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Abstract: The present study focusses on the investigation of thermodynamic optimization of 
hydromagnetic time dependent boundary layer nanofluid flow by employing entropy 
generation method (EMG) in semi- permeable oscillatory curved channel. We used 
Buongiorno model for nanofluid to address the impact of the parameters of Brownian motion 
and thermophoresis. The consequences of heat production are also taken into consideration in 
energy the equation. The mathematical form of boundary layer equations is accomplished by 
following the curvilinear coordinates scheme for the considered flow problem. The analytical 
convergent solution of the determined nonlinear PDEs is achieved through the process of 
homotopy analysis (HAM). A detailed analysis is conducted out to analyze the consequences 
of dissimilar variables concerned, such as non-dimensional radius of curvature, Lewis 
number, magnetic parameter, relation of wall oscillation frequency to its parameter of 
velocity, Reynolds number, Prandtl number, heat production and thermophoresis parameters, 
entropy generation rate, Brownian motion parameter and Brickman number, concentration 
and temperature difference parameters on temperature, velocity profile, concentration, 
pressure, drag surface force, Bejan number, entropy generation, rate of mass and heat 
transport are addressed in detail via tables and graphs. It is noted that, the magnitude of heat 
transmission rate (local Nusselt number) steadily decays for advanced values of radius of 
curvature variable and Reynolds number. 

Keywords: Semi-porous curved oscillatory channel, viscous nanofluid, entropy generation, 
heat generation, magnetohydrodynamic (MHD), Homotopy analysis method. 

 

1. Introduction 

The analysis of various fluid dynamics in tubes or semi-porous/ porous channels has obtained 
a lot of attention from many scientists and researchers over the last few decades owing to its 
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broad range of practical applications in mechanical and biomedical engineering. Such 
applications includes permeable or semi-permeable pipes processing, movement of blood in 
oxygenators, capillary blood flow, filters design and blood dialysis in synthetic kidney. 
Berman [1] initiated the first research on steady flow phenomenon of viscous fluid in porous 
channel. He provided an exact solution to the acquired Navier stokes equations. After 
Berman [1], both for viscous and non-Newtonian liquids, several researchers extended his 
concept in different directions. White [2] examined incompressible viscous fluid flow via an 
uniformly permeable channel. Abbas et al. [3] conducted a analytical study for the 
hydromagnetic boundary layer Maxwell fluid flow inside a porous channel. Raftari and 
Vajravelu [4] has computed analytical results for hydromagnetic viscoelastic liquid flow and 
heat transfer in a stretchable wall channel by means of homotopy analysis method. Ali et al. 
[5] performed an analysis of the hydromagnetic Oldroyd-B liquid flow and heat transport 
inside a channel. Abbas et al. [6] performed an analytical examination of Maxwell liquid 
motion in an axis-symmetric semi-permeable channel by incorporating perturbation 
approach. Heat transfer research for channel flow of MHD Jeffery liquid with generalized 
boundary conditions was reported by Aleem et al. [7].  

The examination of flow through some kind of narrow, curved type channel has acquired 
high significance as a result of its multiple physical applications in many biomedical and 
industrial processes. Khuri [8] conducted a study for the Stokes motion in a curved channel. 
The impacts of forced convection and porosity on curved reciprocating channel flow were 
tested by Fu et al. [9]. Abbas et al. [10] proposed a numerical study for nonlinear transfer of 
thermal energy with Hall impacts in flow of viscous liquid inside a curved semi- permeable 
channel. Naveed et al. [11] examine the impact of thermal radiation and permeability material 
on motion of flowing liquid via a curved semi- porous channel. Sajid et al. [12] has computed 
joule heating impacts on magnetic nanoparticles through a semi-porous curved channel. The 
impacts of the applied constant magnetic field on the thermally heated flow of Carreau liquid 
within a curved channel was evaluated by Abbas et al. [13]. Numerical outcomes for heat 
transfer process in Powell-Eyring liquid flow through a curved channel with Cattaneo- 
Christov heat flux model was computed by Abbas et al. [14].  

