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ABSTRACT.  Viscoelastic characterization of materials at the micro- and nanoscales is commonly 

performed with the aid of force-distance relationships acquired using atomic force microscopy (AFM). The 

general strategy for existing methods is to fit the observed material behavior to specific viscoelastic 

models, such as generalized viscoelastic models or power-law rheology models, among others.  Here we 

propose a new method to invert and obtain the viscoelastic properties of a material through the use of 

the Z-transform, without using a model.  We present the rheological viscoelastic relations in their classical 

derivation and their Z-domain correspondence.  We illustrate the proposed technique on a model 

experiment involving a traditional ramp-shaped force-distance AFM curve, demonstrating good 

agreement between the viscoelastic characteristics extracted from the simulated experiment and the 

theoretical expectations. We also provide a path for calculating standard viscoelastic responses from the 

extracted material characteristics.  The new technique based on the Z-transform is complementary to 

previous model-based viscoelastic analyses and can be advantageous with respect to Fourier techniques 

due to its generality.  Additionally, it can handle the unbounded inputs traditionally used to acquire force-

distance relationships in AFM, such as “ramp” functions, in which the cantilever position is displaced 

linearly with time for a finite period of time. 
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INTRODUCTION 

Atomic force microscopy (AFM) is a prominent technique for investigating material properties at 

the micro- and nanoscale [1–3], within which a wide variety of instruments, probes and analysis 

techniques have been developed to attempt meaningful material property extraction [4–11]. With 

regards to viscoelasticity, efforts that incorporate classical viscoelastic theory [12–16] rely on force-

distance curves [17–26], which describe the dependence of the probe-sample interaction force with 

respect to the probe-surface distance for a particular location on the sample [27]. Force-distance analysis 

provides direct information on the force and indentation history with respect to time, which makes it 

appropriate for viscoelastic material property inversion.  Existing inversion methods are based on 

viscoelastic models, which have been developed to describe specific relaxation behaviors in the material.  

For example, in some cases, the analysis involves an assumption regarding discrete characteristic 

relaxation timescales in the material, which are represented using spring-dashpot models [20,24], while 

in other cases a continuous distribution of characteristic times is assumed via power-law rheology models 

[17,22].  Regardless of the model chosen, the strategy encompasses fitting the properties implied by the 

model to the force-indentation experimental data. 

In order to enable a new route to viscoelastic material property inversion, which is 

complementary to previous strategies, here we propose a paradigmatically different approach that is not 

based on the choice of a model.  Instead of fitting force-distance data to specific functions dictated by 

approximate models, we transform the experimental information using the Z-transform mathematical 

technique into the so-called Z-domain, which is analogous to the Laplace domain, but applicable to 

discrete-finite signals [28]. This enables the extraction of the viscoelastic transfer functions of the 

material, bypassing the need for any viscoelastic model assumptions (see Figure 1).  These transfer 

functions are the viscoelastic relaxance and retardance, where the relaxance describes the time response 

of a viscoelastic material to a unit impulsive excitation (Dirac delta function) of strain and the retardance 
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describes the response of the material to an impulsive excitation of stress.  

 

Figure 1. Proposed methodology for viscoelastic analysis utilizing the Z-transform.  The stress and strain 

information is first transformed into the z-domain, where ratios of these two variables directly yield the 

relaxance and retardance.  The transfer functions can be used to estimate the time response of the 

material in the time domain, in numerical form, for specific excitations using the inverse Z-transform.  

Alternatively, the transfer functions can be fitted to specific viscoelastic models in order to obtain material 

constants within those models. 

 

Our proposed model-free approach follows the spirit of related Fourier-based methods, where 

viscoelastic material extraction has been achieved under some limited circumstances [29–31]. However, 

in this work, we exploit the advantages of the Z-transform, which we believe is more appropriate for the 
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analysis of viscoelasticity.  Guided by the same motivation that has led the classical rheology field to rely 

on the more general Laplace transform technique for analytical treatments, we rely on the Z-transform to 

accomplish viscoelastic extraction for finite-discrete experimental data. The selection of the Z-transform 

over the more widely exploited Discrete Fourier Transform (DFT) will become evident in later sections of 

the manuscript, where it is shown that our approach has enough generality to obtain meaningful material 

property information in a model-free fashion, without the periodicity and convergence constraints 

associated with the DFT, which is better suited for harmonic and/or steady-state excitations. 

 

Theoretical Background 

It is well known that the behavior of viscoelastic materials is history-dependent, as a result of 

which, the stress-strain relationships governing their deformation are functionals (not functions).  More 

specifically, the stress at a given instant depends on the total previous history of strain and vice-versa [13].  

This history dependence is often expressed in the form of convolution integrals: 

𝜎(𝑡) = ∫ 𝑄(𝑡 − 𝑢)𝜖(𝑢)𝑑𝑢
𝑡

0
         (1) 

𝜖(𝑡) = ∫ 𝑈(𝑡 − 𝑢)𝜎(𝑢)𝑑𝑢
𝑡

𝑜
         (2) 

where Q(t) and U(t) are known as relaxance and retardance, respectively. As already stated, relaxance 

and retardance describe the time response of a viscoelastic material to a unit impulsive excitation (Dirac 

delta function) of either strain or stress, respectively [13]. Theoretically, knowledge of Q(t) or U(t) fully 

characterizes the viscoelastic behavior of the material, so we refer to them as “source” functions. 

