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Abstract 

For reversible enzyme-catalysed reactions obeying Henri-Michaelis-Menten kinetics, 

theoretical solution of the rate equations for the enzyme-substrate intermediate are generally 

incorrect when the quasi-steady state approximation, equating the rate of change of the 

concentration of the enzyme-substrate intermediate to zero, is used.  For the simplest kinetic 

model used by Haldane, such a procedure does not reveal that in one direction, that starting 

with the reactant having the lower binding constant, the quasi-steady state is one of quasi-

equilibrium, and Haldane’s structure of the Km written in terms of rate constants is incorrect. 

This is probably also true of more complex mechanisms in which the structure of kcat may 

also be in error.  Modern methods of numerical integration for the solution of rate equations, 

if applied to reversible reactions to obtain rate constants from measured catalytic constants, 

will require the correct expressions for kcat and Km. Furthermore, the (now called) Haldane 

relationship, relating the kinetic constants kcat and Km for the forward and reverse reactions 

to the equilibrium constant of a reaction, is now seen to be generally incorrect, and in 

addition another exception for a the theoretical validation of kcat /Km as a specificity constant 

arises.  
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Introduction 

An equation derived by Henri [1]and by Michaelis and Menten [2] describes the kinetics of 

many enzyme-catalysed reactions.  Their derivations were based on reaction model 1, in 

which A and B are reactants, E the enzyme and X a reactant-enzyme intermediate, and the 

small case letters represent their respective concentrations at any instant.  In modern form, 

the equation is written as equation 1 (eo is the total enzyme concentration, e + x), and it 

contains two kinetic constants: the catalytic constant, kcat, and the Michaelis constant, Km, 

which were originally defined in terms of rate constants (letters k).  Originally, it was assumed 

that early in the reaction the reverse reaction could be neglected.  This equation has one 

immediate solution for x (the equilibrium state of all components, readily shown by 

substitution), but otherwise, except by approximation, it has no analytical solutions.  The 

approximation commonly used today was introduced by Briggs and Haldane [3] for an 

irreversible reaction: dx/dt is equated to zero, and the approximation is the now called quasi-

steady state assumption.  This approximation was later used by Haldane to solve the rate 

equations for both directions of reversible reactions and to define the kinetic constants 

pertinent to each direction [4], but his solutions were incorrect.  

 

 

db/dt = kcat aeo/ (a + Km)    (1) 
  

                 k1            k2 

A + E     X         B + E Model 1)                                 
a     e      k-1    x      k-2    b    e 
      
dx/dt = (k1a + k-2b)e - (k-1 + k2)x    (2) 
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Notwithstanding the early determinations of kcat and Km in terms of rate constants, as more 

complex kinetic models were examined, particularly for multi-substrate reactions, the 

common view was adopted around the middle of the last Century that the experimentally 

derived constants should be viewed as purely empirical ones. This may change as computer 

aided numerical methods are now used to determine with greater accuracy kcat and Km from 

primary data (concentrations measured at intervals rather than from secondarily derived 

velocities) [5].   Furthermore, methods of numerical integration [6,7] allow assessments of 

the best set of fluxes through, or rate constants pertaining to, each stage of the reaction 

models considered. These developments for the back conversion of experimental kinetic 

constants to sets of rate constants require the correct kinetic model and the correct kinetic 

constants pertaining to that model.  Evidence that Haldane’s derivations for reversible 

reactions (models 1 and 2, [4]) are defective appeared in the literature between 1958 and 

1963 [8,9,10,11].  Haldane’s derivations are correct only for the reaction in one direction, 

that staring with the reactant having the higher binding constant.   

 

There are other consequences of the error resulting from the inadequacy of Haldane’s 

analyses.  The relationship, relating kcat and Km of the forward and reverse reactions to the 

equilibrium constant of the reaction, the now called Haldane relationship, is generally 

incorrect, and the use of kcat/Km as an enzyme specificity constant receives a further example 

for which it is invalid.  

