Preprint Title  Metal catalyst-free N-Allylation/alkylation of Imidazole and Benzimidazole with Morita-Baylis-Hillman (MBH) alcohols and acetates

Authors  Olfa Mhasni, Jalloul Bouajila and Farhat Rezgui

Publication Date  23 Mai 2023

Article Type  Full Research Paper

Supporting Information File 1  Supporting Information.docx; 6.9 MB

ORCID® iDs  Olfa Mhasni - https://orcid.org/0009-0002-9931-0895; Farhat Rezgui - https://orcid.org/0000-0002-9616-0716
ABSTRACT: A highly α-regioselective N-nucleophilic allylic substitutions of cyclic MBH alcohols and acetates with imidazole or benzimidazole, in toluene at reflux with an azeotropic distillation, was successfully carried out with no catalysts or additives, affording the corresponding N-substituted imidazole derivatives in good yields. On the other hand, in refluxing toluene or methanol, the aza-Michael additions of imidazole onto acyclic MBH alcohols was performed using DABCO as an additive, leading to the corresponding 1,4-adducts in 70-84% yields.

Keywords: Morita–Baylis–Hillman; imidazole; allylic substitution; aza-Michael addition.

INTRODUCTION

Morita–Baylis–Hillman (MBH) adducts are multi-functionalized compounds having both hydroxyl moiety and Michael acceptor unit. They have been found as valuable synthons and useful precursors for the synthesis of various biologically active molecules. Recently, MBH adducts, as electrophilic substrates, have been
employed to achieve fruitful results in allylic substitution reactions with various nucleophiles, including C- and heteronucleophiles, such as compounds bearing –OH, –SH and –NH groups. Among them, the carbon–nitrogen bond formation through N-nucleophilic substitutions plays a very useful role for the synthesis of numerous compounds exhibiting various biological activities.¹,² In this context, imidazole moiety is widely known as one of the most group which plays efficient roles in bioactive compounds.³ For instance, a number of N-substituted imidazole derivatives, such as miconazole, ketoconazole, genaconazole, and bifonazole have become well-established drugs for the treatment of numerous mycotic infections (Figure 1).⁴ Therefore, the development of new methods for the preparation of such compounds is highly required.

**Figure 1.** Medicines containing imidazole nucleus

The MBH acetates, instead of the corresponding alcohols, have been extensively used as precursors in the nucleophilic allylic substitutions with amines, presumably due to the perceived poor leaving group ability and low reactivity of the hydroxyl moiety. Interestingly, the direct nucleophilic substitutions of the corresponding alcohols have drawn much attention because of the availability of these substrates and the formation of water as the sole non-toxic by-product in the reaction.⁵ In general, the previous methods for the amination of MBH alcohols needed catalysts or additives such as FeCl₃,⁶ In(OTf)₃,⁷ MoCl₅,⁸ AuCl₃,⁹ and I₂¹⁰ as Lewis acids.
Alternatively, Yang et al.\textsuperscript{11} have developed a catalytic system involving Pd/Ti(O\textsuperscript{t}Pr\textsubscript{4}} or Pd/carboxylic acid for the direct allylation of anilines with alcohols.

The synthesis of $N$-allylation imidazole derivatives 3 has been previously carried out using acyclic MBH adducts bearing good leaving groups such as bromide derivatives in Et\textsubscript{3}N-THF,\textsuperscript{12} (Scheme 1, eq.1 (i)) and acetates in THF-water,\textsuperscript{13} (Scheme 1, eq.1 (ii)), or MBH alcohols in the presence of CDI (i.e., 1,1'-carbonyl diimidazole) in acetonitrile (Scheme 1, eq.1, (iii)).\textsuperscript{14} In the last case, as the hydroxyl moiety is not a good leaving group, such alcohols were \textit{in situ} converted into the corresponding $O$-allyl carbamates as leaving groups, followed by their reaction with imidazoles, affording the $S_{N}2'$ products 3 (Scheme 1, eq. 1, iii)).

