Copper-Mediated Oxidative C–H/N–H Activations with Alkynes by Removable Hydrazides

Feng Xiong¹, Bo Li², Chenrui Yang¹, Liang Zou¹, Wenbo Ma², Linghui Gu*², Ruhuai Mei*¹,², and Lutz Ackermann*³,⁴

Address: ¹ Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
² Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, P.R. China, 610052.
³ Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany.
⁴ Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.

Email: Linghui Gu - cdglh017@163.com
Ruhuai Mei - rmei@cdu.edu.cn
Lutz Ackermann - lutz.ackermann@chemie.uni-goettingen.de.

* Corresponding author

Abstract

The efficient copper-mediated oxidative C–H alkynylaiton of benzhydrazides was accomplished with terminal alkynes. Thus, a hetero-aromatic removable N-2-
pyridylhydrazide allowed for domino C–H/N–H functionalization. The approach featured remarkable functional group compatibility and ample substrates scope. Thereby, highly functionalized aromatic and hetero-aromatic isoindolin-1-ones were accessed with high efficacy with rate-limiting C–H cleavage.

Keywords
copper; benzhydrazides; 3-methyleneisoindolin-1-one; removable directing group

Introduction

Inexpensive copper-promoted oxidative C−H activations [1-11] have been recognized as competent tools for the efficient assembly and late-stage functionalization of organic molecular due to its natural abundance and versatile reactivity. Early examples of copper-promoted C−H activation of 2-arylpuridines were disclosed by Yu [12] and Chatani [13] independently. Inspired by these studies, various copper-induced C−H functionalizations, such as arylation, alkynylation, cyanation, amination, nitration, oxygenation, thiolation, halogenation and phosphorylation among others, were accomplished [14-19].

The 3-methyleneisoindolin-1-one moiety represents key structure motif in natural products [20-23] or important pharmacophores [24]. In this context, You [25], Huang [26], Liu [27] and Jack Li [28] elegantly disclosed copper-mediated/catalyzed cascade C–H alkynylation and annulation with terminal alkyne to afford 3-methyleneisoindolinone derivatives, through the assistance of 8-aminoquinoline [29] or 2-aminoaryl-1H-pyrazole [30] auxiliaries (Figure 1a). Besides, the cobalt(II) [31] or nickel(II) [32, 33] catalyzed, pyridine oxide (PyO) directed tandem alkynylation/annulation were realized by Niu and Song, which also provided the 3-
methylenisoindolin-1-one scaffolds (Figure 1b). Notably, a sustainable cupraelectrocatalyzed alkyne annulation was very recently achieved by Ackermann, which gave rapid access to synthetically meaningful isoindolones (Figure 1c) [34]. In spite of these indisputable advances, the successful removal of the directing groups to deliver the NH-free 3-methylenisoindolin-1-one has thus far unfortunately proven elusive [35].

Previous studies:

![chemical structures](image)

(a)

(b)

(c)

This work:

(d)

Figure 1: Assembly of 3-methylenisoindolin-1-one via 3d transition metal-mediated/catalyzed oxidative C−H/N−H activation.

2-(1-Methylhydrazinyl)pyridine (MHP) [36], was identified as a powerful removable bidentate directing group, which found widespread application in various cobalt catalyzed C−H activations [37-40]. Thus, our group also accomplished a set of electrochemical cobalt-catalyzed C−H activations with the MHP auxiliary [41-44]. In continuation of studies on sustainable 3d transition metal-catalyzed C−H activation [41-49], we have now discovered a robust copper-promoted oxidative C−H/N−H
functionalization with terminal alkynes (Figure 1d). Notable advantages of our protocol includes: 1) removable N-2-pyridylhydrazides (MHP) auxiliary used for copper-mediated oxidative C–H activations, 2) excellent functional group tolerance, compatibility with valuable heterocycles and 3) mechanistic studies toward copper-mediated oxidative C–H alkynylations.

