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Abstract 

The purpose of this research was to synthesize nanocomposites formed by sulfur 

nanoparticles, coated with eucalyptus and rosemary essential oil. To determinate the 

insecticidal effect in the control of nymphs of paratrioza (Bactericera cockerelli Sulc) in 

potato crops. A solution of thiosulfate was reduced to zero valent sulfur, the sulfur 

nanoparticles were coated with eucalyptus and rosemary essential oil at three 
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concentrations: 0.25%, 0.5% and 0.75%. The samples were characterized by UV-

visible spectroscopy, energy dispersive spectroscopy, transmission electron 

microscopy and scanning electron microscopy. Insecticidal efficacy was evaluated at 

24, 48 and 72 hours after application. Furthermore, efficacy was compared versus the 

commercial insecticide thiamethoxam 0.25% and a control. The results show that 

eucalyptus nanocomposites at concentrations: 0.25%, 0.5% and 0.75% and rosemary 

nanocomposites at concentration of 0.5%, have an insecticidal efficacy of 100% for the 

control of insect nymphs 24 hours after application. While the insecticidal efficacy of 

rosemary nanocomposites at concentrations of 0.25% and 0.75% increases over time, 

reaching 100% at 24 and 72 hours respectively. The synthesized nanocomposites are 

more effective in controlling nymphs of paratrioza than the commercial insecticide 

thiamethoxam. Could be used for the development of new insecticides. 
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Introduction 

Paratrioza (B. cockerelli Sulc) is one of the most dangerous pest of potatoes, tomatoes, 

pepper and other crops of the Solanaceae family [1]. The insect is one of the most 

destructive potato pests in the western hemisphere, New Zealand, and Australia [2]. It 

is native to North America, however, due to its aggressiveness, the susceptibility of 

cultivated species varieties and favorable climatic conditions for its development, it has 

been distributed to México, Central America, and recently to South American countries 

[3,4,5]. 
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In Ecuador, potato cultivation is one of the main agricultural activities, due to the 

generation of income for producers and the importance in the daily diet of the 

population [6]. The main problems for producers are pests and diseases that severely 

affect the crop [7]. When high densities of the insect feed prior to flowering in potato 

crops can result in higher numbers and weights of unmarketable tubers [8].   

Additionally, when it has been associated with the bacterium Candidatus Liberibacter 

solanacearum cause abnormal development and early death of the plant reducing the 

quality and yields in potato, tomato and pepper crops [2].    

B. cockerelli tends to be difficult to manage, synthetic insecticides such as 

organophosphates, organochlorines, carbamates, and pyrethroids are used to combat 

this pest [9]. But the insect has been shown to develop resistance due to the high 

fecundity and short generation [10]. Also, persistence, bio-accumulation, toxicity, 

misuse and overuse of synthetic insecticides has led to deterioration of soil, air 

pollution, contamination of water bodies, degradation of agroecosystems, and 

damages to human health for their directly or indirectly exposure [11,12,13]. Therefore, 

new methods should be considered to control the pest. Thus, nanotechnology has 

emerged as a technological advance that can enhance the modern agriculture [8]. 

Helping in the development of new nanoinsecticides to combat pests in a more 

productive, cost-effective and eco-friendly way [12].  

Nano-agricultural products are developing using nanotechnology, such as 

nanopesticides, nanoinsecticides, nanoemulsions, and nanoparticles to reduce the 

use of toxic chemicals [14]. Furthermore, different kinds of polysaccharides (e.g. 

chitosan, alginates, polyethylene glycol and others) have been used for synthesis of 

nanoinsecticides [15]. While, others form of polymer and non-polymer based 

nanoformulations like nanofiber, nanocapusles, nanogels, nanomicelles and 

nanospheres, have been used for encapsulation of nanoinsecticides [16]. 
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Nanoencapsulation technique is used to improve the insecticidal assessment, the 

nanometer-sized active ingredient is encapsulated by a thin-walled sac to allow the 

controlled release of the active ingredient [14]. Also, improve the efficiency and reduce 

the amount of pesticide input and environmental hazards [16]. 

Sulfur is considered one of the oldest pesticides used in agriculture for the treatment 

of a wide range of plant diseases [17]. Elemental sulfur is now available from 

nanoparticles forms that can be generated by different chemical methods [18,19]. 

Elemental sulfur nanoparticles (SNPs) have already demonstrate evidence of 

significant insecticidal, fungicidal and bactericidal activity [20,21]. By manipulating 

particle size and surface area, SNPs can have greater absorption, increase the efficacy 

of new insecticides formulations and reduce the amount of insecticide required for 

control [22]. Nanoparticles are known insecticidal properties, interacting with the cell 

membrane of the insect [23]. Causing the denaturation of organelles and enzymes, 

oxidative stress and cell death [24].   