Linear viscoelasticity exploits the use of the Laplace transform, whose advantage becomes 

evident upon transforming the previous equations into the Laplace domain and observing the simplicity 

afforded by this treatment. It is a well-known property of the Laplace transform that convolutions in the 

time domain, such as the right-hand side of Equations 1 and 2, transform into simple multiplications in 
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the Laplace domain (s-domain) [32,33].  Thus, Equations 1 and 2 transform as follows: 

𝜎(𝑠) = 𝑄(𝑠)𝜖(𝑠)          (3) 

𝜖(𝑠) = 𝑈(𝑠)𝜎(𝑠)          (4) 

From Equations 3 and 4, we can write the relaxance (Q(s)) and retardance (U(s)) as operators or transfer 

functions: 

𝑄(𝑠) =
𝜎(𝑠)

𝜖(𝑠)
           (5) 

𝑈(𝑠) =
𝜖(𝑠)

𝜎(𝑠)
           (6) 

From Equations 5 and 6, it is clear that the relaxance is a transfer function with which the stress can be 

calculated using a given strain input. Likewise, by using the retardance, strain can be calculated for a 

specific stress input.  Clearly also, the relaxance and retardance are inverses of one another in the Laplace 

domain. 

Unit (Dirac delta function) impulse excitations are mathematically convenient for defining 

material behavior but are experimentally impractical. Therefore, rheologists normally use a different type 

of “standard” excitations. The material responses to these “standard” excitations are known as “standard 

viscoelastic responses” and are used widely to characterize viscoelastic materials.  A very common 

standard excitation is the harmonic excitation.  For example, a harmonic stress input in the time domain 

that is governed by the angular frequency  would be represented as: 

𝜎(𝑡) = 𝜎0𝑒𝑖𝜔𝑡           (7) 

which can also be expressed using sine and cosine functions. The corresponding “standard viscoelastic 

response” to this harmonic stress excitation in the steady-state is calculated by multiplying the 

appropriate transfer function (the retardance in this case, since the input is stress and the output is strain) 

by the above stress input.  We perform this operation for the case where the Laplace variable s equals i: 
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𝜖(𝜔) = [𝑈(𝑠)]𝑠=𝑖𝜔𝜎(𝜔) = 𝐽∗(𝜔)𝜎(𝜔)        (8) 

In the above expression, 𝐽∗(𝜔) is the complex compliance, the sinusoidal steady-state strain response to 

a unit sinusoidal steady-state stress input [12]. From the above equation, it can also be seen that the 

complex compliance 𝐽∗(𝜔) is the Fourier transform of the retardance 𝑈(𝑡), and is a special case of the 

Laplace transformed retardance when the complex variable s is regarded as purely imaginary: 

[𝑈(𝑠)]𝑠=𝑖𝜔 = 𝑈(𝑖𝜔) = 𝐽∗(𝜔)         (9) 

Furthermore, this steady-state complex compliance can be separated into its real and imaginary 

components: 

𝐽∗(𝜔) = 𝐽′(𝜔) − 𝑖𝐽′′(𝜔)         (10) 

where 𝐽′(𝜔) and 𝐽′′(𝜔)are known as the storage and loss compliance, respectively.  The well-known 

storage and loss moduli can be defined in a similar fashion for the case where a sinusoidal input strain is 

applied to the material.  It is very important to recall the fact that Equations 7-10 and the frequency-

dependent quantities included in them refer only to the steady-state case of sinusoidal excitation. Most 

types of AFM characterization do not apply sinusoidal stresses or strains to the material.  This is clear with 

regards to the acquisition of a quasi-static force-distance curve, where the cantilever position above the 

sample follows a “ramp” function.  In the case of intermittent-contact methods (e.g., tapping-mode AFM), 

the cantilever tip oscillates nearly sinusoidally, but since tip-sample contact is intermittent, the sample 

does not experience purely sinusoidal stresses and strains. 

To analyze the case of an AFM tip penetrating a viscoelastic surface we need an equation relating 

force with sample penetration (indentation). Equations 1 and 2 relate stress and strain but do not consider 

the geometrical aspects of our boundary value problem. Invoking the correspondence principle for the 

case of a parabolic tip indenting a viscoelastic half-space yields the following force-distance relationship 
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for the time domain [14,15]: 

[ℎ(𝑡)]3/2 =
3

16√𝑅
∫ 𝑈(𝑡 − 𝜁)𝐹(𝜁)𝑑𝜁

𝑡

0
        (11) 

where h is the sample indentation, F is the probe-sample force, and R is the radius of the indenter.  