\textbf{Previous work:}

\begin{equation}
\begin{array}{c}
\text{Reagents and conditions: (i) LG = Br, EWG = CO}_2\text{Me; Et}_3\text{N, THF. (ii) LG = OAc, EWG = CO}_2\text{Me, CO}_2\text{Et; THF-H}_2\text{O. (iii) LG = OH, EWG = CO}_2\text{R, CN; CDI, CH}_3\text{CN.}}
\end{array}
\end{equation}

\textbf{This work:}

\begin{equation}
\begin{array}{c}
\text{Scheme 1. Synthesis of $N$-substituted imidazole derivatives from MBH adducts}
\end{array}
\end{equation}

Correlatively, we have previously reported a direct amination of cyclic MBH alcohols 4 with morpholine in the presence of imidazole 2a, as a powerful nucleophilic additive, affording, \textit{via} competitive allylic nucleophilic substitutions in toluene at reflux, a mixture of the corresponding $N$-substituted morpholine and $N$-substituted imidazole derivatives 6.\textsuperscript{15} In addition, the literature survey showed that nucleophilic allylic substitutions of acyclic/cyclic MBH adducts 1,4,5, bearing good or poor leaving groups, using imidazole derivatives, as nucleophilic reagents,
has not been extensively developed. Therefore, in continuation of our previous study on nucleophilic allylic substitutions of MBH adducts,\textsuperscript{15-18} we disclose in this work a simple efficient procedure for the synthesis of $N$-substituted imidazoles $6$-$8$, either through direct conversions of the corresponding cyclic MBH alcohols $4$ as well as acetates $5$, in the presence of imidazoles $2a,b$, as nucleophilic reagents, without catalysts or activating agents (Scheme 1, equation 2), or from acyclic MBH alcohols $1$, using DABCO, as a powerful nucleophilic additive (Scheme 1, equation 3).

\textbf{RESULTS AND DISCUSSION}

In our first investigations, we selected the reaction of the primary acetate $5a$, as the model substrate bearing a good leaving group, with imidazole $2a$ (2 equiv), as a powerful nucleophilic reagent. The reaction was achieved with no need of a catalyst or any additive, in toluene at reflux, affording within 24 h the $S_N2$-type product $6a$ in 82\% yield (Table 1, entry 1). Similarly, the five-membred acetate $5b$ reacted, under the same conditions, and gave the $N$-allylic imidazole $6b$ in 65\% yield (Table 1, entry 2).

Furthermore, treatment of secondary acetates $5c,d$ with imidazoles $2a,b$ (2 equiv) in refluxing toluene, afforded the $N$-substituted imidazoles $6c,d$ and $7a$ within ca. 24 h in 69-87\% yields (Table 1, entries 3-5).

\textbf{Table 1.} Allylation of imidazole derivatives $2a,b$ with cylic MBH adducts $4,5$
\[
\begin{align*}
\text{O} & \quad \text{R} & \quad \text{LG} \\
\text{(n = 0,1)} & & \\
4: R = H, Me; LG = \text{OH} & & \\
5: R = H, Me; LG = \text{OAc} & & \\
\text{No additive} & & \\
toluene, reflux, 24-72h & & \\
\text{55-88\%} & & \\
\text{N} & \quad \text{N} \\
2a & & \\
\text{or} & & \\
2b & & \\
\text{O} & \quad \text{R} & \quad \text{N} \\
\text{(n = 0,1)} & & \\
6 & & \\
\text{or} & & \\
7 & & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>MBH adduct 4 or 5</th>
<th>Imidazole 2a or 2b</th>
<th>Time (h)</th>
<th>Product 6 or 7</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5a</td>
<td>2a</td>
<td>24</td>
<td>6a</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>5b</td>
<td>2a</td>
<td>24</td>
<td>6b</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>5c</td>
<td>2a</td>
<td>24</td>
<td>6c</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>5c</td>
<td>2b</td>
<td>48</td>
<td>7a</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>5d</td>
<td>2a</td>
<td>24</td>
<td>6d</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>4a</td>
<td>2a</td>
<td>48</td>
<td>6a</td>
<td>88</td>
</tr>
</tbody>
</table>
Having established the optimized conditions for the amination of primary and secondary acetates 5a-d (Table 1, entries 1-5), carrying a good leaving group (OAc), we turned our attention to the investigation of the direct amination of MBH alcohols 4a-d, with a poor leaving group (OH). Under the previous conditions (2 equiv of imidazole, toluene, reflux), the conversion of alcohol 4a into the corresponding imidazole 6a was very slow and the starting materials were almost recovered. However, the continuous removal of water, obtained from the direct amination of alcohol 4a, by azeotropic distillation, shifts the position of equilibrium in the direction of the formation of the allylation imidazole 6a in 88% good yield (Table 1, entry 6).
This protocol was also successfully extended to the reaction of the primary five-
membered alcohol 4b with imidazole 2a as well as to that of alcohols 4a,b with
benzimidazole 2b, leading to the S_N2-type products 6b and 7b,c, respectively, in
55-80% yields (Table 1, entries 7-9).