The research of oscillatory flows is a fundamental theory in the field of biological and 
engineering processes such as oil drilling, blood flow control during surgical treatment, oil 
exploration, lungs respiratory functions processing, manufacturing and processing of foods 
and papers, cosmetic products, chemical /blood dispensing modeling in biochemistry /clinical 
laboratories etc. Misra et al. [15] evaluated the heat transfer in viscoelastic hydromagnetic 
fluid flow in a stretchable wall oscillating channel. Ali et al. [16] examined time dependent 
oscillatory flow of viscoelastic fluid in a permeable channel with heat and mass transfer. Ali 
and Asghar [17] conducted analytical solution for Jeffery fluid flow in an oscillatory channel. 
Khan et al. [18] investigated the heat transfer characteristics in hydromagnetic Maxwell fluid 
flow within an oscillatory channel with Cattaneo- Christov heat model. Abbas et al. [19] 
detected the influences of linear thermal radiation in time dependent motion of flowing liquid 
across a convectively heated curved oscillating stretchable surface. Very recently, Imran et al. 
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[20] evaluated the impacts of applied magnetic field and heat production in flow of ferrofluid 
past over a curved stretching oscillatory sheet.  

The analysis of heat transfer in flow of nanofluids has attained considerable attention by the 
researchers due to its numerous utilizations in the fields, like space cooling, microelectronic 
cooling and modern generation of cooling technology. Fluids such as ethylene glycol, oil and 
water are examples of base fluids having low thermal conductivity. With the addition of 
certain nano-sized particles (less than 1%), the thermal conductivity of such base fluids can 
be improved and they form nanofluids. Choi [21] initially presented the idea of nanofluids. 
After that, by considering the impacts of thermophoresis and the Brownian motion of the 
nanoparticles, Buongiorno [22] introduced a new definition of nanofluids. Sheikoleslami et 
al. [23] addressed the analytical outcomes for MHD flow of nanofluid in a semi-porous 
channel. Naveed et al. [24] deliberated the consequences of Brownian motion and 
thermophoretic in the existence of thermal radiation for the Blasius motion of nanoliquid 
across a curved stretchable sheet. Alblawi et al. [25] has detected Buongiorno’s nanoliquid 
model across a curved exponentially stretchable wall. Rashed and Ahmed [26] has 
investigated peristaltic flow of dusty nanofluids inside curved channel. Riaz et al. [27] 
investigated the heat transfer mechanism in peristaltic flow of nanoparticles through a curved 
channel with second order slip condition. 

The main purpose of the present study is to examine the entropy production rate in presence 
of applied magnetic field on time dependent flow of nanofluid in a semi-porous oscillatory 
curved channel. The implications of heat production are also included in heat equation. The 
governing partial differential equations describing the flow phenomenon are highly complex 
and nonlinear in nature which is solved analytically by utilizing an efficient analytical 
technique called homotopy analysis method. The description of this article is as follows: 
Section 2 gives the mathematical development of the flow problem with appropriate 
boundary conditions; Section 3 gives the rate of entropy generation on the flow; Section 4 is 
all about analytical simulation in series form; Section 5 comprises of discussion of obtained 
results and Section 6 summarizes some concluding remarks. 

2. Mathematical development 

Consider hydromagnetic time dependent and boundary layer two dimensional motion of an 
incompressible nanoliquid inside the walls of curved semi-permeable channel that are 

separated by distance H  coiled in a semi-circle of radius .A  The viscous fluid is injected 
through upper wall of the channel which is considered porous and lower wall is considered 

oscillatory. The lower oscillatory wall having temperature wT  moves continually to and fro 

about origin with periodic velocity sin .ww U t  Here wU  and   are considered velocity 

and oscillatory frequency of the wall respectively. Let 1T be the temperature of the upper wall 

with 1.wT T  Also let wC  and 1C  be the concentrations at lower and at upper permeable 
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walls with 1.wC C  In radial x  direction, a constant magnetic field of strength 0B is 

imposed. The boundary layer equations for the flow problem under considerations are 

 

Fig.1. Schematic flow geometry 
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In overhead equations, wand v  are considered to be the velocity parts along s and x 

directions,   the density, p  the pressure, TD  indicates the thermophoretic diffusion, 

 /
f f

k c   represents the thermal diffusivity, pc  the specific heat capacity at uniform 
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pressure, BD  representing the coefficient of Brownian diffusion,   the kinematic viscosity, 

   /p p f f
c c    relation of the heat capability to the material ration of the fluid, C  the 

concentration and T  the temperature of the fluid. 