Results and Discussion

We initiated our investigation by utilizing benzhydrazide 1a and ethynylbenzene 2a as the standard substrates (Table 1). After preliminary solvent optimization, we discovered that the desired *ortho*-selective C–H activation occurred efficiently by the treatment of hydrazide 1a with terminal alkyne 2a and stoichiometric amount of Cu(OAc)$_2$ in DMSO (entries 1-3). Reaction optimization revealed that the most appropriate temperature was 90 °C (entries 3-6). An evaluation of bases showed that Na$_2$CO$_3$ was optimal (entries 7-11). The best result was obtained when Cu(OAc)$_2$ (1.3 equiv) was utilized in DMSO (6.0 mL) (entries 12-14). A similar result was obtained when Cu(OAc)$_2$$	ext{•}H_2$O was used instead of Cu(OAc)$_2$ (entry 15). Only trace amount of product 3aa was observed in the absence of either Cu(OAc)$_2$ or Na$_2$CO$_3$ (entries 16-17). When the reaction was performed under a nitrogen atmosphere, the efficacy was significantly decreased (entry 18).

<table>
<thead>
<tr>
<th>Table 1: Optimization of copper-mediated C–H/N–H functionalization with terminal alkynes 2a.ª</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>base</th>
<th>temp. (°C)</th>
<th>Z/E</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>---</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>NMP</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>---</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>12/1</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>110</td>
<td>8/1</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>80</td>
<td>15/1</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>60</td>
<td>---</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>DMSO</td>
<td>NaOAc</td>
<td>90</td>
<td>---</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>DMSO</td>
<td>NaOPiv</td>
<td>90</td>
<td>---</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>DMSO</td>
<td>K₂CO₃</td>
<td>90</td>
<td>18/1</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>DMSO</td>
<td>Cs₂CO₃</td>
<td>90</td>
<td>20/1</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>DMSO</td>
<td>DBU</td>
<td>90</td>
<td>---</td>
<td>13</td>
</tr>
<tr>
<td>12ᵇ</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>12/1</td>
<td>42</td>
</tr>
<tr>
<td>13ᶜ</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>9/1</td>
<td>83</td>
</tr>
<tr>
<td>14ᶜᵈ</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>13/1</td>
<td>89</td>
</tr>
<tr>
<td>15ᶜᵈᵉ</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>12/1</td>
<td>86</td>
</tr>
<tr>
<td>16</td>
<td>DMSO</td>
<td>---</td>
<td>90</td>
<td>---</td>
<td>trace</td>
</tr>
<tr>
<td>17ᶠ</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>---</td>
<td>trace</td>
</tr>
<tr>
<td>18ᵍ</td>
<td>DMSO</td>
<td>Na₂CO₃</td>
<td>90</td>
<td>---</td>
<td>37</td>
</tr>
</tbody>
</table>

* Reaction conditions: 1a (0.30 mmol), 2a (0.90 mmol), Cu(OAc)₂ (1.1 equiv), base (2.0 equiv), solvent (3.0 mL), 15 h, under air. ᵇ Cu(OAc)₂ (0.8 equiv). ᵇ Cu(OAc)₂ (1.3 equiv).
equiv).d DMSO (6.0 mL). e Cu(OAc)\textsubscript{2}•H\textsubscript{2}O (1.3 equiv). f Without Cu(OAc)\textsubscript{2}. g Under N\textsubscript{2}.

We next examined the versatility of the copper-promoted ethynylbenzene 2a annulation with various benzhydrazides 1 under the optimized reaction conditions (Scheme 1). To our delight, hydrazides 1 with electron-donating or electron-withdrawing substituents were efficiently converted within the C–H/N–H activation annulation process. Notably, a wide range of valuable electrophilic functional groups, such as halogen, methylthio, cyano, amino and ester, were well compatible, which should prove instrumental for the further diversification of the thus-obtained 3-methyleneisoindolin-1-one 3da-3ka. For substrates bearing two potential reactive sites, the annulation selectively took place at the less congested ortho-C–H bond (3la, 3ma). Moreover, the challenging isonicotinic acid hydrazide 1n was also amenable to this protocol and delivered the desired product 3na with high regio-selectivity.
Scheme 1. Copper-mediated oxidative C–H/N–H functionalization of hydrazides 1 with ethynylbenzene 2a.