 

In the following I shall restate the evidence for the incompleteness of Haldane’s analyses, 

and provide for model 1 a theoretical proof that, if a starting reactant has a binding constant 

less than that of its product (and if the reaction does then indeed follow Henri-Michaelis-

Menten kinetics) the quasi-steady state is one of quasi-equilibrium, a result not anticipated 
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by Haldane.  I shall restrict my observations to the condition, usual for the characterization 

of an enzyme, that the reactant concentration is several orders of magnitude greater than 

that of the enzyme, a condition which may not always be filled in vivo or where enzymes are 

used in vitro.   

 

RESULTS 

The correct derivation of the Henri-Michaelis-Menten equation for Model 1. 

Haldane’s analysis of model 1 for an initial velocity (vi), gave equation 3a for a reaction 

beginning with A, and 3b for that beginning with B (ao and bo are initial concentrations).  The 

capital superscripts identify the reactant.  These equations identify the kinetic constants in 

terms of rate constants:  

  Km
A = (k-1 + k2)/k1, kcat

A = k2; Km
B = (k-1 + k2)/k-2,  kcat

B = k-1.   

These results are well known, but both of these Michaelis constants are correct only when 

k1 = k-2. The Km for the forward and reverse reaction are then identical, and the quasi-steady 

state is one of a quasi-equilibrium of X approaching its ultimate equilibrium concentration.  

  

vi
A = db/dt = k2aoeo/ {ao +(k-1 + k2)/k1} (3a) 

vi
B = da/dt = k-1boeo/ {bo +(k-1 + k2)/k-2} (3b) 

 

For an irreversible reaction, x must proceed through a maximum value (when dx/dt is zero) 

before both x and dx/dt return to zero.  For a reversible reaction, experimental evidence for 

the rôle of quasi-equilibrium (xequ) in the steady state of X was produced about thirty years 

after Haldane’s first use of the steady state approximation.  Morales and co-authors [8,9] 

showed that, for model 1, x could pass through a maximum value greater than its equilibrium 
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concentration only if, in a reaction starting with A, k1 > k-2 (at the maximum dx/dt = 0 and 

d2x/dt2 is negative). Miller and Alberty [10] observed that there is an exact solution for 

equation 2 when k1 = k-2 (which occurs without the approximation that ao >>eo), and in this 

case x rises monotonically by an exponential function to its final equilibrium value, xequ.  The 

only quasi-steady state concentration of x is the one approaching xequ.  Using reasonable 

kinetic data, Miller and Alberty showed that x could rise very rapidly to values close to xequ, 

and this was the first example of a quasi-stead state being one of quasi-equilibrium, but 

these authors did not point that out. They extended their observations by numerical 

approximation to the condition that k1 > k-2, and observed that x proceeded through a 

maximum before descending to equilibrium. They gave a single progress curve for the 

condition k-2 = 10k1 in which x rose only to equilibrium.  Walter and Morales [11] made 

computer-aided calculations of progress curves for x, and showed that when k1 = k-2 or k1 < 

k-2, x rises monotonically to xequ, and more recently, Tzafriri and Edelman [12] gave an 

example of x rising to xequ when k1 < k-2. In appendix 1, I show by a kinetic analysis that, in 

a reaction starting with A and when k1 < k-2, it is to be expected that x rises monotonically 

to xequ. 

   

If the only steady state available for model 1 (in a reaction starting with A and with k1 = k-2 

or k1 < k-2) is one in which x is approaching xequ, then the initial quasi-steady state velocity 

would be written as vi = k2xequ.  With xequ = aoeo / ( ao + k-1/k1 + k2/k-2) (appendix 2),  this 

leads to equation 4 which gives the identities kcat = k2 and Km = (k-1/k1 + k2/k-2).  The Km is 

not that derived by Haldane, except when k1 = k-2.   

