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Abstract 

The nanocrystalline powders of LiCoO2 were synthesized using a modified solution 

combustion method and the effects of the annealing temperature (450-900°C) on the 

structure and composition were investigated using various methods, including XRD, 

SEM, EPR, and electrical studies. It was found that as the process temperature 

increases, the value of the specific surface area decreases, and hence the size of the 
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crystallites increases. XRD analysis showed that the phase pure LiCoO2 material was 

maintained without additional phases. The EPR studies revealed the presence of two 

Ni3+ complexes. The electrical properties of the studied LiCoO2 samples were 

investigated by impedance spectroscopy. Comparison of the effect of annealing 

temperature on electrical conductivity shows a very interesting behavior. As the 

annealing temperature increases, the DC conductivity value increases, reaching a 

maximum temperature of 500°C. However, further increase in the annealing 

temperature causes a steady decrease in the DC conductivity.  

Keywords 

Lithium-ion battery, solution combustion synthesis, lithium cobalt oxide, nanocrystalline 

powder 

Introduction 

Lithium cobalt oxide (LiCoO2, LCO) of hexagonal structure (R3m) was first used 

as cathode material in lithium cells in 1979 by researchers from Oxford University [1]. 

The cell consisted of LCO, which was used as the cathode, and metallic lithium, which 

was used as the anode material. In 1985, it was proposed to replace the negative 

electrode Li metal with carbonaceous material graphite capable of reversibly 

intercalating lithium ions [2]. The commercialization of lithium-ion cells was achieved 

in the early 1990s by Sony Corporation and in 1992 by a joint venture company (Asahi 

Kasai and Toshiba) [2-4]. Almost 90% of commercial LiBs consist of a lithium cobalt 

oxide cathode and a graphite anode immersed in a lithium-ion conducting electrolyte: 

1M lithium hexafluorophosphate LiPF6 in a 1:1 (v/v) mixture of ethylene and dimethyl 

carbonate (EC:DMC) solvents. Most commercial Li-ion cells are used to power 
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portable devices, including mobile phones, laptops, and cameras [5-7]. However, due 

to the global and European Union requirements regarding the protection of the 

environment, batteries consisting of materials with toxic elements, such as cobalt and 

nickel compounds, are slowly being phased out of use. They are replaced by other 

materials that are more environmentally friendly. Furthermore, the limited availability 

of cobalt compounds is reflected in the high price of the LiCoO2 material. 

One of the main advantages of the cobalt-based battery is its high theoretical 

capacity of 274 mAh/g, the high working potential of 4.0 V vs. Li/Li+, and high energy 

density, approximately 500 Wh/kg [5-9]. The total removal of lithium ions from the 

LiCoO2 structure is prevented by the phase transition from a hexagonal structure to a 

monoclinic structure, which occurs during cathode charging at a potential of 

approximately 4.2 V [5-9]. The decrease in capacity (approx. 50%) is observed during 

the cycling charging-discharging processes, which are caused by the dissolution of 

cobalt ions in the electrolyte above 4.2 V. Therefore, the practical capacity of the LCO 

material is approximately 150 mAh/g [5-9]. One of the ways to improve unsatisfactory 

performances is to obtain: i) a nanosized LiCoO2 material in different forms and shapes 

using chemical or physical syntheses (see discussion below) or ii) substitution of Co 

ions with other metal ions: Mg, Al, Fe, Ni, Mn, V [10-22] or iii) surface modification by 

carbon, metal and oxide coatings [15, 16]. 

As nanomaterials are preferred for use in energy storage and conversion 

devices, such as Li-ion batteries, solar cells, solid oxide fuel cells, thermoelectrics, and 

so on, their unusual and unexpected properties and also unique microstructure (and 

shape) such as high porosity, high surface area, short reaction pathways, and diffusion 

length for Li-ion transport, finally improving electrical conductivity and electrochemical 

performances [5-7, 9, 13-16, 23-32]. Nanostructured materials can reduce the specific 

surface current rate, improve stability, and specific capacity [23-29]. 
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As mentioned above, LiCoO2 has been produced in the form of powders, fibers, 

and films by using various processing techniques including wet chemical syntheses, 

such as the sol-gel method [33-35], precipitation [36], hydrothermal [37-39], spray 

pyrolysis [40, 41] and solid-state syntheses such as mechanical synthesis [42], thermal 

decomposition [43] or microwave syntheses [44-47].  