In addition, we have shown that the direct amination of secondary alcohols 4c-d
could be achieved with imidazole derivatives 2a,b, under the conditions established
above, affording, within 24-72h, the allylation products 6c,d and 7d in 60-85%
yields (Table 1, entries 10-12).

Mechanistically, we believe that the nucleophilic allylic substitutions of
alcohols 4, such as 4a, starts with a conjugate addition of imidazole 2a at the Cβ
position of the Michael acceptor 4a, followed by elimination of the hydroxyl
moiety, affording the intermediate I. Similarly, a further second β’-conjugate
addition of imidazole 2a to I might occur, followed by elimination of imidazole
2a, providing finally the allylic derivative 6a (Scheme 2). It is notable that such
reaction mechanism, involving the intermediate I, was previously explored by
Smith and supported by Tamura studies.

Next, in order to explore the scope of the above process, we have also investigated
the direct allylation of imidazole 2a with acyclic MBH alcohol 1. In our first
experiment, this sustrate did not react with imidazole 2a in toluene at reflux, within
24 h, with or without azeotropic distillation, and the starting materials were
completely recovered (Table 2, entry 1). Moreover, the addition of additives to the
previous reaction mixture, such as DMAP or molecular sieves 4 Å, commonly
used to mediate nucleophilic allylic substitutions, did not lead to a notable
improvement of the reaction outcome (Table 2, entries 2,3). However the use of
DABCO, commonly used as a powerful catalyst or a nucleophilic additive in the
reaction of acyclic MBH adducts with various nucleophiles,

did not afford the \( \text{S}_2/\text{S}_2' \) products but provided the 1,4-adduct 8 in 84% yield (Table 2, entry 4).

Alternatively, we also investigated the reaction of alcohol 1 and imidazole 2a (2 equiv), without any catalyst or additive, in refluxing methanol, commonly employed as solvent in the conversion MBH adducts using a variety of amines.\(^2\)

Our study showed that the imidazole 2a reacted with alcohol 1, without any additive or in the presence of DABCO, as additive, in a 1,4-fashion, leading to the imidazole derivative 8, within 10 h, in 65-68% yields (Table 2, entries 5,6).

**Table 2.** Optimization of the reaction conditions of imidazole 2a with acyclic MBH 1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>8 (Yield %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>Toluene</td>
<td>24</td>
<td>n.r</td>
</tr>
<tr>
<td>2</td>
<td>MS 4Å</td>
<td>Toluene</td>
<td>24</td>
<td>n.r</td>
</tr>
<tr>
<td>3</td>
<td>DMAP</td>
<td>Toluene</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>DABCO</td>
<td>Toluene</td>
<td>24</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>MeOH</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>DABCO</td>
<td>MeOH</td>
<td>10</td>
<td>68</td>
</tr>
</tbody>
</table>

Therefore, in our further experiments on imidazole-mediated the conversion of acyclic MBH alcohols, the toluene at reflux was retained as solvent of choice for the reaction using DABCO as additive.

Next, the treatment of acrylate-derived alcohols 1b,c (1b, EWG=CO\(_2\)Et, R=Ph; 1c, EWG = CO\(_2\)Me, R=Me), under the previously optimized conditions, afforded the corresponding 1,4-adducts 8b,c, in 70-75% yields, (Table 3, entries 2,3), as 55:45 and 59:41 mixtures of inseparable diastereomers, respectively. The relative diastereomeric ratios (dr) were determined by means of \(^1\)H NMR based on the proton at the \( \alpha \) position of the EWG moiety (Table 3).
In order to explore the scope of this synthetic approach, we have studied the reaction of ketone-derived alcohols such as 1d (EWG=COPh, R=H), 1e (EWG=CO„Pr, R=H), 1f (EWG=COc-C6H11, R = H), and imidazole under the established reaction conditions, and we have observed that the conversion was complete but wasn’t clean. However in methanol at reflux, a clean reaction took place, providing the corresponding 1,4-adducts 8d-f in 70-76% yields (Table 3, entries 4-6).