Essential oils are potential botanical sources for developing new insecticides [25]. 

Their active components act as strong repellents against target pest species including 

toxicant and repellent effects, developmental and behavioral alterations, and 

sterility/infertility of insects [26]. Technologies such as nanoformulations or 

microencapsulation of essential oils protect their active components from degradation 

and losses by evaporation, thereby enhancing their stability and solubility [27]. 

In this framework, this research shows the synthesis of nanocomposites formed by 

elemental sulfur nanoparticles. Coated with essential oil of eucalyptus and rosemary 

at different concentrations. Characterized by UV-visible spectroscopy, energy 

dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). With the aim of evaluating the insecticidal efficacy of 

nanocomposites for the control of nymphs of paratrioza.  
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Results and Discussion  

Sulfur Nanoparticles 

Figure 1 shows the UV-visible spectrum of the synthesized SNPs; a maximum 

absorption peak was observed at 253 nm indicating their successful formation. SNPs 

have been reported to show maximum absorption peak in the range of 250 to 400 nm 

[28,29,30]. 

 

Figure 1: UV-vis spectra of SNPs. 

EDS analysis (Figure 2) shows the presence of sulfur at a mass percent of 28%. 

Furthermore, other elements (Na, Cl, and O) corresponding to the by-products of the 

reduction reaction (Equation 1) of sodium thiosulphate to obtain sulfur were found 

[19,28,31]. The presence of the element carbon is due to the substrate used in the 

EDS analysis [32,33]. 
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Figure 2: a) SEM micrograph and b) EDS of synthesized SNPs. 

TEM image (Figure 3a) shows spherical SNPs with a tendency to agglomerate with an 

average diameter of 28 nm and a narrow size distribution (standard deviation of ±4.5 

nm, see histogram in Figure 3b). The diameter agrees with other research which used 

the same method of SNPs synthesis by chemical precipitation from sodium thiosulfate 

as a sulfur source [28,29,30]. 

 

Figure 3: TEM of SNPs samples a) 28 nm synthesized SNPs b) particle size analysis. 
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Eucalyptus nanocomposites 

Figure 4 shows STEM micrographs of eucalyptus nanocomposites (NCMPs), all of 

them tend to agglomerate and present a wide particle size distribution. At the 

concentration of 0.25% they presented an average diameter of 97nm (standard 

deviation of ±17.70 nm on 130 analyzed particles, see histogram Figure 4b). At the 

concentration of 0.5% they showed an average diameter of 140 nm (standard deviation 

of ±31 nm on 107 analyzed particles, see histogram Figure 4d) and at the concentration 

of 0.75% they presented an average diameter of 147 nm (standard deviation of ±29.90 

nm on 133 analyzed particles, see histogram Figure 4f). 
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Figure 4: STEM micrographs of eucalyptus NCMPs a) 0.25% concentration b) particle 

size analysis of 0.25% concentration c) 0.5% concentration d) particle size analysis of 

0.5% concentration e) 0.75% concentration and f) particle size analysis of 0.75% 

concentration. 
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Rosemary nanocomposites  

Figure 5 shows STEM micrographs of the rosemary NCMPs, all of them presented a 

spherical shape with a tend to agglomerate and a broad particle size distribution. At 

the 0.25% concentration they presented an average diameter of 106 nm (standard 

deviation of ±24.54 nm on 115 analyzed particles, see histogram 5b). At the 0.5% 

concentration they showed an average diameter of 190 nm (standard deviation of 

±43.38 nm on 120 analyzed particles, see histogram 5d) and the 0.75% concentration 

they exhibited an average diameter of 208 nm (standard deviation of ±48 nm on 118 

analyzed particles, see histogram 5f). 



10 

 

Figure 5: STEM micrographs of rosemary NCMPs a) 0.25% concentration b) particle 

size analysis of 0.25% concentration c) 0.5% concentration d) particle size analysis of 

0.5% concentration e) 0.75% concentration and f) particle size analysis of 0.75% 

concentration. 

Figure 6 shows a STEM micrograph of the structure of the rosemary NCMPs 

corresponding to a nanomicelle, composed of two immiscible phases: (a) the aqueous 

formed by the sulfur nanoparticles and (b) the oily formed by the essential oils of 
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rosemary. The ethanol used for synthesis acts as a cosurfactant since being an 

amphiphilic molecule with a hydrocarbon chain and a hydroxyl group, it is able to 

reduce the interfacial tension between the two immiscible phases [34,35]. 

   

Figure 6: STEM micrographs of rosemary NCMPs at 0.75% concentration a) aqueous 

face b) oily phase. 