Transforming this expression into the Laplace domain we obtain: 

ℒ{ℎ3/2, 𝑠} =
3

16√𝑅
𝑈(𝑠)𝐹(𝑠)         (12) 

In a force-distance-curve experiment, we have access to both force and indentation history, such that we 

can, in principle, solve for 𝑈(𝑡). We have previously used this strategy to obtain the time-domain 

representation of 𝑈(𝑡) within a specific viscoelastic model [19,20]. In the interest of maintaining 

generality, we have used the generalized Voigt model, for which the retardance has the following form 

(the generalized Voigt and Maxwell-Wiechert models are discussed in the Supporting Information): 

𝑈(𝑡) = 𝐽𝑔𝛿(𝑡) + ∑
𝐽𝑛

𝜏𝑛
𝑒−𝑡/𝜏𝑛

𝑛          (13) 

where 𝛿(𝑡) is the Dirac delta function, 𝐽𝑔 is the glassy compliance, 𝐽𝑛 and 𝜏𝑛 are the compliance and 

retardation time, respectively, of the n-th Voigt unit in the generalized Voigt model. Physically, these 

retardation times are the characteristic times at which the molecular rearrangements occur within the 

viscoelastic material. Replacing the above expression in the time convolution of Equation 11 and 

simplifying we obtain the equation we have previously used as the basis for extracting the viscoelastic 

model parameters and corresponding properties using non-linear least-squares optimization in our 

previous work: 

16√𝑅

3
[ℎ(𝑡)]3/2 = 𝐽𝑔𝐹(𝑡) + ∑ ∫ 𝐹(𝜁)

𝐽𝑛

𝜏𝑛
𝑒−(𝑡−𝜁)/𝜏𝑛𝑑𝜁

𝑡

0𝑛       (14) 

An alternate strategy is to turn to the Laplace domain equation, working with the special case 

when 𝑠 = 𝑖𝜔, such that the equations are handled more conveniently in Fourier space instead of Laplace 

space. This seems convenient because, having force and indentation time history, one could envision 
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transforming both of them into Fourier space [29] to obtain the complex compliance. Specifically, letting 

𝑠 = 𝑖𝜔 in Equation 12 and rearranging we obtain: 

𝐽∗(𝜔) =
16√𝑅

3

ℱ{ℎ3/2,𝜔}

�̂�(𝜔)
          (15) 

where 𝐽∗(𝜔) is the Fourier transform of the retardance, also sometimes denoted as �̂�(𝜔). The 

convenience is also apparent as many computer packages can efficiently compute the Fourier transform 

of discrete (experimental) data through the efficient FFT algorithm [34]. However, as we have already 

pointed out, this only defines the steady-state harmonic response of the material and is therefore not 

applicable to transient or non-steady-state applications, such as a quasi-static force-distance-curve 

experiment.  This approach is well suited for harmonic excitations but is inappropriate for various types 

of common experimental inputs such as step excitations or ramp excitations, which is why the more 

general Laplace transform is widely used in rheology.  Methodologies have been developed to circumvent 

the above restriction of the Fourier transform by applying time derivatives to the experimental quantities 

and making use of its well-known mathematical properties [29], but although the approaches are 

theoretically feasible, the existence of noise in AFM signals generally precludes their successful 

experimental implementation. 

Z-Transform Approach 

In this paper, we exploit the wider generality of the Laplace transform to deliver a model-free 

method to extract the viscoelastic retardance and relaxance of the material from AFM force curves.  We 

focus on the Z-transform, which can be regarded as the discrete-time counterpart to the Laplace 

transform, and which is, therefore, more general than the discrete-time Fourier transform (a more 

detailed description of these integral transforms can be found in the Supporting Information).  In the 

Laplace transform, a function is mapped into the complex domain via the variable 𝑠 =  𝛼 + 𝑖𝜔, whereas 

in the Z-transform the function is mapped into the complex domain via the variable 𝑧 = 𝑒𝛼𝑒𝑖𝜔 (note that 
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the real part of the complex variable s is customarily denoted by 𝜎, but here we represent it with 𝛼 to 

prevent any confusion with the stress, which is also denoted by 𝜎).  Figure 2 provides a comparison 

between the s-plane of the Laplace transform and the z-plane of the Z-transform. Based on the 

relationship between the variables s and z and disregarding (for now) the fact that the Z-transform is a 

discrete transform, we see that the z-plane is a polar version of the s-plane, whereby circles in the z-plane 

correspond to vertical lines in the s-plane. For example, the imaginary axis of the s-plane, which 

corresponds to the Fourier transform (𝑠 = 𝑖𝜔, with 𝛼 = 0), maps to the unit circle in the z-plane. It is 

especially easy to relate the unit circle of the z-plane to the discrete Fourier transform. On the unit circle, 

the angular position of a point can be directly assigned to a frequency value in the discrete Fourier 

transform. The arc between 0° and –180° (from 𝑧 =  1 to 𝑧 =  −1, clockwise) corresponds to frequencies 

between 0 Hz and the Nyquist frequency (half of the sampling frequency).  The complementary arc 

between 0°  and +180° (from 𝑧 =  1 to 𝑧 =  −1, counterclockwise) corresponds to frequencies between 

0 Hz and the negative of the Nyquist frequency. Other vertical lines in the s-plane correspond to non-unit 

circles in the z-plane.  