Wet chemical synthesis allows molecular-level mixing of the starting 

components, resulting in a very homogeneous product comprising fine particles and a 

large surface area. The stoichiometry of the product created using wet techniques may 

be controlled with a greater precision than that of the solid-state method. Combustion 

synthesis (CS), also known as self-propagating high-temperature synthesis (SHS), is 

a low-cost process for handling a wide variety of industrially relevant materials. CS is 

a widely used method for the creation of nanomaterials [48-57]. Acetates, carbonates, 

and nitrate salts of lithium and cobalt are often utilized as oxidizers in the combustion 

synthesis of lithium cobalt oxide as starting materials [50, 58-59]. Different ammonium 

carboxylates were investigated as fuels, including ammonium acetate, ammonium 

citrate, or ammonium tartarate [55], urea [56], starch [57], citric acid [58] and 1,2-

diformylhydrazine [59]. The obtained LCO precursors were annealed in air from 300 to 

850°C [55-59]. 

Herein, wet demonstrated a new combustion solution synthesis (CSS) to obtain 

a single-phase nanocrystalline lithium cobalt oxide (LiCoO2, LCO) of the layered 

structure. The dependence between the heating temperature and: 1) structural 

parameters using XRD analysis (crystallite sizes, lattice parameters, and volume cells), 

2) morphologies by SEM (size and distribution of grains), 3) specific surface area SSA 

using BET measurements, 4) EPR studies and 5) electrical parameters using IS 

(thermal dependencies of conductivity, comparison of electrical properties of LCO 

powders) was investigated. Our studies provide important information on the 
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mechanism of formation, particle growth, size, shape, and control of these 

characteristics during synthesis. 

Materials and methods 

Synthesis of LiCoO2 powders 

The high purity of cobalt (II) acetate tetrahydrate (C4H6O4Co · 4H2O, reagent 

grade), lithium acetate dihydrate (C2H3O2Li · 2H2O, purum p.a, crystallized, 97.0% 

(NT)) and  D-(+)-Glucose (C6H12O6, ≥ 99.5% (GC), Sigma-Aldrich) were used to 

synthesize LiCoO2 nanocrystalline powders. 

Cobalt and lithium acetate salts were dissolved in a small amount of deionized 

water separately. Then, the solutions were mixed together and the solution of D-(+)-

Glucose was added. The prepared solutions were then evaporated until a gel was 

obtained. The resulting gel precursor was heated from 450 to 900°C for a few hours in 

air. The synthesis flowchart is presented in Figure 1. 

 

Figure. 1. Flowchart for combustion solution synthesis (CSS) of LiCoO2. 
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Characterization of LiCoO2 powders  

XRD analysis 

XRD analysis was performed on a Rigaku Smartlab 3 kW diffractometer 

equipped with a vertical goniometer. The diffractometer had a Bragg-Brentano (BB) 

measuring geometry - Θ/2Θ . Radiation: filtered KαCu (λ = 1.5418Å) U=40 kV, I=30 

mA. The samples were tested in the angle range 10o - 60o. A measurement step of 

0.02o at a scan rate of 2o / minute was used. A 1D strip detector was used during the 

analysis: Dtex250. 

Specific surface area (SSA) BET 

The specific surface area (SSA) of LiCoO2 was determined using the BET 

nitrogen adsorption isotherm method. The measurements were carried out with the 

QUADRASORB evo instrument by QUANTACHROME Instruments (USA). Before 

measurements, the samples were degassed for 5 hours under vacuum. The LiCoO2 

was degassed at 200oC. The purpose of the degassing was to remove impurities from 

the surface of the tested material. Adsorption measurements were performed with 

nitrogen at 77 K. For each sample, an analysis was performed at 15 measurement 

points in the range of 0.05 - 0.3 P / P0 (relative pressure). This is the range of the 

specific surface area (SSA) study. Above this range, the trend line bends and the 

averaging of the measurement results is inaccurate, so the result is falsified [62].  

Scanning electron microscopy SEM 

The morphology of the LiCoO2 crystallites was determined using a scanning 

electron microscope (SEM) Auriga CrossBeam Workstation (Carl Zeiss). The cross-

sections of the fabricated laminates were also observed using this microscope. The 

SEM images show the morphology of the LiCoO2 obtained at different temperatures, 

Before analysis, the samples were sputtered by graphite to improve contact. All 

samples were observed at 1 kV.  



