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Abstract 

The highly efficient cycloaddition reaction of hydrazonyl chlorides with 2,3-dichloro-1,4-

naphthoquinone yielded pharmaceutically important spiro-naphthalene-1,2'-[1,3,4]oxadiazol-4-ones 

with moderate to good yields under batch and flow synthesis methods. The obtained products were 

elucidated by IR, 1H NMR, 13C NMR, HRMS and single crystal X-ray diffraction technique (only for 

6h). The synthesized molecules have been subjected to theoretical analysis by quantum chemical 

calculations at B3LYP/6-31G(d,p) level, which provided supporting data for the experimental findings. 
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DFT, and X-ray diffraction. 

Introduction 

The synthesis of organic molecules has been achieved via traditional techniques [1] for centuries. 

However, new methods including microwave, mechanochemistry, ball milling, flow chemistry, and 

electrochemical synthesis, etc. have gained much interest in organic synthesis [2-6]. The advantages of 

flow chemistry [7,8] over conventional methods range from easy scaling up, advanced control of 

reaction conditions such as heat, flow rate, pressure, managing hazardous wastes and reagents, full 

recovery of unreacted reagents. Additionally, it also has fewer side impurities and is a greener approach 
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to synthesis as compared to traditional wet lab chemistry and industrial synthesis. In laminar flow 

conditions, mixing occurs by diffusion and since diffusion time is proportional to distance squared, 

therefore over short distances, diffusion is fast and reproducible. 

 

The cycloaddition reaction of 1,3-dipoles with dipolarophiles such as unsaturated double or triple bonds 

to form five-membered heterocycles is a convergent and convenient route in batch chemistry. However, 

the application and comparison of this chemistry to flow systems is rare. [9-14] Pan et al research on 

CuACC demonstrated a significant transformation in a continuous-flow system vs the batch process in 

terms of of productivity, scale-up, reproducibility and safety synthesis (some of which are crucial in the 

preparation of pharmaceutical products). Hetero-spiro compounds are molecules with two or more rings 

sharing one atom and containing non-carbon atom(s). Over the years, due to their biological activities, 

they have gained recognition among chemists. Good examples of heterospiro compounds are MI-888 

and NITD609, which are presently at preclinical evaluation for the treatment of human cancer (tumor) 

and malaria, respectively. [15-18] 

1,3,4-oxadiazole containing molecules have also attracted significant attention in the field of drug 

discovery for decades due to their broad spectra of biological activities such as antifungal[19], 

antibacterial[20], analgesic[21], anti-inflammatory[22], antitumor[23], anticonvulsant and muscle-

relaxing activities[24]. The synthesis and biological evaluation of novel 1,3,4-oxadiazole derivatives 

has been accelerated in the last two decades. [25] In recent studies, 1,3,4-oxadiazoles can be obtained 

by direct annulation of hydrazides with methyl ketones[26], the oxidative reaction of hydrazides with 

alkenes or alkynes in the presence of iodine followed by cyclization and deacylation[27], cationic 

Fe(III)/TEMPO-catalyzed oxidative cyclization of aroyl hydrazones in the presence of oxygen[28], 

using a catalytic quantity of Cu(OTf)2 an imine C-H functionalization of N-arylidenearoylhydrazide[29], 

condensation of semicarbazide/ thiosemicarbazide with aldehydes followed by I2-mediated oxidative C-

O/C-S bond formation. [30].  

Despite the biological and pharmaceutical interest of many chemists on the synthesis of 

1,3,4-oxadiazoles, there are no studies to date on the preparation of cycloaddition reaction of hydrazonyl 

chlorides to naphthoquinones which produce spiro-1,3,4-oxadiazoles with better yields via flow 

chemistry with respect to batch chemistry. The reason might be the reagent streams are continuously 

pumped into the flow reactor where mixing and reacting occur in there, therefore, producing a cleaner 

target molecule. The efficiency and reproducibility of flow chemistry for the synthesis of spiro-1,3,4-

oxadiazoles is reported in this study. 

 

Results and Discussion 

The hydrazonyl chlorides (4a-h) were prepared according to literature methods. [31] The synthesis of 

the desired products 5'-aryl-2,3-dichloro-3'-phenyl-2,3-dihydro-3'H,4H-spiro[naphthalene-1,2'-
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[1,3,4]oxadiazol]-4-ones (6a-h) as accomplished via batch and flow chemistry. In the batch process, 

compounds (6a-h) were achieved by reacting an equimolar concentration of 2,3-dichloro-1,4-

naphthoquinones (5) and hydrazonyl chlorides (4a-h) in the presence of 2 equivalent Et3N in MeCN, 

precipitates were formed, solvents were decanted, then solids washed with water and MeCN 

respectively. Comparatively, compounds (6a-h) were obtained under flow chemistry conditions when 

the solution of reactants passes through cartridge packed with a base and the collected reaction mixtures 

in their respective solvents, which were subsequently evaporated and recrystallized from MeCN. 