The boundary conditions related with the existing motion problem are 
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Where 0wU 
 
denotes injection and 0wU   denote the suction velocity respectively. 
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Via the application of Eq. (7) Eq. (1) is verified on identical basis, and remaining Eqs. (2- 5) 
yields 
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where,  1C A H /  implies the non- dimensional term of the radius of curvature, 

  1 1T wNt D T T T   / the thermophoresis parameter,  wS H U /  the relation of the wall 

oscillation frequency to the wall velocity,  Pr   /  the Prandtl number,  wRe HU  / the 
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Reynolds number
 

,  BLe D /  the Lewis number,
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After removing the term of pressure from the Eqs. (8) and (9), the liquid velocity can be 
accomplished as 
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With following boundary conditions 
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here, 1 2Res wU s   represents the Reynolds number. 
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3. Entropy Generation 

The velocity of the liquid, concentration and temperature fields once accomplished can be 
used for the calculation of the entropy production rate in an oscillatory curved porous 
channel. Entropy production depicts the irreversible action of the mechanism induced by 
heat flow, electric conduction of nanofluid and fluid friction. Entropy production rate in 
dimensional form for magnetohydrodynamic flow of nanofluid inside an oscillatory curved 
semi-porous channel can expressed as 
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Applying Eq. (7), the non-dimensional form of Eq. (19) is 
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4. Solution methodology 

The prime focus of this section is to briefly explain the method of homotopy analysis that we 
used to calculate the series solution of governing nonlinear PDEs (10- 12) with final 
boundary conditions (13). For this depiction, as initial assumption and linear auxiliary 
operators for concentration, temperature and velocity field we take the following expressions 
as  
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The General solution of the problem is of the form 
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ˆ ,    and  s

ˆ ,   signify a particular solution. With the help of final 

boundary conditions, the constants  1,2,3,4,5,6,7,8iA i   are computed as follows: 
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   

       

       

     
     

1 2

3

4

5 6

7 8

0
0

2 0 1
3 0 3 1

1 0
2 1 2 0

0 0 1

0 0 1

s
s

s s
s s

s s
s s

s s s

s s s

f
A f A

f f
A f f

f f
A f f

A A

A A






 
 

 

 
 

 

     

     


   



 
   

 

 
    

 

   

   

ˆ ,ˆ , , ,

ˆ ˆ, , ˆ ˆ, , ,

ˆ ˆ, ,ˆ ˆ, ,

ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ, , , , .

 (29)

 

  

5. Results and discussion 

In this section, we concentrate on briefly explaining the outcomes of various involved 

parameters including non-dimensional radius of curvature  1 ,C
 
thermophoresis parameter 

  ,Nt  relation of oscillatory wall frequency to the velocity of the wall   ,S  Lewis number 

  ,Le Reynolds number   ,Re
 
heat generation parameter   ,

 
magnetic parameter   ,M  

Brownian motion parameter   ,Nb
 
Prandtl number   ,Pr

 
temperature difference parameter 

 1 , Brickman number   ,Br  diffusion parameter  1  and concentration difference 

parameter  2  on velocity field, concentration distribution, pressure field, entropy 

production profile, temperature distribution, surface drag force, Bejan number, rate of 
transmission of heat and mass via tables and graphs.  

Table.1. illustrates that the magnitude of absolute values of heat transfer rate  1/2Res sNu  are 

reduces for improving values of          1C , Pr , Re , Nt ,  and  Nb at 0.5 .  Table.2. 

highlights that the magnitude of absolute values of mass transmission rate  1/2Res sS h   

grows with varying          1C , Pr , Nb , Re , Nt and  Le
 
at 0.5 .   