Moreover, as observed in the histograms (Figure 4 and Figure 5) the size of the 

NCMPs depends on the increase in the concentration of the eucalyptus and rosemary 

essential oil respectively. Agreeing with similar studies where the increase in the 

essential oil concentration influences the viscosity of the oily phase of the nanomicelle, 

increasing the diameter of the particle [36,37]. 

Evaluation of insecticidal efficacy of nanocomposites 

The results of the treatments evaluated are shown in Table 1. 24 hours after 

application, treatments T1, T2, T3 and T5 showed an insecticidal efficacy of 100%. As 

time went through, the insecticidal efficacy of the other treatments was increasing. At 

48 hours, the T4 treatment reached an efficacy of 100% and after 72 hours the T6 

treatment exhibited 100% efficacy. Treatment with thiamethoxam (T7) had significantly 
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lower insecticidal efficacy than nanocomposite treatments in the three days evaluated. 

On the other hand, the control group (T8) showed the lowest values of insecticidal 

efficacy among all the treatments evaluated.  

Table 1: Insecticidal efficacy of treatments for the control of paratrioza nymphs. 

Treatment Insecticidal efficacya ± SDb 

 24 h 48 h 72 h 

T1: Eucalyptus 
0.25% 

100±3.33 100±4.86 100±1.67 

T2: Eucalyptus 
0.5% 

100±3.33 100±4.86 100±1.67 

T3: Eucalyptus 
0.75% 

100±3.33 100±4.86 100±1.67 

T4: Rosemary 
0.25% 

90±3.33 100±4.86 100±1.67 

T5: Rosemary 
0.5% 

100±3.33 100±4.86 100±1.67 

T6: Rosemary 
0.75% 

96.67±3.33 96.67±4.86 100±1.67 

T7: Thiamethoxam 
0.25% 

50±3.33 70±4.86 83.33±1.67 

T8: Control 13.33±3.33 26.67±4.86 43.33±1.67 
aValues are mean ± SD of three trials; bSD: standard deviation 

Also, nanoencapsulation is known to improve insecticidal efficacy due to a larger 

surface area and specificity, providing greater contact of the active substance with the 

insect [38]. On the other hand, the action mechanism of nanocomposites may be due 

to their effective penetration through the pores and microfibrils of the insect's cuticle 

[38]. Releasing the essential oil and sulfur nanoparticles, interfering with the biology, 

physiology and nervous system [39]. 

Also, the use of elemental sulfur as an insecticide in the control of parasitic insect 

nymphs has been reported [40]. Other authors report the use of sulfur nanoparticles in 

the mortality of larvae, pupae and adults of the fruit fly Drosophila melanogaster [41]. 

In Addition, nanoencapsulated essential oils have chemical activity and increased 

mobility, allowing penetration into insect tissues through the cuticle or by ingestion 

through the digestive tract [42]. Essential oils are lipophilic and thus can enter the 
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insect and cause biochemical dysfunction and mortality [43]. Rosemary essential oil-

laden nanoformulations have been found to show significant insecticidal activity for the 

effective management of the red beetle Tribolium castaneum [44]. Another study 

claimed that eucalyptus essential oil-laden nanoemulsions had insecticidal activity 

against Sitophilus oryzae in rice crops [45]. 

Conclusion  

In summary, nanocomposites with a nanomicellar structure were synthesized. 

Composed of an aqueous phase, made up of elemental sulfur nanoparticles with an 

average diameter of 28±4.5 nm and an oily phase made up of eucalyptus and rosemary 

essential oils at three concentrations: 0 .25%, 0.5% and 0.75% respectively. 

Furthermore, the increase in essential oil concentration influenced the diameter size of 

the NCMPs. In addition, the insecticidal efficacy of the synthesized NCMPs was 

evaluated; at 24 hours after application, eucalyptus NCMPs at concentrations of 

0.25%, 0.5%, 0.75% and rosemary at 0.5% present an insecticidal efficacy of 100%. 

The insecticidal efficacy of rosemary nanocomposites at 0.25% and 0.75% increases 

with time, reaching 100% at 24 and 72 hours, respectively. The treatment with 

thiamethoxam at 0.25% had a significantly lower efficacy than the treatments with 

NCMPs in the three days evaluated. Concluding that the synthesized nanocomposites 

are more effective for the control of paratrioza nymphs than the commercial insecticide 

thiamethoxam. Nanocomposites can be used as potential treatments for integral pest 

management programs and development of new insecticides. 
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Experimental 

Materials  

The reagents: sodium thiosulfate pentahydrate Na2S2O3·5H2O, ACS reagent, ≥99.5%, 

CAS number: 10102-17-7), hydrochloric acid (HCl, ACS reagent, 37%, CAS number: 

7647-01-0), triethanolamine ((HOCH2CH2)3N, ACS reagent, ≥99.5%, CAS number: 

102-71-6), ethanol (CH3CH2OH, CAS number: 64-17-5), and polyethylene glycol 

(PEG, H(OCH2CH2)nOH, Wt:6000, CAS number: 25322-68-3), were acquired from 

Sigma-Aldrich. The chemical insecticide thiamethoxam (C8H10ClN5O3S, CAS number 

153719-23-4, concentration 0.25%) was acquired from Syngenta. The distilled water 

was obtained in the laboratory. 