IR spectra of obtained compounds 6a-h showed C=O stretching vibration from 1672-1682 cm-1. 

Furthermore, C=N and ArC-H stretching vibrations could be seen from 1592-1601 cm-1 and 3026-3071 

cm-1 respectively. 1H NMR results for compounds 6a-h, signals of all protons reported are at the aromatic 

regions except for 6h with a methyl group at the para position with a singlet showed a signal at 2.48 

ppm. N-phenyl protons signals in compounds 6a-h were observed at 6.63-7.19 ppm. Additionally, 13C 

NMR for carbonyl and quaternary carbon signals were observed at 174.9-175.4 ppm and 94.8-96.5 ppm 

respectively. The cyano- carbon signal on compound 6d was observed at 118 ppm. All four fluorine to 

carbon coupling in the 13C spectrum of 6g were observed. All carbon and proton signals were matching 

with suggested molecules and are all reported in the supporting material section. 

Table 1: General reaction scheme for 6a-h 

 

Entry Ar 
 

Comp
ound 

Flow rate 
(mL/min)** 

Base*/** Pressure 
(bar)** 

Temperature 
(oC)*/** 

Solvent */** Yield 
(%)*/** 

1 4-ClC6H4 6a 0.1 Et3N/NaHCO3 10 25/80 MeCN/EtOAc 58/85 

2 4-BrC6H4 6b 0.1 Et3N/Et3N 10 25/80 MeCN/MeCN 46/82 

3 4-NO2C6H4 6c 0.5 Et3N/Al2O3 10 25/80 MeCN/MeCN 68/74 

4 4-CNC6H4 6d 0.3 Et3N/ K2CO3 10 25/80 MeCN/EtOAc 53/79 

5 2,4-diClC6H3 6e 0.3 Et3N/K2CO3 10 25/80 MeCN/MeCN 67/80 

6 2,6-diClC6H3 6f 0.2 Et3N/Na2CO3 10 25/80 MeCN/MeCN 66/76 

7 4-FC6H4 6g 0.3 Et3N/K2CO3 10 25/80 MeCN/MeCN 60/78 

8 4-MeC6H4 6h 0.5 Et3N/Na2CO3 10 25/80 MeCN/MeCN 65/84 

* Conventional Method, ** Flow Chemistry and Ar: Aromatic 

Table 1 shows a summarized overall view on the formation and comparison of 6a-h molecules 

preparation via batch vs flow chemistry. In batch chemistry, compounds 6a-h were similarly synthesized 

with identical base and solvent, while certain optimization was required under flow chemistry such as 

the utilization of different flow rates, bases and solvents. Improved yields were observed in flow 

chemistry, all synthesized compounds were obtained in moderate to good yields. 
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Scheme 2: A proposed reaction mechanisms for compounds 6a-h 

One of the plausible pathways to the novel compounds 6a-h has been proposed in Scheme 2. Firstly, a 

base deprotonates hydrazonyl chloride resulting into the nitrile imine, following cycloaddition to one of 

the carbonyl on a napthaquinone. Attempts to use two or three equivalence of hydrazonyl chlorides did 

not furnish two-sided cycloaddition product due to electron demand on the napthaquinone after 

cycloaddition may not be sufficient for another nitrilimine cyclization.  

Additionally, as depicted in Fig. 1A, the solid state structure of compound 6h were unambiguously 

elucidated by single-crystal X-ray analysis in order to gain more insights into the molecular structure. 

The 1,3,4-oxadiazole ring adopting an envelope conformation is nearly perpendicular to the adjacent 

2,3-dichloro-4-oxo-naphthalene moiety with an dihedral angle (θ) of 86.67o. The major intermolecular 

interactions are identified as non-classical C─H⋯Cl (C24⋯Cl1 = 3.566 Å, C17⋯Cl2 = 3.696 Å) and 

C─H⋯O (C1⋯O2 = 3.570 Å) hydrogen bonding interactions (Fig. 1B and 1C). In addition, short 

Cl2···N2 (3.245(2) Å < rvdw(Cl) + rvdw(N) = 3.30 Å) contacts also link two molecules along the a-axis. 

Furthermore, moderate intermolecular π···π aromatic interactions (3.844 Å, Fig. 1D) between the 

aromatic ring along the b-axis contributed to the stabilization of 3D supramolecular network (Fig. 1E). 
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Figure 1. (A) Crystal structures of compound 6h with displacement ellipsoids (30% probability level) showing the perspective view of 

inter-ring dihedral angle between 1,3,4-oxadiazole ring (gold coloured) and naphthalene moiety (lime green). (B) A view of classical 

intermolecular CH···Cl (red dotted lines along the a-axis). (C) A view of CH···O (blue dotted lines along the b-axis) intermolecular 

hydrogen bonding interactions (D) Perspective view of intermolecular π···π stacking interactions. (E) Illustration of three-dimensional 

crystal network of 6h viewed down the c-axis. 