 

Figure 2. Comparison of the s-plane and the z-plane. Vertical lines on the s-plane map to circles on the z-

plane.  The imaginary axis on the s-plane, which corresponds to the Fourier transform of the signal, 
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corresponds to the unit circle on the z-plane. Other lines parallel to the imaginary axis on the s-plane 

correspond to non-unit circles on the z-plane.   

 

The use of the Z-transform reflects the fact that the experimental data obtained from an AFM 

experiment always consist of discrete signals. Furthermore, in quasi-static force spectroscopy 

experiments, the deformation imposed on the material consists of a non-periodic, non-steady-state 

excitation (e.g., a ramp function).  Therefore, the most appropriate transform is one that is discrete and 

reflects the capabilities of the Laplace transform [35–37]. 

Reflecting the fact that the stress and strain now consist of the discrete signals 𝜎[𝑛] and 𝜖[𝑛], 

respectively, we can write discrete relationships that are analogous to the convolutions presented in 

Equations 1 and 2: 

𝜎[𝑛] = 𝑄 ∗ 𝜖 = ∑ 𝑄[𝑛 − 𝑚]𝜖[𝑚]𝑁−1
𝑚=0          (16) 

𝜖[𝑛] = 𝑈 ∗ 𝜎 = ∑ 𝑈[𝑛 − 𝑚]𝜎[𝑚]𝑁−1
𝑚=0         (17) 

where N corresponds to the number of points in the signal.  As previously done for writing equations 3 

and 4, we make use of the convolution properties of the Z-transform, which are similar to those of the 

Laplace transform, to obtain: 

𝜎(𝑧) = 𝑄(𝑧)𝜖(𝑧)          (18) 

𝜖(𝑍) = 𝑈(𝑧)𝜎(𝑧)          (19) 

where all of the above variables are transformed variables in the z-plane.  We now write 𝑄(𝑧) and 𝑈(𝑧) 

as operators or transfer functions as, 

𝑄(𝑧) =
𝜎(𝑧)

𝜖(𝑧)
           (20) 

𝑈(𝑧) =
𝜖(𝑧)

𝜎(𝑧)
           (21) 
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We see that the relaxance is a transfer function in the z-plane with which stress can be calculated for a 

given strain input. Likewise, by using the retardance, strain can be calculated for a given stress input. The 

Z-transforms of the observables are calculated using the definition of the Z-transform: 

𝑍{𝑓[𝑛]} =  𝐹(𝑧) = ∑ 𝑓[𝑛]𝑧−𝑛
𝑛          (22) 

Following Equation 12, which reflects the geometry of a spherical indentation experiment, we can write: 

𝑈(𝑧) =
16√𝑅

3

𝑍{ℎ3/2}

𝐹(𝑧)
          (23) 

𝑄(𝑧) =
3

16√𝑅

𝐹(𝑧)

𝑍{ℎ3/2}
          (24) 

Similar to our previous methods, these expressions allow the calculation of the desired transfer functions 

from experimental data. 

 

RESULTS AND DISCUSSION 

Calculation of the Source Functions in the z-Domain 

First, to illustrate the proposed technique, we have calculated the retardance of a simulated 

material. The material is modeled using a Generalized Voigt model with a single Voigt Unit in series with 

a spring. Details about the simulation and the material parameters can be found in the Methods section.  

Linear ramp stress is applied to the material, from which the corresponding strain is calculated.  This 

calculation gives the stress vs. strain as a time-dependent array, analogous to an AFM force spectroscopy 

experiment, which is discussed below. The stress and the strain time series are then transformed into the 

z-domain using Equation 22.  Finally, in the z-domain, we divide the strain by the stress to obtain the 

retardance, as prescribed by Equation 21. For comparison, we have also evaluated the retardance from 

the theoretical equation (Equation 29 in the Methods section) to compare it with our calculated 

retardance and both are plotted in Figure 3a (calculated) and 3b (theoretical) in the z-domain.  Apart from 
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the unit circle of the z-domain, which corresponds to the Fourier transform of the retardance, the 

calculated and theoretical retardance are in good agreement (the discrepancy at the unit circle will be 

discussed below). For z-domain points outside of the unit circle, the error between the simulated 

retardance and the theoretical prediction is less than 0.25%. This is easier to visualize in plots 3d, 3e, and 

3f, which do not include the unit circle. 

 

Figure 3. (a, d) Amplitude of the simulated retardance in the z-domain for a stress-strain experiment (plot 

d does not include the unit circle of the z-domain). (b, e) Retardance of the material calculated from the 

theoretical values (plot e does not include the unit circle of the z-domain). (c, f) Error between the 

simulated and theoretical retardance. A large error is observed around the unit circle, which is expected 

because the unit circle in the Z-transform represents the discrete Fourier transform and in this example 

we have used non-bounded, non-harmonic input and output [30]. The agreement between theory and 

simulation is good outside the unit circle (R > 1), where every circle represents a modified discrete Fourier 

transform.  The latter corresponds to oscillatory functions multiplied by a decaying (real) exponential 
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function (as in a damped oscillation).  