vi = k2aoeo / (ao + k-1/k1 + k2/k-2)   (4) 
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It should be noted that, if the ratio k-2/k1 is too great or the equilibrium constant, (Kequ = 

bequ/aequ) is too small, Henri-Michaelis-Menten kinetics may not be observed.  This is 

because xequ is approached too slowly so that there is not a steady state such that, in the 

words of Briggs and Haldane [3] “…x is always negligible compared with b and a, its rate 

of change must, except during the first instant of the reaction, be negligible compared with 

theirs.“  (Emphasis added, but otherwise this quotation is altered only to identifying the 

concentrations of species with the abbreviations used here).  The calculations of Walter 

and Morales [11] demonstrate this problem, at least with respect to the effect of 

decreasing Kequ.  They presented progress curves of X for reactions in which k1, k-1 and k2 

were constant, and only k-2 was varied.  As k-2 increases above k1, the slower approach of 

x to xequ is clearly seen in their computations.  Hence reversible reactions must be 

considered individually in terms of the ratio k1/k-2 and Kequ.  For initial velocities, they may 

display Henri-Michaelis-Menten kinetics in the direction which starts with the reactant with 

the higher binding constant (and have a Km as derived by Haldane), and in the reverse 

direction provide a Km which involves a quasi-equilibrium state.  But if xequ is approached 

too slowly it may not be possible to determine an initial velocity (in the usual sense that 

“initial” is used (see for example the calculation in [10]), and at which the product 

concentration may be considered negligible compared with the initial reactant 

concentration). 

 

The correct derivation of the Henri-Michaelis-Menten equation for model 2. 

Model 2 was introduced by Haldane [4] on the basis of experimental observations, and it  

             k1              k2                k3                                        
A + E                X              Y           B + E           Model 2     

a      e      k-1      x     k-2        y     k-3       b    e 
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improved model 1 by allowing an isomerization of the intermediate X to Y before a product 

is released from Y.  Although both dx/dt and dy/dt cannot in general be exactly zero at the 

same instant [11], the analytical methods of Morales and co-authors [8,9] can be applied to 

this model. The rate equations for x and y are given by equations 5 and 6, and their sum is 

equation 7a, which on substituting a = (ao –b) becomes equation 7b.  If y does proceed 

through a quasi- steady state maximum, when dy/dt is exactly zero and d2y/dt2 is negative, 

then dx/dt must also be negligible even if not exactly zero.  (That statement might not be 

true if dx/dt and dy/dt were oscillating out of phase with each other, but in a closed system 

without a feed-back loop, the possibility of oscillation may be neglected). The second 

differential of y with respect to t is then given by equation 8.  If dx/dt and dy/dt are negligible 

and zero, respectively, d2y/dt2 can be negative only when k1 > k-3. When this inequality is 

not obeyed, dy/dt can only be positive, becoming zero only at equilibrium. 

 

   dx/dt  =  k1a(eo - x - y) + k-2y - (k-1 + k2)x       (5)  

   dy/dt  =  k-3b(eo - x - y) + k2x - (k-2 + k3)y       (6) 

   dx/dt  + dy/dt  =  (k1a+ k-3b)(eo - x - y) – k1x - k3y    (7a) 

   dx/dt  + dy/dt  =  {k1ao+ (k-3 – k1)b}(eo - x - y) – k1x - k3y      (7b)  

  d2y/dt2 = (k-3 – k1)(eo - x - y)db/dt - {k1ao+ (k-3 – k1)b + k3} dy/dt  

       -{k1ao+ (k-3 – k1)b+ k3} dx/dt              (8)   

 

 

A general evaluation of d2y/dt2 cannot be made as I have done for d2x/dt2 in model 1 

(appendix 1) because the relationships between x and y, and dx/dt and dy/dt, are not known 

except in a particular special case, that when the rate constants for the interconversion of X 

and Y (k2 and k-2) are large enough to keep X and Y in equilibrium with each other.  Then, 
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k2x = k-2y, k2 dx/dt = k-2dy/dt, and this allows (x+y) to be treated as a single unit.   Of course, 

this reduces model 2 to model 1.  It is sufficient here to note that, when a reaction starts with 

A and k-3 > k1, kcat
A remains that given by Haldane, but Km

A does not.  