We further investigated the viable scope of differently substituted terminal alkynes 2 as the general coupling partners for this transformation. As showed in Scheme 2, a
variety of valuable electrophilic substitutes were well tolerated. Moreover, substrate with a highly reactive unprotected amino group also delivered the corresponding product 3cn with good yield. The robustness of this protocol was further highlighted by the excellent reactivity of heterocyclic acetylenes (2p-2r).

Our copper-promoted C−H annulation protocol was not restricted to terminal alkynes. Under identical reaction conditions, commercially available alkynyl carboxylic acids 4 also proved to be a viable substrate. Thus, the corresponding isoindolone 3aa was assembled via a tandem decarboxylative C−H/C−C sequence (Scheme 3a). The practical relevance of our approach was reflected by the cleavage of N-2-pyridylhydrazides group (Scheme 3b).
Scheme 2: Copper-mediated oxidative C–H/N–H functionalization of with alkynes 2

(a) Copper-mediated decarboxylative C–H/N–H annulaiton

\[
\begin{array}{c}
\text{O} \\
\text{Me} \\
\text{N} \quad \text{N} \\
\text{H} \\
\text{Ph}
\end{array}
\begin{array}{c}
\text{CO}_2\text{H} \\
\text{Cu(OAc)}_2 (1.3 \text{ equiv}) \\
\text{Na}_2\text{CO}_3 (2.0 \text{ equiv}) \\
\text{DMSO, air} \\
15 \text{ h}, 90 \text{ °C}
\end{array}
\begin{array}{c}
\text{O} \\
\text{Me} \\
\text{N} \quad \text{N} \\
\text{Ph} \\
\text{Py}
\end{array}
\]

\[1a + 4 \rightarrow 3aa, 63\%, Z/E = 27/1\]

(b) Removal of the directing group

\[
\begin{array}{c}
\text{O} \\
\text{Me} \\
\text{N} \quad \text{N} \\
\text{Ph} \\
\text{Py}
\end{array}
\begin{array}{c}
\text{Sml}_2 (10 \text{ equiv}) \\
\text{THF} \\
48 \text{ h}, 23 \text{ °C}
\end{array}
\begin{array}{c}
\text{O} \\
\text{Me} \\
\text{N} \\
\text{H} \\
\text{Ph}
\end{array}
\]

\[3\text{aa} \rightarrow \text{S-3aa}, 79\%, Z/E = 4/1\]

Scheme 3: Decarboxylative C–H/N–H activation and cleavage of the directing group

Inspired by the remarkable robustness of the copper-promoted C–H activations with alkynes, we became interested to explore its working mode by a set of experiments. To this end, electron-poor arenes inherently reacted preferentially in intermolecular competition experiments (Scheme 4a). This observation could be explained in terms of a concerted metalation deprotonation (CMD) mechanism [50]. Interestingly, electron-rich alkyne 2f displayed a higher reactivity in the copper promoted C–H activations as compared to their electron-poor analog (Scheme 4b). A significant H/D scrambling was not detected in the ortho-position of the re-isolated benzhydrazide 1c and product 3ca, when the reaction was conducted with the isotopically labelled D_2O as co-solvent (Scheme 4c). This observation indicated the C–H cleavage is irreversible. In accordance with this finding, a kinetic isotope effect (KIE) of \(k_\text{H}/k_\text{D} \approx 6.1 \) was observed by parallel experiments, again suggesting that the C–H activation is kinetically relevant (Scheme 4d).
Based on our mechanistic findings and previous studies, we propose a tentative plausible reaction pathway in Scheme 5. The transformation commences with substrate coordination and subsequent carboxylate-assisted C–H cleavage to deliver copper(II) intermediate A. Next, the copper(III) carboxylate species B is generated. Thereafter, a facile base assisted ligand exchange which was followed by reductive...
elimination affords the alkynylated benzamide D. Finally, the desired isoindolone 3 is formed via an intramolecular hydroamination in the presence of base.