 

One of the most significant advantages of working in the complex domain is the ease of inversion 

of the operators. Unlike the time domain where the inversion of retardance into relaxance and vice-versa 

is challenging and requires either fitting routines for specific models [38–41] or convoluted methods [42], 

in the z-domain, once the retardance is calculated, the relaxance is already available through simple 

inversion of numerator and denominator, as stated in Equations 20 and 21. This inversion is illustrated in 

Figure 4 for the data provided in Figure 3.  Furthermore, although we have used a viscoelastic model to 

generate the material behavior for our simulation, the calculated retardance, and relaxance (Figures 3 

and 4) are directly derived from the response of the material and are model-free. Therefore, they do not 

inherently carry model assumptions or limitations. One may use these material operators in a model-free 

fashion to predict the material response to an arbitrary stress or strain input, as will be discussed later.  

Alternatively, it is also possible to fit the calculated retardance (or relaxance) to a viscoelastic model and 

calculate relevant materials constants, characteristic times, and/or loss and storage moduli, as suggested 

in the bottom-right corner of Figure 1. 

 

Figure 4. (a) Retardance and (b) relaxance for our simulated material. The retardance is the same as 
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depicted in Figure 3 and the relaxance is directly calculated as its reciprocal. 

 

Relationship between the Real Axis of the z-Domain and the Timescale of the Response 

An interesting feature of the z-plane is its real axis.  Consider the point 𝑧 = 1, which implies 

𝑒𝛼𝑒𝑖𝜔 = 1, or 𝛼 = 0 and 𝜔 = 0. This point thus corresponds to the zero frequency, or DC component of 

the Fourier transform. Likewise, other points on this axis correspond to the zero-frequency components 

of a modified Fourier transform.  For example, the point 𝑧 = 𝑏, where b is a real number different than 

unity, requires 𝜔 = 0 (similar to 𝑧 = 1) but corresponds to a non-zero value of 𝛼, such that 𝑏 = 𝑒𝛼, where 

𝛼 is positive for 𝑏 > 1 and negative for 𝑏 < 1.  If, say,  𝑏 < 1, the point 𝑧 = 𝑏 corresponds to the zero 

frequency of the modified Fourier transform 𝑒−|𝛼|𝑒𝑖𝜔, which represents a decaying (damped) oscillation.  

Thus, depending on their position on the real axis, the points 𝑧 = 𝑏 correspond to either increasing or 

decreasing exponentials with different time constants, 𝛼 =  𝑙𝑛(𝑧). For our purposes, these time constants 

can be thought of as different timescales for material behavior. For example, at 𝑧 = 1 the time constant 

is zero, hence our exponential yields a constant steady-state DC component. Increasingly larger z values 

can be thought of as material responses for shorter and shorter timescales.  Figure 5 shows the retardance 

of our example material plotted along the real axis.  For this material, the theoretical retardance for 𝑧 =

1 (this is the vertical-axis intercept, since the horizontal axis is 𝑙𝑛(𝑧) and 𝑙𝑛(1) = 0) is the same as the 

equilibrium compliance of the material, also known as the creep compliance, for which the simulation 

provides a fair approximation according to Figure 5.  As the value of z increases along the real axis, the 

value of the retardance approaches the theoretical glassy compliance, which refers to the material’s 

infinitely short-timescale response (i.e., instantaneous response), and which is approximated very well by 

the simulation. We can thus obtain two very important properties of the material quite easily.  It is of 

course not unexpected to obtain the glassy and equilibrium compliances from the real axis, as inspection 

of Equation 29 (Methods Section) shows that those are the expected limits of the retardance: 
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lim
(𝑧,𝑑𝑡)→(∞,0)

𝑈 = 𝐽𝑔          (25) 

𝑈(𝑧 = 0) = 𝐽𝑒           (26) 

 

 

Figure 5. Retardance of the material plotted along the real axis of the z-plane using a logarithmic scale. 

The real axis of the z-plane does not contain information about harmonics but instead contains 

information about the zero-frequency components bounded by exponential functions with different time 

constants. The point 𝑧 = 1 (this is the vertical-axis intercept on the plot, since the horizontal axis is 𝑙𝑛(𝑧) 

and 𝑙𝑛(1) = 0), which is located on the unit circle and hence corresponds to the Fourier transform, has a 

time constant of zero and can be thought of as a representation of the steady-state behavior. As the figure 

shows, the simulated response at 𝑧 = 1 approaches the equilibrium compliance of the material. The 

response for large real values of z corresponds to faster increasing exponentials, representing the system’s 

shorter-timescale response.  The limit at 𝑧 → ∞ is approached as the sampling time becomes infinitely 

small.  

 

Limitations of Modified Fourier Techniques 
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The Fourier representation of the retardance and the relaxance of the material is commonly used 

in rheology, where the real components of the operators are referred to as storage modulus or storage 

compliance, respectively, and the imaginary components as loss modulus or loss compliance, respectively. 