 

In view of what has been noted so far about model 1 and the special case of model 2, it 

seems likely that for model 2 there would be a general problem with Haldane’s derivations 

of the kinetic constants. This view is supported by comparing Haldane’s result [4] for the 

steady state concentration of Y (y* in equation 9) with its equilibrium concentration (yequ), 

(equation 10, see appendix 2).  Equation 9 derives from Haldane’s general equation [4] 

when the concentration b is set to zero.  Expanding the inequality y* > yequ and cancellation 

leads to inequality 11. The right hand side of inequality 11 must be positive, which leads to 

inequality 12 as a requirement for y* to be greater than yequ. Once again, if there is not a 

maximum value of y (before equilibrium), y can only rise to its equilibrium value.  This 

observation, however, does not prove that y rises monotonically so that, although dy/dt is 

always positive (zero at equilibrium), d2y/dt2 is always negative (zero at equilibrium). 

 

  y* = k1k2aoeo / {k1ao(k-2 +k2 + k3) + k-2k-1 + k-1k3 +k2k3}     9) 

         yequ = k1k2aoeo / {k1ao(k-2 + k2) + k-1k-2 + (k1k2k3/k-3)}                              (10) 

    k1ao < k2 (k1/k-3 - 1) - k-1             (11) 

    k1/k-3 > 1 + k-1/k2                 (12)   

 

 

Consequences of a misidentified Kinetic Constants. 



 

9 

i. The Haldane Relationship. Haldane derived his relationship (equation 13) for both 

models 1 and 2 [4], but these derivations depended on his identification of the catalytic 

constants in terms of rate constants.  For model 1 and the conditions that k-2 > k1, these are 

kcat
A = k2 and Km

A = (k-1/k1 +k2/k-2), but for the reverse reaction kcat
B and Km

B will then be k-1 

and (k-1 + k2)/k-2, respectively.  Substitution of these in equation 13 does not give Kequ = 

k1k2/k-1k-2.  Equation 13 is valid only when k1 = k-2, when in both directions the quasi-steady 

states involve quasi-equilibrium [10].  A similar conclusion may be adduced for model 2 

when k1 = k-3 and k2 and k-2 maintain equilibrium between X and Y. 

Kequ = (kcat
A/Km

A)/(kcat
B/Km

B)  (13) 

 

It may be noted that Bock and Alberty [13] made well-controlled kinetic measurements using 

fumarase, and claimed to have validated the Haldane relationship.  Although the reaction 

catalysed by the enzyme is not one with a single reactant and product in both directions, in 

the conversion of fumarate to malate the concentration of water can be considered a 

constant and combined with a second order rate constant.  Since the original work, however, 

fumarase has been shown to be a tetramer with four identical subunits, and extensive kinetic 

studies by Rose [14] have shown there are several possible kinetic pathways within each 

subunit. Mescam et al. [6] determined the relative fluxes through three possible kinetic 

pathways of an 11-state reversible mechanism which they adapted from the work of Rose.  

Their results indicate that, except for the binding steps, each pathway had intermediate 

stages in a state of quasi-equilibrium.  This would lead to the prediction that Henri-Michaelis-

Menten-kinetics would be displayed by each pathway separately (but the summation for the 

two such pathways does not do so unless their Michaelis constants were identical).  The 

actual mechanism of fumarase is certainly not that of either model 1 or 2, and so the results 

of Bock and Alberty [13] are not pertinent to the Haldane relationship.  
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ii. Enzyme specificity.  The ratio kcat / Km is perhaps best known as a measure of enzyme 

efficiency and specificity.  This may be seen intuitively from a consideration of equation 1: 

when ao <<Km, db/dt approximates to aoeo kcat/Km, and the velocity is maximized for the 

lowest reactant concentration.  It has been shown that kcat/Km is not always useful for 

comparing different enzymes catalysing the reaction of a single substrate [15], and 

unfortunately, for the case when the reactions of two substrates are catalysed in a single 

solution by one enzyme, it must now be stated that kcat/Km is also not always a good measure 

of specificity.  This latter approach to specificity was introduced Fersht [16], and Cornish-