7 

EPR analysis 

EPR experiments were performed using X-band ELEXSYS E500 (Bruker, 

Germany) spectrometer. The samples were placed in a Super High Sensitivity 

Probehead (Bruker, Germany) cavity and in a cryostat where the temperature was 

determined and stabilized using an Oxford Temperature Controller ITC503S (Oxford 

Instruments, England). The concentration of paramagnetic ions was obtained using 

the procedure described elsewhere [60]. Spectral simulations were performed by 

applying the EasySpin software (version 5.2.27) [61]. 

Electric properties 

The electric properties of the investigated LiCoO2 doped with Mn were studied 

using the impedance spectroscopy method. For conductivity measurements, pellets of 

~1.5 mm thick and 5.15 mm in diameter were prepared from the synthesized material. 

The powder was pressed at 20 MPa pressure for 1 minute at room temperature. The 

round surfaces of the samples were covered with silver paste (Hans Wolbring) to form 

electrodes. The impedance spectroscopy measurements were performed using a 

Novocontrol AlphaA Broadband Dielectric/Impedance Spectrometer (Novocontrol 

GmbH) at room temperature. Measurements were carried out in the frequency range 

from 1 Hz to 1 MHz with an oscillation voltage of 1 V.  

Results 

XRD analysis 

XRD analysis shows that all synthesized LiCoO2 powders from 450 to 900°C 

(Figure 2) are single phase. All powders have the hexagonal-type R3m structure (ICDD 

PDF card – 50-0653). 

As shown in Figure 2, the diffractograms of LiCoO2 powders (*) heated at different 

temperatures, from 450°C to 900°C with steps of 50oC, feature the 7 characteristic 
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peaks at 2θ angles of 15.2°, 37.3°, 38.9°, 39.0°, 45.4°, 49.7°, 60.0° for CuKα radiation 

(λ = 1.542 Å), corresponding to the hexagonal (rhombohedral) crystal planes (R3m 

(hkl): (003), (101), (006), (012), (104), (015) and (107), respectively. Phase impurities 

were not detected by XRD for any of the measured samples. The average size of the 

crystallites depends on the heating temperature used for the combustion synthesis of 

powders and lies between 37 and 90 nm (as calculated from the Scherrer formula, 

allowing for the instrumental line broadening). 

Average crystallite sizes, lattice parameters, and cell volumes for all 

nanocrystalline powders of lithium-cobalt oxide are listed in Table 1. The unit cell 

parameters and the unit cell volumes of LiCoO2 powders calculated from the XRD data 

are consistent with the standard values (ao = 2.81498 Å, co = 14.0493 Å, V0 = 96.41 

Å3) of the ICDD PDF card. All the lattice constants are similar to 'ideal' patterns (in the 

PDF4+2021 ICDD database, the lattice constant for a fixed stoichiometric dispersion 

pattern is within a: 2.792 – 2.856 Å, c: 14.033 – 14.289 Å)  

are within the range of the ldata from the literature on the layered structure. The lattice 

constants depend on the fraction of vacancies and the mixing of Li-Co positions. 

There were no significant changes in the lattice constants a and c, as a function 

of the temperature and size of the crystallites. 
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Figure 2: XRD patterns of LiCoO2 heated at different temperatures (450 – 900°C). 

Specific surface area SSA (BET) 

Table 1 shows the results of the specific surface area (SSA) measurements 

determined by the Brunauer-Emmett-Teller (BET) adsorption isotherm method. LiCoO2 

samples obtained by combustion synthesis were analyzed. From the results obtained, 

it can be concluded that the value of the specific surface area (SSA) decreases with 

increasing temperature, and thus the size of the crystallites increases. The highest 

value was obtained for the sample obtained at 450oC, while the lowest for the sample 

obtained at 900oC. The decrease in the value of the specific surface area (SSA) was 

approximately 86%. Figure 3 shows the specific surface area (SSA) measurements for 

LiCoO2 powders as a function of temperature. 

Table 1. Lattice parameter, cell volume, average crystalline size (XRD), and specific 
surface area SSA (BET) for LiCoO2. 