Fig.2. (a-d) is made to illustrates the 3- dimensional observation of the physical response of 

the axial and normal velocity components  ,w x t  and  , .v x t
 
Figs 2 (a) and 2 (c) are 

drawn to depicts the behavior of fluid particles velocity over lower oscillatory wall by 

considering very small values of x i.e.  0 .x   On the other hand, figures 2(b) and 2(d) are 

plotted to demonstrates the behavior of fluid particles velocity over upper permeable wall of 

the channel by considering  1 .r    
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Fig.3. (a- c) and Fig.4 (a- c) represent that the stream lines of velocity components show 

symmetrical manner and deviates from origin for time interval  -0.5π,0.5πt  , and express 

oscillatory response for  0,10πt  and  0, 2πt   respectively.  

Fig.5. (a- d) gives the outcomes of dissimilar flow variables like      1C , Re , M and  S  in 

time interval  0,10π  on  ' ,f    for 0.1  from the wall of the channel. It is apparent 

from figures 5(a-c) that by mounting values of    1C , Re  and  M , the liquid velocity 

amplitude  ' ,f    is reduced. Whereas, Fig. 5(d) depicts uphill manner with  .S  

The consequences of      1C , Re , M and  S  on  ' ,f   at 0.5   are explained through 

Fig.6.(a- d). Figure 6(a) witnessed that with uplifting  1C  
the fluid profile  ' ,f   initially 

grows, but after  0.5   it depicts reducing behavior. However, figures 6. (b,c,d) portrayed 

that with enlarging value of    S , Re and   ,M
 

the liquid velocity decreases near the 

oscillatory wall and exhibits opposite trend after  0.5 .    

Fig.7. (a- d) demonstrates that  P ,  amplitude enhances with improving values of 

   1C , Re and  S  and reduces with  M  in time intervals  0,10π . 
 
Fig.8. (a- d) gives 

the alteration in  P ,   at 0.5 .   Figs 8 (a) and 8(c) confirmed that  P ,   is 

diminishing function of  1C and  Re .While, figures 8(b, d) witnessed that with enlarging 

values of  M
 
and  S ,  the pressure distribution firstly declares improving demeanor and 

then finally reduces.  

Figure.9. (a-d) detects that the liquid temperature distribution ( , )    increases with superior 

values of        1C , Nt , , Pr and  Nb , and it decays with altering values of Reynolds 

number  Re . 

Fig.10. (a- d) presents the impacts of unalike variables          1C , Nb , Pr , Re , Nt  and  Le
 

at 0.5   on ( , )   . It is clearly apparent that ( , )    declines gradually for all variables.  

The alteration in entropy production field ( , )GN    at 0.5   is explored through Fig.11. 

(a-d). Figures 11(a) and 11(c) clarifies that ( , )GN    show increasing response with 

     1Br , , Nt  and  Nb .
 
 While figures 11(b,d) illustrates that the profile ( , )GN   firstly 

improves and then declines with increasing values of    1C , Re  and  Pr .  
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Fig.12. (a- d) describes that the magnitude of Bejan number  Be  decreases with  1  
and 

 Br ,  and it grows for growing values of          1 2 1C , , , Nb , Pr  and  Nt .
 

The outcomes of dissimilar variables like      1C , Re , M and  S  
on  1/2Resf

C  at time 

interval  0,10π  are demonstrates through Fig.13. (a-d). This figure depicts that the 

amplitude of drag wall force coefficient is declined with  Re  and  M ,
 
whilst it is enlarged 

with amplifying values of
  S and  1C .  

Fig.14. (a-d) displayed the change in wall resistance force coefficient  1/2Res f
C  for various 

constants at 0.5 .   The influences of  1C  
versus  M  on  1/2Res f

C can be seen in 

Fig.14. (a-b). The wall drag force magnitude is increased with  1C , while it is declined with 

varying  M . Fig.14. (c-d) is made to shown the impacts of variable  S  
vs  Re on 

 1/2Res f
C . It can notice from this figure that the  1/2Res f

C  magnitude is reduced with 

uplifting  Re and amplified with an enhancement in  S .  