**Table 3. Michael additions of imidazole 2a onto acyclic MBH alcohols 1a-f**

![Diagram](https://via.placeholder.com/150)

R = H, Me, Ph
EWG = CO2Et, CO2Me, COPh, CO„Pr, COC6H11

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>R</th>
<th>EWG</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>8 (Yield %), dra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8a</td>
<td>H</td>
<td>CO2Et</td>
<td>Toluene</td>
<td>24</td>
<td>84 None</td>
</tr>
<tr>
<td>2</td>
<td>8b</td>
<td>Ph</td>
<td>CO2Et</td>
<td>Toluene</td>
<td>24</td>
<td>75 55:45</td>
</tr>
<tr>
<td>3</td>
<td>8c</td>
<td>Me</td>
<td>CO2Me</td>
<td>Toluene</td>
<td>24</td>
<td>70 59:41</td>
</tr>
<tr>
<td>4</td>
<td>8d</td>
<td>H</td>
<td>COPh</td>
<td>MeOH</td>
<td>10</td>
<td>70 None</td>
</tr>
<tr>
<td>5</td>
<td>8e</td>
<td>H</td>
<td>CO„Pr</td>
<td>MeOH</td>
<td>12</td>
<td>76 None</td>
</tr>
<tr>
<td>6</td>
<td>8f</td>
<td>H</td>
<td>COC6H11</td>
<td>MeOH</td>
<td>12</td>
<td>73 None</td>
</tr>
</tbody>
</table>

"a"Determined from 1H NMR of the crude reaction mixture.

**CONCLUSIONS**

We have successfully developed an efficient N-nucleophilic allylic substitutions of cyclic MBH alcohols 4 and acetates 5 with imidazoles in refluxing toluene. The new N-substituted imidazoles 6,7 were afforded in high purity and good yields.
In toluene or methanol at reflux, acyclic MBH alcohols reacted with imidazole in a 1,4-fashion, leading to the corresponding Michael adducts 8 in 70-84% yields.

Synthetic applications of such imidazole derivatives,\textsuperscript{14,27} as well as their biological evaluation\textsuperscript{28} work underway in our laboratory.

\section*{EXPERIMENTAL SECTION}

IR spectra were recorded on a Bruker (IFS 66v/S) spectrometer. \textsuperscript{1}H NMR and \textsuperscript{13}C NMR spectra were recorded either on a Bruker AC-500 spectrometer (300 MHz for \textsuperscript{1}H and 125 MHz for \textsuperscript{13}C) in CDCl\textsubscript{3}, using TMS as an internal standard (chemical shifts in d values, J in Hz). High resolution mass spectra (HRMS) were recorded as EI-HRMS on an Autospec Ultima/micromass mass spectrometer. Gas chromatography–mass spectrometry (GCMS) were recorded on an Agilent Technologies 6890N. Analytical thin layer chromatography (TLC) was performed using Fluka Kieselgel 60 F254 precoated silica gel plates. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using Merck silica gel 60 and a gradient solvent system ether/acetone as eluant.

**Typical procedure for the α-substitution of cyclic MBH adducts with imidazoles**

A mixture of allyl acetate 5a (2 mmol, 0.33 g) or allyl alcohol 4a (2 mmol, 0.25 g) and imidazole 2a (4 mmol, 0.27 g) in toluene (25 mL) was heated under reflux (for 5a) or in a Dean stark apparatus (for 4a). After completion (TLC), the reaction mixture was cooled, washed with brine and dried. The toluene was removed and the residue was purified by column chromatography on silica gel (acetone/ether, 8:2) to give the pure N-substituted imidazole 6a.

**2-((1H-imidazol-1-yl)methyl)cyclohex-2-enone 6a**

Yield: 82%; yellow oil; \textsuperscript{v} (CHCl\textsubscript{3}) 2932, 1666, 1503, 1380, 1227, 1074 cm\textsuperscript{-1}; \textsuperscript{1}H NMR (CDCl\textsubscript{3}, 500 MHz): \(\delta_H 7.47\) (s, 1H), 7.01 (s, 1H), 6.89 (s, 1H), 6.64 (t, \(J = 4.0\) Hz, 1H), 4.70 (s, 2H), 2.47–2.35 (m, 4H), 2.04–1.98 (m, 2H); \textsuperscript{13}C NMR (CDCl\textsubscript{3},...
125 MHz): $\delta_C$ 197.6, 147.7, 137.6, 135.2, 129.3, 119.4, 45.5, 37.9, 25.8, 22.6; HRMS (EI): MH$^+$, found 177.1022. C$_{10}$H$_{13}$N$_2$O requires 177.1028.