Heating 
temperature 

[°C] 

Average 
crystalline 
size [nm] 

Lattice 
parameter a 

[Ẵ] 

Lattice 
parameter c 

[Ẵ] 

Volume 
cell V 
[Ẵ3] 

SSA (BET) 
[m2/g] 

450 38 2.814 14.040 96.283 3.12 

500 37 2.813 14.029 96.134 2.71 

550 42 2.814 14.049 96.331 2.46 

600 45 2.813 14.044 96.238 2.78 

650 49 2.813 14.043 96.246 2.29 

700 61 2.815 14.067 96.557 1.67 

750 53 2.814 14.060 96.402 0.98 

800 64 2.814 14.038 96.275 1.01 

850 77 2.814 14.044 96.307 0.47 
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900 82 2.816 14.058 96.510 0.44 

 

 

Figure 3. BET and average crystalline size results of LCO powders obtained using 
combustion solution synthesis. 
 

SEM analysis 

Figure 4 shows typical SEM images of all obtained powders. Images were 

acquired at two magnifications of 10kx and 25kx, respectively.  

SEM images show the change in morphology of LiCoO2 samples annealed at 

different temperatures. It can be seen that as the temperature increases, the 

morphology changes. Increased temperature results in significant growth in grains. 

This can be closely correlated with the results of specific grain size and surface area 

measurements, where changes in these parameters can be seen with increasing 

temperature (Figure 3). A change in the shape of the crystallites is also evident. A 

gradual change in the shape and size of the LiCoO2 crystallites can be seen. The 

higher the temperature, the more regular and less agglomerated powders. 
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Figure 4. SEM images of LiCoO2 heated at different temperatures (450 – 900°C) at 10x 
and 25x magnifications. 
 

EPR studies 

Electron paramagnetic resonance (EPR) spectra of LCO powders consist at 

room temperature of a single symmetric line with isotropic g factor 2.142, which 

indicates isolated Ni3+ ions in the crystal structure [63]. The low concentration of Ni3+ 

impurity (35-43 ppm) presented in Figure 5 is almost independent of the synthesis 

temperature. The exception is the sample heated at 750°C with the lowest impurity 

concentration on the order of 17 ppm. 
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Figure 5. Ni3+ impurity concentration depending on the synthesis temperature. 

An example of spectral changes in the EPR temperature for the sample 

synthesized at 900°C is shown in Figure 6. Above about 20 K, a single isotropic line is 

visible, which is formed from the averaging of the spectroscopic splitting tensor due to 

the dynamic Jahn-Teller effect. Below about 20 K the dynamic effect becomes a static 

one, and the spectra show a clear anisotropy due to a static Jahn-Teller distortion.  

 

Figure 6. EPR spectra recorded in the temperature range 5-300 K for LCO synthesized 
at 900°C. 
 

Examples of the experimental spectra simulations obtained at 5 K (Figure 7) 

show that the EPR spectra for each sample consist of two different nickel complexes. 

From the simulation of the experimental spectra, we obtained the parameters of the 

spectroscopic coefficients of tensor g for two Ni3+ ions, which are presented in Figure 

290 300 310 320 330 340

x0.2

x0.2

30K

100K

110K

90K
80K

60K
50K

70K

40K

20K

10K

5K

120K
130K
140K

150K
160K
170K
180K
190K
200K
210K
220K
230K
240K

260K
250K

270K
280K

290K

 

mT [G]

300K

x0.2



13 

8. The spin-Hamiltonian parameters indicate that complex Ni(I) has axial symmetry 

and complex Ni(II) is non-axial.  

 

Figure 7. Experimental and simulated spectra for samples prepared at 500°C (a) and 
900°C (b) and recorded at 5 K. 

 

The values of the components of the g-tensor (Figure 8) show that the distortion 

of the coordination environment of Ni3+ ions (both axial and non-axial) decreases with 

the temperature at which the samples were prepared. 

 

Figure 8. g-tensor components for axial (complex I) and non-axial (complex II) Ni3+ 
ions.  
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from nickel complexes on the surface and inside the crystallites. However, as shown 

in Figure 9 the mutual changes in the concentration of Ni3+(I) and Ni3+(II) complexes 

are too small in relation to the changes in surface area measured by X-ray 

experiments. Therefore, the assumption that the two different nickel complexes are 

derived from the crystallites and the surface can probably be rejected. 

 

Figure 9. Percentage contribution of Ni3+ (I) and Ni3+(II) depending on the sample 
heating temperature synthesis obtained from the intensity of simulated EPR spectra. 

 

The second reason why two complexes are visible in the EPR spectra is the 

assumption that two LCO phases are formed during the synthesis: a low-temperature 

cubic phase (LT-LCO) and a high-temperature trigonal phase (HT-LCO) [64, 65]. In 

this case, Ni3+(I) in the axial symmetry could be attributed to the cubic phase, and the 

non-axial complex Ni3+(II) would be characteristic of the trigonal phase. If the nickel 

admixture is equally well incorporated into both phases, the percentage value of the 

concentration of individual nickel complexes would also be the percentage value of the 

individual phases in the tested samples. 