 

  

(a) (b) 

  

(c) (d) 
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FIG. 2. 3- D view of axial components of velocity  u x,t (a) for lower oscillatory curved 

wall (b) for upper porous wall; 3-D view of the normal components of velocity  v x,t  (c) 

for lower oscillatory curved wall (d) for upper porous wall. (For lower wall 53 10x    and 
for upper wall 1x   ). 

 

   

(a)
  -0.5π,0.5πt   (b)  0,10πt   (c)  0, 2πt   

FIG.3. Variations in stream lines of  u x,t  by taking 0x  i.e. ( 53 10x   ) with 

1 1.0, 0.5, = 0.5C M = Re  and 0.1.S =  

 

 

   

(a)
  -0.5π,0.5πt   (b)  0,10πt   (c)  0, 2πt   

FIG.4. Variations in stream lines of  v x,t  by taking by taking 0x  i.e. ( 53 10x   ) with 

0.1, 0.5, = 0.5S = M = Re , and 1 1.0C  . 
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(a) (b) 

  

(c) (d) 

FIG.5. Variation of various fluid parameters on time series velocity field  ' ,f    for the 

time interval  0,10π   from the fixed distance to the surface (a) Impacts of 1C ; (b) 

Impacts of M ; (c) Impacts of Re ; (d) Impacts of S  by keeping other parameters fixed. 

 

 

  

(a) (b) 
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(c) (d) 

FIG.6. Variation of various fluid parameters on velocity field  ' ,f    when 0.5 .   (a) 

Impacts of 1C ; (b) Impacts of M ; (c) Impacts of Re ; (d) Impacts of S  by keeping other 

parameters fixed. 

  

(a) (b) 

  

(c) (d) 

FIG.7. Variation of various fluid parameters on pressure profile  ,P   for the time interval 

 0,10π   (a) Impacts of 1C ; (b) Impacts of M ; (c) Impacts of Re ; (d) Impacts of S  by 

keeping other parameters fixed. 
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(a) (b) 

  

(c) (d) 

FIG.8. Variation of various fluid parameters on pressure profile  ,P   at 0.5 .   (a) 

Impacts of 1C ; (b) Impacts of M ; (c) Impacts of Re ; (d) Impacts of S  by keeping other 

parameters fixed. 

 

 

  

(a) (b) 
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(c) (d) 

FIG.9. Variation of various flow parameters on temperature profile  ,  
 
for 0.5 .   (a) 

Impacts of 1C  and Pr ; (b) Impacts of  ; (c) Impacts of Nb ; (d) Impacts of Nt  and Re by 

keeping other parameters fixed. 

 

  

(a) (b) 

  

(c) (d) 

FIG.10. Variation of various flow parameters on concentration profile  ,  
 
for 0.5 .   

(a) Impacts of 1C ; (b) Impacts of Le ; (c) Impacts of Nb and Nt ; (d) Impacts of Re by keeping 



17 

other parameters fixed. 

 

  

(a) (b) 

  

(c) (d) 

FIG.11. Variation of various flow parameters on entropy generation profile  GN , 
 
for 

0.5 .   (a) Effects of 1  and Br ; (b) Impacts of 1C and Pr ;  (b) Effects of Nt  and Nb ; (d) 

Impacts of Re  by keeping other parameters fixed. 

 

  

(a) (b) 
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(c) (d) 

FIG.12. Variation of various flow parameters on Bejan number  Be at 0.5 .   (a) Effects 

of 1  andBr ; (b) Effects of 2 and 1 ; (c) Impacts of Nt  and Nb ;  (d) Impacts of 1C and Pr  

by keeping other parameters fixed. 

 

 

  

(a) (b) 

(c) (d) 

FIG.13. Variation of various flow parameters on time series for the surface drag force 

coefficient  1/2Res f
C at  0,10π .   (a) Consequences of 1C ; (b) Consequences of M ; (c) 
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Consequences Re ; (d) Consequences of S  by keeping other parameters fixed. 