2-((1H-imidazol-1-yl)methyl)cyclopent-2-enone 6b

Yield: 65%; yellow oil; v (CHCl$_3$) 2924, 1693, 1504, 1388, 1227, 1073 cm$^{-1}$; $^1$H NMR (CDCl$_3$, 500 MHz): $\delta_H$ 7.51 (s, 1H), 7.34 (t, $J = 4.0$ Hz, 1H), 7.02 (s, 1H), 6.94 (s, 1H), 4.71 (s, 2H), 2.64–2.60 (m, 2H), 2.46–2.43 (m, 2H); $^{13}$C NMR (CDCl$_3$, 125 MHz): $\delta_C$ 207.2, 160.2, 142.1, 137.4, 129.5, 119.3, 41.7, 34.6, 26.7; HRMS (EI): MH$^+$, found 163.0866. C$_9$H$_{11}$N$_2$O requires 163.0871.

2-((1H-imidazol-1-yl)ethyl)cyclohex-2-enone 6c

Yield: 75%; yellow oil; v (CHCl$_3$) 2935, 1665, 1497, 1381, 1226, 1077 cm$^{-1}$; $^1$H NMR (CDCl$_3$, 500 MHz): $\delta_H$ 7.55 (s, 1H), 7.03 (s, 1H), 6.93 (s, 1H), 6.57 (t, $J = 4.0$ Hz, 1H), 5.34 (q, $J = 6.2$ Hz, 1H), 2.47–2.36 (m, 4H), 2.02–1.96 (m, 2H), 1.62 (d, $J = 6.2$ Hz, 3H); $^{13}$C NMR (CDCl$_3$, 125 MHz): $\delta_C$ 197.3, 145.4, 140.4, 136.2, 128.9, 117.8, 50.4, 38.4, 25.7, 22.4, 19.8; MS (m/z): 191 (13), 190 (M+, 100), 175 (15), 161 (9), 109 (43), 81 (27), 79 (38), 69 (50), 67 (75), 55 (50); HRMS (EI): MH$^+$, found 191.1188. C$_{11}$H$_{15}$N$_2$O requires 191.1184.

2-((1H-imidazol-1-yl)ethyl)cyclopent-2-enone 6d

Yield: 69%; yellow oil; v (CHCl$_3$) 2926, 1695, 1496, 1395, 1227, 1077 cm$^{-1}$; $^1$H NMR (CDCl$_3$, 500 MHz): $\delta_H$ 7.59 (s, 1H), 7.28 (t, $J = 4.0$ Hz, 1H), 7.01 (s, 1H), 7.0 (s, 1H), 5.11 (q, $J = 6.0$ Hz, 1H), 2.62–2.60 (m, 2H), 2.46–2.43 (m, 2H), 1.71 (d, $J = 6.0$ Hz, 3H); $^{13}$C NMR (CDCl$_3$, 125 MHz): $\delta_C$ 207.2, 159.1, 146.6, 136.0, 129.0, 117.8, 49.1, 35.2, 26.6, 19.5; MS (m/z): 177 (12), 176 (M+, 100), 175 (7), 161 (1), 147 (9), 109 (43), 81 (54), 79 (74), 69 (33), 67 (13), 53 (31); HRMS (EI): MH$^+$, found 177.1031. C$_{10}$H$_{13}$N$_2$O requires 177.1028.

2-((1H-benzimidazol-1-yl)ethyl)cyclohex-2-enone 7a

Yield: 87%; yellow oil; $^1$H NMR (CDCl$_3$, 500 MHz): $\delta_H$ 8.03 (s, 1H), 7.73–7.71 (m, 1H), 7.21–7.15 (m, 3H), 6.49 (t, $J = 4.0$ Hz, 1H), 5.52 (q, $J = 6.0$ Hz, 1H), 2.38–2.34 (m, 2H), 2.25–2.19 (m, 2H), 1.89–1.83 (m, 2H), 1.70 (d, $J = 6.0$ Hz,
$^{13}$C NMR (CDCl$_3$, 125 MHz): δ$_C$ 197.5, 146.0, 143.7, 141.3, 133.9, 133.2, 122.8, 122.1, 120.1, 110.4, 49.1, 38.1, 25.6, 22.3, 19.4; MS (m/z): 241 (17), 240 (M+, 100), 239 (10), 226 (15), 225 (100), 211 (10), 197 (7), 183 (5), 169 (5), 145 (14), 119 (15), 118 (55), 91 (8), 77 (7), 67 (9), 55 (5); HRMS (EI): MH$^+$, found 241.1347. C$_{15}$H$_{17}$N$_2$O requires 241.1341.