![Scheme 5: Proposed reaction pathway.](image)

Conclusion

In conclusion, we have reported on the chelation-assisted oxidative copper-promoted cascade C–H alkynylation and intramolecular annulation. The removable N-2-pyridylhydrazide was utilized to facilitate copper(II)-promoted C–H activations. Thus, the robust copper-mediated C–H activation featured remarkable compatibility of synthetically meaningful functional groups, giving facile access to valuable 3-methyleneisoindolin-1-one scaffolds.
Experimental

General information

Yields refer to isolated compounds, estimated to be > 95% pure as determined by 1H-NMR. Chromatography separations were carried out on silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China). High resolution mass spectrometry (HRMS) was measured on Thermo-DFS mass spectrometer. NMR spectra were recorded on JEOL 600 NMR (1H 600 MHz; 13C 150 MHz; 19F 565 MHz) in CDCl$_3$. If not otherwise specified, chemical shifts (δ) are given in ppm.

Materials

Reactions were carried out under an Argon atmosphere using pre–dried glassware, if not noted otherwise. Benzhydrazides 1 were synthesized according to a previously described method [36, 44]. Other chemicals were obtained from commercial sources and were used without further purification.

General Procedure for the Copper-Promoted Oxidative C–H/N–H Activation with alkynes.

To a 25 mL schlenk tube was added benzhydrazide 1 (0.30 mmol, 1.00 equiv), alkyne (0.90 mmol, 3.0 equiv), Cu(OAc)$_2$ (71 mg, 0.39 mmol, 1.30 equiv) and Na$_2$CO$_3$ (64 mg, 0.60 mmol, 2.00 equiv) under an air atmosphere. The mixture was stirred at 90 °C for 15 h. At ambient temperature, H$_2$O (15 mL) and Et$_3$N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic phase
was washed with brine (20 mL) and dried over Na₂SO₄. Then Et₃N (0.5 mL), silica gel (0.8 g) were added and the combined solvent was removed under reduced pressure. The residue solid sample was purified by column chromatography on silica gel (petroleum/EtOAc = 5/1 to 2/1, with 1% Et₃N) yielded the desired product 3.

(Z)-3-Benzylidene-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3aa): The general procedure was followed using hydrazide 1a (68.2 mg, 0.30 mmol) and alkyne 2a (91.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 20/1, with 1% Et₃N) yielded 3aa (87.4 mg, 89%, Z/E = 13:1) as a light yellow solid. M. p.: 67–68 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.13 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H), 7.90 (dd, J = 7.6, 1.0 Hz, 1H), 7.85–7.82 (m, 1H), 7.70 (d, J = 1.2 Hz, 1H), 7.56 (dd, J = 7.6, 0.9 Hz, 1H), 7.44 (ddd, J = 8.8, 7.1, 1.9 Hz, 1H), 7.17–7.05 (m, 5H), 6.85 (d, J = 0.9 Hz, 1H), 6.67 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 6.44–6.41 (m, 1H), 3.01 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ = 165.7 (Cq), 157.6 (Cq), 147.7 (CH), 137.4 (CH), 136.2 (Cq), 133.2 (Cq), 132.8 (CH), 132.1 (Cq), 129.3 (CH), 128.7 (CH), 127.3 (CH), 127.3 (CH), 126.5 (Cq), 123.8 (CH), 119.8 (CH), 114.3 (CH), 107.8 (CH), 106.4 (CH), 36.7 (CH₃). HR-MS (ESI) m/z calcd for C₂₁H₁₈N₃O [M+H⁺] 328.1444, found 328.1439.

Supporting Information

Supporting Information File 1:
Characterization data for 3 and copies of ¹H, ¹³C, and ¹⁹F NMR spectra.

ORCID® iDs

Wenbo Ma - https://orcid.org/0000-0002-9690-3639
Acknowledgements

Generous Support by National Natural Science Foundation of China (Grant No. 21901023), “Thousand Talents Program” of Sichuan Province (R. Mei) and the DFG (Gottfried-Wilhelm-Leibniz award to L.A.) is gratefully acknowledged.

References