 

 

  

(a) (b) 

  

(c) (d) 

FIG.14. (a) Variations in  1/2Res f
C with 1 versus M ; (b) 3- D view of variations in 

 1/2Res f
C with 1C versus M ; (c) Variations in  1/2Res f

C with S  versus Re ; (d) 3- D view of 

variations in  1/2Res f
C with S  versus Re when 0.5 .   
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Table 1: Numerical assessment of  1/2Res sNu   for some values of           1C , Pr , Re , , Nb  

and  Nt  by using 1.0 0.1M ,S   and 2.0Le  fixed at 0.5 .   

1C   Pr  Re  Nt    Nb    1/2Res sNu   

1 0.  1 0.  0 5.  0 5.  0 5.  0 3.  0 998493.  

2 0.       0 986005.  

3 0.       0 973701.  

1 0.  1 5.      0 987841.  

 2 0.      0 977223.  

 2 5.      0 966638.  

 1 0.  1 0.      0 995181.  

  2 5.     0 985223.  

  4 0.     0 975232.  

  0 5.  0 6.    0 995520.  

   0 8.    0 989588.  

   1 0.    0 983673.  

   0 5.  1 0.   0 995181.  

    2 0.   0 988546.  

    3 0.   0 981896.  

    0 5.  0 4.  0 995509.  

     0 7.  0 986555.  

     1 0.  0 977600.  
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Table 2: Assessment values of  1/2Res sS h   for some unalike values of  

         1C , Nt , Re , Pr , Le  and  Nb  by using 1.0 0.1M ,S  and 0.5  fixed at 0.5 .   

1C   Nt  Pr  Re  Nb  Le    1/2Res sS h   

1 0.  0 5.  1 0.  0 5.  0 5.  0 2.  1 01515.  

3 0.       1 01761.  

5 0.       1 02030.  

1 0.  0 6.      1 01716.  

 0 7.      1 01917.  

 0 8.      1 02118.  

 0 5.  2 0.      1 01520.  

  6 0.     1 01538.  

  10     1 01557.  

  1 0.  1 0.    1 01631.  

   2 0.    1 01864.  

   3 0.    1 02096.  

   0 5.  0 3.   1 01773.  

    0 4.   1 02031.  

    0 5.   1 02289.  

    0 2.  1 5.  1 01573.  

     3 0.  1 01749.  

     4 5.  1 01924.  

 

6. Conclusions 
In this current study, we have investigated entropy production and the effects of heat 
production on viscous nanoliquid motion by considering Buongiorno’s model in a semi-
porous curved oscillating channel. The analytical outcomes of the governed nonlinear partial 
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differential flow equations are accomplished by implementing HAM. Consequences of 
unalike variables on concentration, velocity, temperature, Bejan number, skin friction 
coefficient, entropy production, local Nusselt number and on Sherwood number are 
established through tables and graphs and deliberated in details. The following specific 
conclusions are commented from present examination which are stated as 

 The liquid velocity amplitude depicts declining response with growing values of 

   1 ,C M and  Re for  0,10π .  Whilst, it improves with  .S   

 The fluid velocity profile expresses increasing demeanor for improving  1C at 

0.5 .   However, it shows decaying response with    ,Re M  and  .S  

 For elevating values of    1 ,C Re
 

and  S  the pressure distribution amplitude 

enlarges. While, it reduces with   .M  

 At 0.5   the pressure distribution is declined with altering values of  S and   .M  

However, profile of pressure field enhances for  1C and  .Re  

 With improving values of        1C , Nt , , Nb and  Pr the temperature of the liquid 

is enhanced. And, it diminishes  with varying  .Re   

 The concentration distribution displays reducing response with        1C , Nt , Le , Pr ,  

 Nb and   .  

 Entropy production profile shows mounting behavior with      1 , Nb , Br  and 

 Nt . 

 With  Br and  1 ,  the Bejan number magnitude depicts decreasing manner. 

However, it enlarges for uplifting values of          1 1 2C , , Nt , , Pr  and  Nb .  

 The drag surface force amplitude improves with  S and  1 .C
 
However, it decreases 

steadily for advanced values of  Re and   .M  

 The absolute values of rate of mass transmission is amplified with
 

         1C , Nt , Re , Nb , Pr and  Le .   

 With uplifting          1C , Pr , Re , Nb ,  and  Nt ,the magnitude of absolute values 

of heat transmission rate declines.   
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