2-((1H-benzimidazol-1-yl)methyl)cyclohex-2-enone 7b

Yield: 80%; yellow oil; $^1$H NMR (CDCl$_3$, 500 MHz): δ$_H$ 7.85 (s, 1H), 7.68–7.62 (m, 1H), 7.22–7.08 (m, 3H), 6.49 (t, $J$ = 4.0 Hz, 1H), 4.78 (s, 2H), 2.30–2.25 (m, 2H), 2.15–2.10 (m, 2H); $^{13}$C NMR (CDCl$_3$, 125 MHz): δ$_C$ 197.7, 147.8, 143.6, 143.3, 133.8, 133.3, 122.6, 121.7, 119.9, 109.6, 43.2, 37.6, 25.3, 22.2; MS (m/z): 227 (16), 226 (M+, 100), 225 (33), 211 (5), 198 (28), 197 (19), 183 (7), 170 (30), 169 (24), 157 (7), 131 (22), 118 (15), 104 (4), 90 (5), 77 (7), 63 (3), 53 (6); HRMS (EI): MH$^+$, found 227.1189. C$_{14}$H$_{15}$N$_2$O requires 227.1184.

2-((1H-benzimidazol-1-yl)methyl)cyclopent-2-enone 7c

Yield: 72%; yellow oil; $^1$H NMR (CDCl$_3$, 500 MHz): δ$_H$ 7.92 (s, 1H), 7.75–7.74 (m, 1H), 7.29–7.18 (m, 4H), 4.87 (s, 2H), 2.51–2.49 (m, 2H), 2.39–2.37 (m, 2H); $^{13}$C NMR (CDCl$_3$, 125 MHz): δ$_C$ 207.6, 160.6, 143.6, 143.4, 140.9, 133.4, 123.1, 122.2, 120.3, 109.6, 39.7, 34.5, 26.7; MS (m/z): 213 (14), 212 (M+, 100), 211 (46), 197 (2), 184 (11), 183 (39), 169 (17), 156 (21), 131 (10), 118 (14), 104 (5), 90 (4), 77 (5), 63 (3), 53 (3); HRMS (EI): MH$^+$, found 213.1033. C$_{13}$H$_{13}$N$_2$O requires 213.1028.

2-((1H-benzimidazol-1-yl)ethyl)cyclopent-2-enone 7d

Yield: 85%; yellow oil; $^1$H NMR (CDCl$_3$, 500 MHz): δ$_H$ 8.01 (s, 1H), 7.72–7.69 (m, 1H), 7.25–7.12 (m, 4H), 5.25 (q, $J$ = 6.0 Hz, 1H), 2.46–2.42 (m, 2H), 2.31–2.30 (m, 2H), 1.74 (d, $J$ = 6.0 Hz, 3H); $^{13}$C NMR (CDCl$_3$, 125 MHz): δ$_C$ 207.1, 159.3, 145.1, 143.4, 141.1, 132.9, 122.7, 122.1, 120.02, 110.2, 47.4, 34.8, 26.2, 18.6; MS (m/z): 227 (16), 226 (M+, 100), 225 (8), 211 (38), 197 (14), 183 (13), 169...
Typical procedure for the preparation of imidazole derivatives 8

A mixture of acyclic MBH alcohol 1 (1 mmol), imidazole 2a (2 mmol) and DABCO (1 mmol), was stirred at reflux of methanol or toluene. After completion of the reaction, the solvent was removed by a rotary evaporation and CH$_2$Cl$_2$ (10 mL) was added. The reaction mixture was washed with brine and dried. Finally, the solvent was removed and the residue was purified by a column chromatography on silica gel, using acetone/ether as eluent, to give the pure imidazole derivative 8.