Although directly obtaining the Fourier representation of the source operators is possible with the 

proposed method when harmonic or bounded inputs are used, this is not the case for the classical force-

distance-curve approach, which is based on a ramp function for which the Fourier integral does not 

converge. Although mathematical tricks can be used for a well-defined function [29,43], there emerge 

additional experimental complications since the signals in an experiment are discrete. When dealing with 

a bounded function, it can be reasonable to treat the sampling time window as periodic, such that the use 

of the discrete Fourier transform is warranted.  However, this is not appropriate for an unbounded 

function, which does not possess a finite bandwidth, and for which assuming periodicity leads to signal 

aliasing.  From this consideration we see that the discrete Fourier transform does not necessarily 

represent the continuous analytical Fourier transform [30], and therefore, a viscoelastic source function 

calculated using the discrete Fourier transforms of the observables for unbounded-input-function 

experiments does not correspond to the theoretical harmonic response of the material (Equations 7-10). 

This is, in fact, the underlying reason for the discrepancy between the theoretical retardance and the 

calculated retardance in Figure 2 for the unit circle (the Z-transform on the unit circle corresponds to a 

discrete Fourier transform). In Supporting Information Figure s6, it is demonstrated that this discrepancy 

also occurs for the FFT algorithm. 

 Since non-unit circles of the z-plane correspond to the modified Fourier transforms of the system, 

which contain a time-dependent exponential component in addition to their harmonic parts, they can 

properly represent the characteristics of an unbounded-input experiment. The modified Fourier 

transforms can properly handle non-steady-state, non-bounded, non-periodic systems, accommodating 

transient and non-harmonic responses. Figure 6 compares the simulated calculated retardance with the 
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corresponding theoretical values demonstrating good agreement.  

 

Figure 6. Material retardance amplitude plotted around the origin (i.e., for constant radius and varying 

frequency – recall that 𝑧 = 𝑒𝛼𝑒𝑖𝜔), for circles with different radii on the z-plane. The radii of the circles are 

respectively 1.01, 1.2, 2, and 2.5. As the figures show, the retardance calculated from the simulations and 

the theoretical values match closely with an error below 0.25%. Notice that the smallest error is observed 

on the real axis in all cases, which corresponds to zero frequency. 

 

As already stated, the storage and loss compliance are not directly accessible from the force-

distance experiments, for which the input is unbounded (see also Figure s6). However, it may be possible 
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to approximate them in some cases by inspecting the real and imaginary components of the neighboring 

modified Fourier transform regions (i.e., non-unit circles on the z-plane which are close to the unit circle). 

An example is shown in Figure 7 for a circle on the z-plane with a radius r = 1.002. The error between the 

estimated storage and loss compliances and the analytical result is small for high frequencies and larger 

for low frequencies, although in all cases it remains within the order of magnitude of the desired 

quantities. A much more detailed mathematical analysis of the differences between the Fourier and 

modified Fourier loss and storage compliances is provided in the Supporting Information. For the 

Generalized Voigt model, the modified Fourier transform version (non-zero time constant) of the 

magnitudes of the storage and the loss compliance plotted against frequency are reduced by a factor of 

(1 +
𝜏𝑛 ln(𝑟)

∆𝑡
) with respect to the Fourier result (zero time constant).  Similarly, the width of the peaks is 

increased by a factor of (1 +
𝜏𝑛 ln(𝑟)

∆𝑡
) with respect to the Fourier result and we can observe a compliance 

behavior that is more spread out over different frequencies.  

As illustrated in Figure 7, the loss and storage compliance and their estimation from the modified 

Fourier transform converge towards each other for high frequencies. Therefore, it is possible to accurately 

estimate a material’s glassy compliance and its immediate response from a force-distance AFM 

experiment. Furthermore, the position of the local maxima of the loss compliance with respect to 

frequency does not change between the Fourier transform and the modified Fourier transform for the 

Generalized Voigt and Maxwell-Wiechert models. Therefore, the characteristic times can be accurately 

pinpointed from the modified Fourier transform estimation (a mathematical derivation and a discussion 

are provided in chapter 6 of the Supporting Information). Once the characteristic times of the material 

are estimated, the loss and storage compliances can be calculated from the modified Fourier transforms 

in light of the peak geometry correction factor discussed above, (1 +
𝜏𝑛 ln(𝑟)

∆𝑡
).  For this calculation ∆𝑡 is a 

known experimental parameter, and 𝑟 is chosen by the researcher.  
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Figure 7. Comparison between the analytical loss and storage compliances for our model material and 

their estimation from a modified Fourier transform evaluated from the Z-transform. For the Generalized 

Voigt model, the modified Fourier transform versions of the loss and the storage compliances plotted 

against frequency exhibit peak values that are reduced by a factor of (1 +
𝜏𝑛 𝑙𝑛(𝑟)

∆𝑡
) with respect to the 

Fourier result, while the width of the peaks is increased by a factor of (1 +
𝜏𝑛 𝑙𝑛(𝑟)

∆𝑡
). 

