to yield an accu-196

rate value for the wavelength at a spectral resolution of 0.050 nm. As evident from the multimode197

spectrum of the laser diode light source shown in the inset of Fig. 4, the spectrum is dominated198

by three modes with a center at the vacuum wavelength 𝜆 = 796.49 nm. Assuming that interfer-199

ence occurs in the optical fiber, we calculate the laser wavelength in the fiber with 𝑛 = 1.45 as200

𝜆 𝑓 = 549.24 nm for oscillation amplitude calibration. We take the spectral distance of the two201

neighboring lines as a conservative estimate for the wavelength error 𝛿𝜆 = 0.60 nm. Note, that202

the errors 𝛿𝑉𝑒𝑥𝑐 and 𝛿𝐴 are not indipendent variables. We treat them separately as 𝛿𝑉𝑒𝑥𝑐 is a statisti-203

cal error, while 𝛿𝐴 represents an additional systematic error due to the residuals in the linear fit of204

𝐴(𝑉𝑒𝑥𝑐). Taking these error margins into account, we yield the final result for the amplitude cali-205

bration factor 𝑆 = (20.299 ± 0.050) nm/V.206

In summary, we derived a model for the description of the time domain signal of a Michelson-207

type interferometer used to measure the displacement of a (quasi) harmonically oscillating micro-208

cantilever in an NC-AFM. The analysis demonstrates that the interferometer signal is a non-trivial209

function of the cantilever excitation, where increasing excitation amplitude is translated into in-210

creasing non-linearity and complexity of the response signal. A fit of the derived response func-211

tion to experimental data yields excellent results for all system parameters. However, care has to be212

taken to minimise systematic errors resulting from the mutual dependence of fit parameters. The213

method specifically allows to determine the cantilever oscillation amplitude calibration factor with214

a remarkable 0.15% relative error.215

The strength of the interferometric calibration is the high accuracy that can be achieved as the cal-216

ibration of the amplitude can be traced to the light wavelength, which can be most precisely and217

accurately measured. The error analysis shows, that the weakest point is the accurate positioning218

of the light beam at the position of the tip that is relevant for NC-AFM measurements. In experi-219
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ments, as introduced here, noise is not a limiting factor for the quantitative evaluation of the inter-220

ferometric signal and there is headroom left for improvement by optimising the experimental setup.221
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