Essential oil extraction  

2 Kg of rosemary leaves and stems and 2 kg of eucalyptus leaves were purchased in 

a local market located in Sangolquí-Ecuador. The extraction of essential oils was 

carried out by steam distillation method. Using a Clevenger type apparatus and an 

extractor, following the protocol described by the literature [46,47]. The oils obtained 

were stored in amber glass bottles at 4°C for later use.  

Synthesis of sulfur nanoparticles  

In 25 ml of a 0.01M solution of thiosulfate pentahydrate, 250 uL of a 2M solution of 

hydrochloric acid with stirring at 25 °C was added. The ratio of molar concentration of 

thiosulfate to HCl was 1:2 for all assays. After 30 minutes, the redox reaction to form 

sulfur reached equilibrium (Equation 1). 

Na2S2O3+2HCl → 2NaCl+SO2+S↓+H2O      (1) 
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Synthesis of nanocomposites 

Solutions of ethanol-essential oil of eucalyptus and rosemary were prepared at three 

concentrations: 0.25%, 0.5% and 0.75%. Subsequently, the solution of sulfur 

nanoparticles previously synthesized as shown in Table 2 was added. Finally, as a 

stabilizing agent, 1 mL of 1% PEG was placed in each solution. 

Table 2: Amount of sulfur nanoparticles added to ethanol-essential oil solutions. 

Solution of 
ethanol-essential 
oil 

Added sulphur 
nanoparticles 
(mL)  

Ethanol-eucalyptus 
0.25 

25 

Ethanol-eucalyptus 
0.5% 

18 

Ethanol-eucalyptus 
0.75% 

20 

Ethanol-rosemary 
0.25% 

37 

Ethanol-rosemary 
0.5% 

29 

Ethanol-rosemary 
0.75% 

26 

Characterization techniques and equipment  

UV-visible spectroscopy was performed on an Analytik Jena SPECORD® S 600 

spectrophotometer. The size and morphology of the SNPs was obtained using an FEI 

Tecnai G2 Spirit Twin transmission electron microscope. Energy dispersive 

spectroscopy analysis of SNPs was performed on a Phenom ProX scanning electron 

microscope equipped with a QUANTAX-EDS detector, using a voltage of 25 kV and 

Prosuite software. The size and morphology of NCMPs was obtained with a Tescan 

MIRA3 scanning electron microscope. 

Sampling of paratrioza nymphs 

For experimentation with nymphs of the paratrioza insect, sampling trials and 

evaluation of insecticidal efficacy were conducted in accordance with the pertinent laws 
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and institutional guidelines of the technical cooperation agreement between the 

Phytosanitary Regulation and Control Agency-AGROCALIDAD and the Universidad 

de las Fuerzas Armadas-ESPE. 

Leaves infested with paratrioza nymphs were collected from a potato plantation located 

at the IASA I campus of the Universidad de las Fuerzas Armadas-ESPE. Samples 

were taken to the entomology laboratory under standard insectary conditions (27 ± 1°C 

temperature, 80 ± 10% relative humidity and 12 h light/12 h dark photoperiod) [48]. 

Evaluation of insecticidal efficacy of nanocomposites 

The evaluation was in vitro in the entomology laboratory of the Universidad de las 

Fuerzas Armadas-ESPE with 8 treatments (Table 1). The experimental unit was a 250 

mL polypropylene jar containing 10 nymphs of the insect placed on a potato leaf on 

absorbent paper moistened with distilled water. The test was repeated three times and 

distilled water was use like control. All the treatments were applied with a fine-drop 

sprayer. Mortality was recorded 24, 48 and 72 hours after application. Nymphs were 

considered dead when after touch stimulation they did not move at all. 

Data analysis 

Based on mortality data, the percentage efficacy of treatments was calculated using 

the Henderson-Tilton formula [49].  

%Effectiveness=
b-k

100-k
        (3) 

Where: 

b: percentage of dead individuals of the treatments. 

k: percentage of dead individuals of the control. 

Data were analysed with InfoStat software followed by a Fisher's LSD significance test. 

Results were expressed as means (± SD) of data and were considered significantly 

different at p<0.05. 
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