 

Demonstration with AFM Contact Mechanics 

 So far, we have demonstrated our method for stress-strain inputs using the Generalized-Voigt 

model.  However, in AFM experiments one observes the deflection of the AFM cantilever as a function of 

the cantilever base position instead of directly observing stress and strain. From the available observables, 

one can calculate the tip-sample force and the indentation. In order to account for the AFM probe and 

sample geometry and the nature of the corresponding observables, it is necessary to invoke the 

corresponding principle, through which Equations 11 and 24 are derived. We have simulated an AFM 

experiment (see Methods section for details), calculating the retardance and comparing it with the 

theoretical behavior, as shown in Figure 8. As before, we observe a good agreement between simulation 

and theory, which suggests that the method is also suitable for AFM analysis. Retardance profiles for 
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different circles of the z-plane and along the real axis, similar to the data of Figures 5 and 6, can be found 

in Figures s7 and s8 in the Supporting Information. 

 

Figure 8. (a, d) Amplitude of simulated retardance in the z-domain for an AFM simulation. (b, e) 

Retardance of the material calculated from the theoretical values.  (c, f) Error between the simulation and 

the theoretical calculations. The information presented in the figures in the top and bottom rows is the 

same, except that for the bottom row the images only include data for circles with a radius greater than 

1.2, while the top row starts from R = 1.0. We observe good agreement and similar issues at the unit circle 

as in Figure 3. 

 

Calculation of Responses to Standard or Arbitrary Inputs through the Inverse Z-Transform 

So far we have only discussed the behavior of the retardance and relaxance in the z-domain. 

However, we recall that these operators define the material’s reaction to stress or strain, noting that with 

the proposed method the representation is model-free.  The next logical question is what to do with these 
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operators.  Naturally, one option is to fit an established viscoelastic model to them, such as the 

Generalized Voigt or Maxwell-Wiechert models, or any other suitable model.  As long as there is complex 

domain correspondence between the z-plane and the model’s domain, any model can be fit, which yields 

the parameters of the model.  These parameters can then be used to express, for example, compliances, 

moduli, characteristic times, etc., in analytical form.  By extension, one can also obtain the storage and 

loss moduli. Alternatively, one may continue with a model-free approach, using the operators as they are 

to predict material responses to specific inputs.  For this, all one needs to do is transform the user-defined 

input into the z-domain and multiply with the appropriate operator (calculated relaxance or retardance).  

The result of this multiplication is the material response in the z-domain, from which the time-domain 

response can be obtained via the inverse Z-transform.  Figure 9 shows the result of calculating the creep 

(strain) response of our model material from the calculated retardance for a unit stress input. The inverse 

Z-transform is calculated by taking a counterclockwise closed integral along a contour in the z-plane (see 

Equation 32 in the Methods section) [35]. In this work, we have calculated the integral numerically around 

a non-unit circle, counterclockwise, after evaluating the retardance in the z-plane, for convenience.  

 

Figure 9. Material response to a step input calculated from the retardance obtained through the 
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previously simulated force spectroscopy experiment (with a ramp force input), and comparison with the 

theoretical result.  

 

Discussion and Future Work 

 

So far the proposed method seems to be quite promising, but there is one very important 

consideration that needs to be highlighted, namely computer precision in the calculations.  Specifically, 

modern computational coding languages use variable precision. For example, for a number that is of order 

unity, the computational precision is ~10-16, but for a number that is of order 10100 the precision is ~1084.  

Therefore, in calculations with large numbers, one can accumulate a massive amount of error, and there 

are often situations where positive and negative numbers that should cancel each other do not do so due 

to lack of precision. Unfortunately, this issue plagues the Z-transform due to its numerical nature. While 

calculating the Z-transform values on the z-plane, one calculates the z-value’s power −𝑛, where n scales 

with the number of sample points in the signal. Likewise, while calculating the inverse Z-transform, one 

raises z to the n-th power. During the calculation of the Z-transform, numbers raised to very large negative 

powers converge to zero, which although not catastrophic, does result in loss of accuracy. On the other 

hand, while calculating the inverse Z-transform, calculating very large powers can inaccurately diverge to 

infinity. This can place practical limits on the sample size (number of points in the signal) and may also 

require very mindful coding.  

 There are also areas of future work concerning the methods presented here.  We have focused 

on the non-unit circles of the z-plane, corresponding to modified Fourier transforms of the operators, 

where each circle represents a combination of a harmonic response with a time-dependent exponential 

coefficient having a specific time constant.  As previously stated, these exponential coefficients represent 

non-steady-state behaviors and are crucial to our method.  One area of further investigation concerns the 
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relationship between the time constants (or z-domain radii) and the experiment’s time scale. Since these 

time-dependent coefficients lay along the real axis of the z-domain (without any harmonic component), 

the real axis of the z-domain contains very important information concerning non-harmonic, and non-

steady-state behavior in such cases.  Non-unit circles with different radii (and hence different time 

constants) may be more or less important for different operations with different time scales.  

Furthermore, the non-unit circles of the z-domain also contain information about the harmonic behavior 

of the material (although under damped conditions).  Thus, the storage and loss of energy by the material 

and its relationship to the modified harmonic components should also be investigated further. 