Bowden [17], and Cornish-Bowden [18] also extended the use of kcat/Km to reactions more 

complex than model 1. Unfortunately, none of these avoided the problem which I have 

pointed out above, the difficulty of simply equating dx/dt to zero in a rate equation and 

following Haldane to expressions for kcat and Km. I shall not develop proofs here because for 

model 1 they are elementary, but simply state that if two competing substrates both have 

binding constants greater than those of their respective products, then the analyses of 

Fersht and Cornish-Bowden are valid.   This is also true in the case when the steady state 

of both competing reactants involves a quasi-equilibrium, but should the steady state for one 

reactant be as described by Haldane and for the other a quasi-equilibrium, then the analysis 

is not correct.   

 

Discussion 

When Haldane [4] applied the steady state approximation of Briggs and Haldane [3] to 

reversible reactions, he did not consider the possibility that the steady state in model 1 could 

be one in which x was close to and approaching its final equilibrium concentration, a 

possibility first revealed almost thirty years later [8,9,10,11].  In fairness to Haldane, it should 

be noted that he may not have been aware of the work of Morales and co-authors [8,9], 
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Miller and Alberty [10], and Walter and Morales [11]. He wrote an Introduction to the second 

edition of his book [19] in 1964, the year of his death in India at the age of 72, and made 

clear in the interesting introduction to that edition why his book was deliberately republished 

unchanged. 

 

I have no explanation for the fact that the consequences resulting from the observations of 

Morales and co-workers, of Miller and Alberty, and of Walter and Morales have been 

overlooked, and certainly the study of enzyme kinetics has moved on without them.  None 

the less, Haldane’s derivations of kinetic constants for models 1 and 2 are still quoted without 

question, and there are numerous publications, in which the solution of rate equations of 

more complex reaction models, are obtained unquestioningly by simply equating dx/dt to 

zero.  In all probability, for reversible reactions these would be incorrect in one direction.  

Haldane’s relationship too is, in general, incorrect.   

 

The justifications for the use of kcat/Km as a measure of specificity also appear in text books 

and in published work, and appears to be standard material in texts on enzyme kinetics 

published or re-published in this Century. As I have pointed out above, in the context of two 

reactants in solution with a single enzyme, it is valid only if for both reactions the quasi-

steady state kinetic parameters are as determined by Haldane, or both involve quasi-

equilibria, but this cannot be established without knowledge of the binding constants for both 

directions of each reaction.  I am not aware of a case in which these have been determined.   

 

A recent publication by Johnson [7], has revealed an interesting property of the ratio kcat/Km, 

although it is to be hoped that the name of specificity constant might be replaced.  After the 

phase of referring to kcat and Km as purely empirical constants fitting the Henri-Michaelis-
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Menten equation, it is now possible using methods of numerical integration to determine the 

best set of rate constants which may fit a theoretically derived equation (for kcat and Km) to 

its experimentally measured value. Should this approach be extended to reversible 

reactions, this will require the correct deduction of the kinetic constant in terms of rate 

constants, for which only a start has been made here.  

 

Appendix 1.  The steady state in model 1 with a reaction starting with A and k1 < k-2. 