Electrical measurements 
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performed for six samples, annealed at selected temperatures: 450°C, 500°C, 550°C, 

650°C, 700°C, 750°C, and 900°C. The typical impedance response of the studied 

materials is presented in Figure 10. It shows the Nyquist’s dependence Z”(Z’) (where 

Z’ denotes the real part and Z” imaginary part of complex impedance Z*) of LiCoO2 

sample annealed at temperature T=700°C.  

 

Figure 10. Nyquist plot of LiCoO2 annealed at T=700°C. Insert shows frequency 
dependences of the real part of impedance Z’ and the imaginary part Z” of the studied 
material. The points represent the measured data, while the orange line shows the 
calculated total impedance of the sample, the blue line presents fitted data for the grain 
boundaries, and the green line – fitted date for grain interior (crystalline part of the 
sample). 
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circuits, α1 and α2 are the parameters, ω = 2πf is the angular frequency of the 

measuring field E-field. Value α describes the flattening of the semicircle caused by 

the distribution of the relaxation time constants. Ideally, when only one time constant 

describes relaxation processes in the material (Debye-type response), fitting 

parameter α is close to 0 and the flattening of the semicircle is non-existent. The 

distribution of the time constants is related to the microstructure of the material studied, 

as the sample is constructed from pressed powder material of different sizes. The 

response consisting of two semicircles is often observed in polycrystalline samples of 

ion conductors and ceramics [66, 67] and is related to two different contributions to 

total conductivity. The two contributions to the total conductivity can be related to the 

conductivity of the bulk material, crystalline (high-frequency contribution, see insert in 

Figure 10) and the grain boundaries (low frequency), respectively.  

 The calculated R was used to determine the DC conductivity of the bulk 

material σ using the known sample geometry:  

    
S

d

R
dc

1
 ,                                                (2) 

where: d denotes the thickness and S is the surface area of the plane-parallel sample.  

Table 2 presents a comparison of the DC conductivity of the LiCoO2 samples. A 

comparison of the influence of the annealing temperature on electrical conductivity 

shows some very interesting behavior. With increasing temperature of annealing, the 

value of DC conductivity increases with a maximum temperature of 500°C. For this 

temperature, the DC conductivity reaches a value of 5.01 10-2 S/m. However, an 

additional increase in the annealing temperature causes a steady decrease in DC 

conductivity. For the sample of LiCoO2 material annealed at 900°C, the value of DC 

conductivity is 9.3 10 -4 S/m. The obtained DC conductivity values are similar to those 

observed in the literature [68]. 
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Table 2. DC conductivity of the LiCoO2 samples was measured at 293K. Values in the 
table present only the total conductivity of the sample. 
 

Temperature 
[oC] 

σdc  
[10 -3 S m-1] 

450 7.18 
500 50.10 
550 11.41 
650 9.36 
700 7.95 
750 3.04 
900 0.93 

 

Conclusion  

Single-phase LiCoO2 powders were prepared using a new combustion 

synthesis (CS). The influence of temperature heating on structure, morphology, and 

electrical parameters was analyzed. The XRD results revealed that at the lowest 

temperature (450°C) the LCO powder was obtained. Furthermore, the average 

crystallite size (calculated from the Scherrer equation, XRD) increased as well as the 

grain size (SEM) as the heating temperature increased from 450 to 900°C. A change 

in the shape of the crystallites is also evident. A gradual change in the shape and size 

of the LiCoO2 crystallites can be seen. The higher temperature, the more regular and 

less agglomerated powders were achieved. The specific surface area (SSA) of lithium 

cobalt oxide powders varies as a function of the heating temperature. From the 

obtained results, it can be concluded that the value of the specific surface area (SSA) 

decreases with increasing temperature and thus the size of the crystallites increases. 

The highest SSA value was obtained for the sample obtained at 450oC, while the 

lowest value was obtained for the sample obtained at 900oC.  Electrical studies showed 

that conductivity strongly depends on the heating temperature. The samples obtained 

at the highest temperature had lower (over one magnitude) conductivity. Strong 
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thermal hysteresis is observed in all samples. However, during cooling, the samples 

heated to 750°C and 900°C had much higher conductivity.  
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