 

CONCLUSION 

A novel method for obtaining the viscoelastic properties of a material using atomic force 

spectroscopy experiments has been proposed and demonstrated computationally. The method utilizes Z-

transform techniques and yields model-free viscoelastic information, such as the material retardance and 

relaxance, as well as standard viscoelastic responses and information on material behavior at different 

timescales.  The method has advantages over discrete Fourier transform methods, in that it can handle 

unbounded and non-periodic signals, such as the inputs that are traditionally used in quasi-static atomic 

force spectroscopy experiments. Furthermore, the acquisition of a transfer function that defines the linear 

viscoelastic behavior of the material enables the generation of any standard and non-standard viscoelastic 

material response from it once the input is defined by the user. Although the method provides a way to 

perform model-free viscoelastic analysis, it is also possible to fit the transfer functions to specific models 

in order to obtain parametrized analytical expressions for them. 

 

METHODS 
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The viscoelasticity of the material is simulated by using a single Voigt unit plus a residual spring 

within the Generalized Voigt model (see Figure s2, Equation s42), which contains one characteristic 

retardation time 𝜏. The material properties for this model are provided in Table 1. 

 

Table 1 Material parameters used in the simulations. 

Jg (Pa) J (Pa) 𝜏 (𝑠) 

2 x 10-9 1 x 10-8 0.01 

 

 To calculate the material retardance and relaxance in the z-domain, a ramp input stress is first 

defined (Equation 27) and the corresponding strain response is then calculated using Equation 28 below, 

which gives the theoretical response for the chosen model [13].   The duration of the simulated 

experiment is 0.1 seconds and the data is discretized using a timestep of 0.00001 seconds.  

𝜎(𝑡) =  109𝑡           (27) 

𝜖(𝑡) = ( 𝐽𝑡 + 𝐽𝑔𝑡 +  𝐽𝜏 (𝑒
(−

𝑡

𝜏
)

− 1) × 109       (28) 

The stress and strain signals are subsequently transformed into the z-domain (see Equation s80). One can 

visualize the process by considering the signals as a succession of time-shifted delta functions which can 

be easily transformed into the z-domain.  The theoretical retardance is evaluated using Equation 29 (see 

Supporting Information for its derivation): 

𝑈 =
𝜖

𝜎
= 𝐽𝑔 + ∑

𝐽𝑛

1+
𝜏𝑛
∆𝑡

(1−𝑧−1)𝑛          (29)

 The spherical contact case, appropriate for an AFM experiment, was simulated using the same 

material parameters, with a tip radius of 10 nm, which is common in AFM.  Analogous to the previous 

simulation, a ramp indentation with a slope of 1 nm/s was applied to the material for 0.1 seconds. 
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However, this time we have used Simulink to evaluate Equation 12. The equation was solved using 4th 

order Runge-Kutta solver with an integration timestep of 10−9 seconds, which was down sampled to a 

timestep of 10−5 seconds to simulate the experimental AFM signal.  Note that in the case of an AFM 

experiment the user does not generally prescribe a variation of indentation over time.  Instead, one 

prescribes the time-dependent displacement of the cantilever base towards and away from the sample 

while measuring the force (via the deflection).  However, the simpler simulation described here is 

appropriate to evaluate the Z-transform methodology because the data acquired through the AFM 

experiment needs to be transformed into force vs. indentation information before it can be used as input 

for a viscoelastic inversion analysis [20]. 

 To calculate the creep response, stress and strain were evaluated for a ramp input as in Equations 

27 and 28, for a shorter time period with a larger time step. The strain was calculated for 0.045 seconds 

with a timestep of 0.001 seconds. The subsequently calculated retardance was multiplied with a unit step 

input in the z-domain:  

𝜖(𝑧) = 𝐻(𝑧)𝑈(𝑧)          (30) 

The above corresponds to the creep response in the z-domain. The unit step input in the z-domain can be 

written as, 

𝐻(𝑧) =
𝑧

𝑧−1
           (31) 

To calculate the creep response in the time domain, the z-domain creep response was obtained by 

numerically integrating the contour along the circle with R = 1.14 counterclockwise. The theoretical creep 

response was evaluated using Simulink with a 4th order Runge-Kutta solver using a timestep of 10−6 

seconds, taking Equation 6 as the transfer function, in the form of equation s42, with the parameters from 

Table 1. As in the previous case, the results were down sampled for demonstration purposes. 
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 The inverse Z-transform of an arbitrary function in the z-domain, 𝑋(𝑧), can be calculated using 

the following contour integral [35]: 

𝑥[𝑛] =
1

2𝜋𝑖
∮ 𝑋(𝑧)𝑧𝑛−1 

𝐶
          (32) 

SUPPORTING INFORMATION 

The Supporting Information features derivation of Generalized Voigt and Maxwell-Wiechert 

models in the Laplace and the z-domains; a brief overview of Fourier, modified Fourier, Laplace, and Z-

transforms; additional data illustrating the misrepresentation of the system in the Fourier domain and 

additional data from AFM simulations; and, finally, a detailed analysis of loss and storage as a function of 

frequency and their estimation from modified Fourier transforms. 
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