Ethyl 2-((1H-imidazol-1-yl)methyl)-3-hydroxypropanoate 8a

Yield: 84%; yellow oil; ν (CHCl$_3$) 3118, 2982, 2934, 1723, 1509, 1451, 1376, 1282, 1225, 1181, 1071 cm$^{-1}$; $^1$H NMR (CDCl$_3$, 300 MHz): δ$_H$ 7.52 (s, 1H), 6.99 (s, 1H), 4.77 (s, 1H, O$H$), 4.35 (d, J = 6.6 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.81–3.73 (m, 2H), 2.97–2.91 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H); $^{13}$C NMR (CDCl$_3$, 75 MHz): δ$_C$ 171.8, 137.8, 128.7, 119.6, 61.2, 59.3, 49.2, 44.6, 14.0; HRMS (EI): MH$^+$, found 199.1085. C$_9$H$_{15}$NO$_3$ requires 199.1083.

Ethyl 2-((1H-imidazol-1-yl)methyl)-3-hydroxy-3-phenylpropanoate 8b

Overall yield: 75%; yellow oil; dr = 55:45. Major diastereomer $^1$H NMR (CDCl$_3$, 300 MHz): δ$_H$ 7.41–7.22 (m, 6H), 6.83–6.76 (m, 2H), 4.85 (d, J = 6.7 Hz, 1H), 4.46–3.81 (m, 4H), 3.19–3.12 (m, 1H), 1.06 (t, J = 7.1 Hz, 3H); $^{13}$C NMR (CDCl$_3$, 75 MHz): δ$_C$ 172.0, 141.1, 137.3, 129.0, 128.2, 126.1, 119.1, 72.6, 61.2, 55.0, 45.6, 13.9. Minor diastereomer $^1$H NMR (CDCl$_3$, 300 MHz): δ$_H$ 7.41–7.22 (m, 6H), 6.83–6.76 (m, 2H), 4.92 (d, J = 7.3 Hz, 1H), 4.46–3.81 (m, 4H), 3.07–3.01 (m, 1H), 0.91 (t, J = 7.1 Hz, 3H); $^{13}$C NMR (CDCl$_3$, 75 MHz): δ$_C$ 171.8, 141.7, 137.4, 129.0, 128.4, 128.0, 126.3, 119.3, 72.6, 61... 55.8, 45.3, 13.7; HRMS (EI): MH$^+$, found 275.1402. C$_{15}$H$_{19}$NO$_3$ requires 275.1396.

Methyl 2-((1H-imidazol-1-yl)methyl)-3-hydroxybutanoate 8c

Overall yield: 70%; yellow oil; dr = 59:41. Major diastereomer $^1$H NMR (CDCl$_3$, 300 MHz): δ$_H$ δ$_H$ 7.46 (s, 1H), 6.98 (s, 1H), 6.89 (s, 1H), 5.17 (s, 1H, O$H$), 4.43–
4.30 (m, 2H), 4.05–3.99 (m, 1H), 3.62 (s, 3H), 2.84–2.77 (m, 1H), 1.27 (d, J = 6.2 Hz, 3H); \(^{13}\text{C}\) NMR (CDCl\(_3\), 75 MHz): \(\delta_C\) 172.8, 137.4, 128.8, 119.4, 66.1, 55.5, 52.0, 45.9, 21.9. Minor diastereomer \(^1\text{H}\) NMR (CDCl\(_3\), 300 MHz): \(\delta_H\) 7.49 (s, 1H), 6.99 (s, 1H), 6.93 (s, 1H), 5.17 (s, 1H, OH), 4.43–4.30 (m, 2H), 4.05–3.99 (m, 1H), 3.67 (s, 3H), 2.92–2.87 (m, 1H), 1.25 (d, \(J = 6.4\) Hz, 3H); \(^{13}\text{C}\) NMR (CDCl\(_3\), 75 MHz): \(\delta_C\) 172.3, 137.5, 128.9, 119.4, 65.8, 54.3, 52.0, 45.0, 20.7; HRMS (EI): MH\(^+\), found 199.1085. C\(_9\)H\(_{15}\)N\(_2\)O\(_3\) requires 199.1083.