 The quasi-steady state approximation of Briggs and Haldane [3] stated, “…since x is 

always negligible compared with b and a, its rate of change must, except during the first 

instant of the reaction, be negligible compared with theirs.“  (This quotation is altered only 

to identifying the concentrations of species with the abbreviations used here).  dx/dt must 

be negligible, but not necessarily zero, and when dx/dt is always positive (except at 

equilibrium) this condition could be met if dx/dt initially rose rapidly to a phase where it 

became negligible (and which could be a quasi- steady state), and after which it rose more 

rapidly before finally declining as x reached its equilibrium concentration. Such a process 

would require that the sign of d2x/dt2 is initially negative, passes through a positive phase 

and then a further negative one as the equilibrium concentration is reached. This scenario 

would lead, if dx/dt were approximated to zero, to the kinetic constants predicted by Haldane, 

but it cannot occur with model 1 when k-2 > k1.  Provided ao >> eo, d2x/dt2 is always negative 

(zero at equilibrium), there are no inflexions in the progress curve of X, and x rises 

monotonically to xequ.  This is demonstrated as follows. 

 The rate equation for model 1 is equation 2, and with e = (eo –x) and a = (ao –b) it is 

here rewritten here as i).  Its partial differentiation gives equation ii) in which the term 

multiplying dx/dt, {k1ao + (k-2 –k1) b +k-1 + k2}, is always positive, and dividing equation ii) by 
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this term (which is now written as N) will not alter the sign of d2x/dt2.  Inserting the rate 

equations for db/dt and dx/dt, this leads to equation iii).  d2x/dt2 will be negative if  

   [(eo – x){k1ao + (k-2 –k1) b} – x(k-1 + k2)]   

     > (k-2 – k1)(eo –x){k2x –k-2b(eo – x)}/N,  

Dividing both sides of the inequality by (eo –x), which is positive, and rearrangement leads 

to the requirement iv).  Provided that ao >> eo, the terms (k-2 – k1)(eo – x)k-2b/N  can be 

neglected in comparison with {k1ao + (k-2 –k1) b},  and (k-2 – k1)(eo – x)k2x/N can be neglected 

compared with (k-1 + k2)}x/(eo – x),  leading to equation v. This equation is dx/dt / (eo –x), 

and this is always positive when k-2 > k1 and dx/dt has no negative phase.  Hence d2x/dt2 is 

always negative, and x rises monotonically to xequ. 

 

       dx/dt = (eo – x){k1ao + (k-2 –k1)b} – x(k-1 + k2)              i) 

    d2x/dt2 = (k-2 – k1)(eo –x) db/dt - dx/dt{k1ao + (k-2 –k1) b +k-1 + k2}         ii) 

  d2x/dt2/N = (k-2 – k1)(eo –x) {k2x –k-2b(eo – x)}/N    

      - (eo – x)(k1ao + (k-2 –k1) b) – x(k-1 + k2)           iii) 

 {k1ao + (k-2 –k1) b} + (k-2 – k1)(eo – x)k-2b/N  >   

     {(k-2 – k1) k2x/N - (k-1 + k2)}x/(eo – x)     iv) 

    {k1ao + (k-2 –k1) b} - (k-1 + k2)}x/(eo – x)  > 0          v)   

 

Appendix 2. The equilibrium concentration of enzyme-reactant intermediates. 

 The equation xequ = aoeo / ( ao + k-1/k1 + k2/k-2) is stated in reference 10 .  It is obtained 

using the same principles as outlined here for model 2. There are two conservation equation 
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for model 2: eo = e + x+ y, and (when ao >>eo)  ao = a + b .  Where the small case letter 

(except ao and eo) are now understood to represent equilibrium concentrations, there are 

the following equilibrium conditions. 

  b/a = Kequ = k1k2/k-1k-2,   x = k-2y/k2,  e = k3y/k-3b,  

  b = aKequ = (ao –b)Kequ  so that b = aoKequ/(1 + Kequ),     

  and e = k3y (1 + Kequ) /k-3aoKequ 

Hence, eo = y{1 + k-2/k2 + k3(1 + Kequ)/ k-3aoKequ}, from which with substitution for Kequ and 

rearrangement one arrives at  

  yequ = k1k2aoeo / {k1ao(k-2 + k2) + k-1k-2 + (k1k2k3/k-3)}  (equation 10). 
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