 

Structural Optimization 

 All calculations were performed using ORCA[32] code. The initial coordinates in ground state 

were optimized using density functional theory (DFT) at B3LYP level with def2-TZVP basis sets. To 

get the minimum energy structure, a tight SCF method was used for all the calculations. The structure 
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of the molecule was visualized with VESTA[33]. Figure 2 represent the optimized structure of 6h, while 

figures of 6a-g optimized structures can be found in supporting information. 

 

Figure 2: Optimized structure of 6h.  

The structural parameters for 6h calculated were compared with the parameters of structure obtained 

from single crystal X-ray analysis as summarized in Table 1. The calculated bond lengths and angles 

were well matched with experimental data. The difference between experimental and calculated data 

were found to be less than 2.17% and 2.15% within the acceptable limit for bond length and bond angle 

calculations, which confirm the structure is well optimized and energetically in most stable coordinates 

for the atoms are obtained. 

Table 1: Some selected experimental and calculated bond lengths and bond angles for 6h. 

Bond 

Bond Length (Å) 

Experiment Calculation 

N-N 1.4068  1.3769  

C'-O (bridge) 1.3866  1.3869  

C''-O (bridge) 1.4354  1.4573  

C-O (carbonyl) 1.2214  1.2252  

Bonds Bond Angle (Degree) 

O-C-O 107.0293  107.1516  

N-N-C' 106.3280  106.7342  

N-N-C'' 108.7904  111.1869  
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Electronic structure 

In the electronic structure calculations, Mulliken charge analysis, dipole moment and charge density 

were calculated and given in Table 2. Contribution of the atoms to total charge density were decided by 

using these results. 

 

Calculated dipole moments for all the structures are given in Table 3, and as shown in the table, all the 

structures have net dipole moment so, vibrational properties can be calculated

 

Table 3: Dipole moment in x,y and z directions for 6a-h. 

Structure x y z 

6a -0.36262 0.36273 -1.12640 

6b -0.42293 0.34542 -1.10538 

6c -2.28749 -0.04620 -0.48388 

6d -2.01521 0.01998 -0.58273 

6e -0.39644 0.73115 -1.23165 

6f 0.68775 0.72414 -1.40276 

6g -0.19945 0.38836 -1.17590 

6h 0.61818 0.55052 -1.43814 

       

 

Table 2: Mulliken atomic charges for 6h. 

 0 C :  -0.175983 

 1 C :  -0.007304 

 2 C :  -0.037818 

 3 C :  -0.139716 

 4 C :  -0.089692 

 5 C :  -0.110013 

 6 C :  0.425524 

 7 C :  -0.031366 

 8 C :  0.067013 

 9 C :  0.142342 

 10 Cl:  -0.021402 

 11 Cl:  -0.030665 

 12 O :  -0.262805 

 13 O :  -0.296285 

 14 H :  0.139011 

 15 H :  0.139733 

 16 H :  0.119082 

 17 H :  0.118889 

 18 C :  0.287016 

 19 N :  -0.274079 

 20 N :   0.093936 

 21 C :  -0.166939 

 22 C :   0.174829 

 23 C :  -0.164626 

 24 C :  -0.173728 

 25 C :  -0.016724 

 26 C :  -0.193844 

 27 H :  0.107744 

 28 H :  0.108285 

 29 H :  0.129494 

  30 H :  0.129837 

  31 C :  -0.075149 

  32 C :  -0.197073 

  33 C :  0.143659 

  34 C :  -0.122894 

  35 C :  -0.100014 

 36 C :  -0.236337 

 37 H :  0.109924 

 38 H :  0.122208 

 39 H :  0.108766 

 40 H :   0.111114 

 41 H :   0.153906 

 42 C :  -0.387265 

 43 H :   0.119771 

 44 H :   0.129391 

 45 H :   0.130248 
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Vibrational calculations 

The vibrational properties of the compound and obtained IR modes and frequencies were calculated 

herein. There was not any negative frequency for any compound so, this indicates that all structures are 

well optimized and at minimum energy state.  Since our basis set (def2-TZVP) underestimates frequency 

values, it is needed to use correction factor. For def2-TZVP, correction factor[34] is used to be taken as 

1.0377. 

 

Figure 3: The calculated (red dashed) IR spectrum plot for 6h given along with the experimental (green) spectrum. These results 

shows good similarity with the experimental spectrum, which supports that, our calculations are in very good agreement with the 

experiment at characteristic vibrations. More of this merged IR results are given in supporting information. 

 

Conclusions 

In summary, we have compared the yield, bond angle and length of synthesized spiro-naphthalene-1,2'-

[1,3,4]oxadiazol-4-ones both under batch and flow methods, with full provided characterization by IR, 

1H NMR, 13C NMR, HRMS, single crystal X-Ray diffraction and DFT. The use of the flow method 

turned out to be beneficial both for simplicity and efficiency in terms of improved yields and product 

purity. 
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