3-Hydroxy-2-((1H-imidazol-1-yl)methyl)-1-phenylpropan-1-one 8d

Yield: 70%; \(^1\text{H}\) NMR (CDCl\(_3\), 300 MHz): \(\delta_H\) 7.85–7.82 (m, 2H), 7.56–7.36 (m, 4H), 6.90 (s, 1H), 6.87 (s, 1H), 6.41 (s, 1H, OH), 4.52–4.34 (m, 2H), 4.02–3.94 (m, 1H), 3.88–3.70 (m, 2H); \(^{13}\text{C}\) NMR (CDCl\(_3\), 75 MHz): \(\delta_C\) 199.8, 137.6, 136.1, 133.6, 128.8, 128.7, 128.2, 119.7, 60.7, 51.5, 45.1; HRMS (EI): MH\(^+\), found 231.1132. C\(_{13}\)H\(_{15}\)N\(_2\)O\(_2\) requires 231.1134.

1-Hydroxy-2-((1H-imidazol-1-yl)methyl)hexan-3-one 8e

Yield: 76%; \(^1\text{H}\) NMR (CDCl\(_3\), 300 MHz): \(\delta_H\) 7.45 (s, 1H), 6.97 (s, 1H), 6.89 (s, 1H), 4.63 (s, 1H, OH), 4.36–4.17 (m, 2H), 3.80–3.69 (m, 2H), 3.11–3.05 (m, 1H), 2.56–2.26 (m, 2H), 1.56–1.49 (m, 2H), 0.84 (t, \(J = 7.3\) Hz, 3H); \(^{13}\text{C}\) NMR (CDCl\(_3\), 75 MHz): \(\delta_C\) 210.6, 137.7, 128.9, 119.5, 59.8, 55.7, 44.9, 44.5, 16.7, 13.5; HRMS (EI): MH\(^+\), found 197.1293. C\(_{10}\)H\(_{17}\)N\(_2\)O\(_2\) requires 197.1290.

1-Cyclohexyl-3-hydroxy-2-((1H-imidazol-1-yl)methyl)propan-1-one 8f

Yield: 73%; \(^1\text{H}\) NMR (CDCl\(_3\), 300 MHz): \(\delta_H\) 7.43 (s, 1H), 6.96 (s, 1H), 6.88 (s, 1H), 4.71 (s, 1H, OH), 4.36–4.16 (m, 2H), 3.74–3.41 (m, 2H), 3.31–3.24 (m, 1H), 2.42–2.34 (m, 1H), 1.72–1.54 (m, 5H), 1.43–1.15 (m, 5H); \(^{13}\text{C}\) NMR (CDCl\(_3\), 75 MHz): \(\delta_C\) 213.6, 137.6, 128.8, 119.5, 60.3, 54.4, 50.8, 45.0, 29.6, 28.0, 27.2, 25.7, 25.2; HRMS (EI): MH\(^+\), found 237.1607. C\(_{13}\)H\(_{21}\)N\(_2\)O\(_2\) requires 237.1603.
The Supporting Information is available free of charge at

$^1$H and $^{13}$C NMR and HRMS spectra of compounds (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Olfa MNASNI – Laboratory of Materials, Treatment and Analysis LMTA, LR 15 INRAP 03, Institute National for Research and Physico-Chemical Analysis (INRAP), Biotechpole Sidi Thabet 2020, Tunisia; © orcid.org/0009-0002-9931-0895; *Email: olfa.mha@gmail.com

Authors

Jalloul BOUAJILA – Paul Sabatier University, Toulouse 3, Laboratoire de Génie Chimique UMR 5503 Toulouse France; E-mail: jalloul.bouajila@univ-tlse3.fr

Farhat REZGUI – University of Tunis El Manar, Laboratory of Organic Chemistry, Faculty of Sciences, Campus, 2092 Tunis, Tunisia; © orcid.org/0000-0002-9616-0716; E-mail: farhat.rezgui@fst.utm.tn

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful to the DGRST, Ministry of Higher Education, Tunisia, for the financial support of this work.

■ References


   (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Recent Contributions from the Baylis–Hillman Reaction to Organic Chemistry. Chem. Rev. 2010, 110,


6. (a) Jana, U.; Maiti, S.; Biswas, S. An Efficient FeCl₃-Catalyzed Amidation Reaction of Secondary Benzylc and Allylic Alcohols with Carboxamides or *p*-Toluenesulfonamide. *Tetrahedron Lett.* **2008**, *49*, 858. (b) Lee, K. Y.; Lee,


14. Rodrigues Jr, M. T.; Santos, M.S.; Santos, H.; Coelho, F. 1,1’-Carbonyldiimidazole Mediates the Synthesis of $N$-Substituted


