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Abstract: The everyday language of chemistry uses models, particularly of bonding, that are not 

contained in the quantum mechanical description of chemical systems. To date, this everyday 

language has overlapped strongly with that (the ontology) of artificial intelligence (AI) and 

machine learning (ML). Within the everyday language, the model nature of these concepts is not 

always clear to practicing chemists, so that controversial discussions about the merits of alternative 

models often arise. However, the extensive use of AI and ML in chemistry will require that these 

models be extended to cover all relevant properties and characteristics of chemical systems. This 

in turn imposes conditions such as completeness, compactness, computational efficiency and non-

redundancy on the extensions to the almost universal Lewis and VSEPR bonding models. Thus, 

AI and ML are likely to be important in rationalizing and standardizing chemical bonding models. 

This will not affect the everyday language of chemistry but may help understand the unique basis 

of chemical language. 
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Introduction 

This article originally arose out of our discussions for the 2020 Beilstein Bozen Meeting “Models 

of Convenience” [1], which had to be postponed due to Covid-19 pandemic.  It essentially contains 

the content of the first two presentations, which were intended to set the scene for the remainder 

of the workshop. We have decided to publish it in the present form to provide a starting point for 

the postponed workshop, whatever form it may take. 

Over the centuries, humanity has tried to explain natural and physical phenomena through theories 

and models. These fitted ever more facts as understanding grew and methods of measurement 

became more sophisticated. It is only just over 200 years ago that the caloric theory of heat, which 

regarded heat as a fluid, was challenged and began to be replaced by a theory associating heat with 

motion [2]. The discovery of Brownian motion by Robert Brown in 1827 [3], followed far later by 

Figure 1: Representation of clozapine to emphasize the quantum mechanical characteristics of the 

molecule. The nuclei are represented as spheres (whose size is vastly exaggerated) color coded 

according to their charge. The gray surface is approximately the 0.01 a.u. isodensity surface, which 

corresponds approximately to the van der Waals surface of the molecule.  
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Einstein’s paper on the molecular kinetic theory of heat in 1905 [4], showed that temperature was 

directly linked to molecular movement. In contrast to the common picture of a sudden scientific 

revolution when a new theory appears, changes like this can often take a century. Prominent 

scientists often reject a new theory: Despite the successes of quantum theory, Einstein was 

convinced that it was nevertheless not a complete description of reality [5]. The “truth” is seldom 

a criterion for the acceptance of a model: Our current models of atoms and molecules are very 

useful and necessary for communicating but possess strong model character [6]. They break down, 

for example at very high pressures, where the standard bond orders of atoms change dramatically. 

Physical properties at the nanoscale are often not understandable in terms of our usual descriptions, 

just as Newtonian mechanics are fine for the billiard table but at the atomic and astronomical scales 

insufficient. Models are needed for communication and understanding, but models are incomplete, 

and understanding is a subjective attribute. 

Chemistry is unique among the natural sciences in that its everyday systematization and 

interpretation depend almost entirely on simplified models of molecules. This is because the 

“truth” is unwieldy and, for a science that routinely deals with many millions of molecules, 

completely intractable. We have placed the word “truth” in quotation marks because of its complex 

connotations in this discussion [7]. What we mean is that neither wavefunctions nor electron 

densities can serve as framework models for chemistry in general; they are too complex.  Figure 1 

shows an “artist’s impression” of a molecule (clozapine) that illustrates the problem. In a 

puritanical quantum mechanical view, molecules consist of positively charged, and within the 

Born-Oppenheimer approximation [8] static, nuclei within a cloud of indistinguishable electrons, 

which are often represented as an electron-isodensity surface [9], as in Figure 1. Importantly, there 

are no atoms and no bonds within the molecule, only nuclei and indistinguishable electrons.  

Although it is conceptually accurate, Figure 1 shows a picture of molecules that is completely 

impractical for a systematic science. Chemistry needs to be able to define molecular structures 

uniquely within a common language and to use this language to develop a classification scheme 

that can deal with many millions of different molecules (compounds) and, even worse, reactions. 

This need is more fundamental than looking for a representation of molecules suitable for depiction 

in databases, cheminformatics, machine learning (ML) or artificial intelligence (AI): It is essential 

for chemists to be able to communicate with each other about molecules. The language of 
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chemistry varies slightly between the organic and inorganic communities. However, it is always 

based on bonds, functional groups, atomic centers and ligands, none of which appear in Figure 1. 

It is important here to distinguish between what are essentially three different languages, or 

ontologies, of chemistry. The first and best known is the mixture of different bonding and orbital 

concepts that serve for daily communication between experimental chemists and often as a 

conceptual basis for their research. This language is fuzzy and varies from chemist to chemist but 

has been astonishingly successful and perhaps contributes with its fuzziness to the success of 

chemistry. It is this creative imagination of chemical structures that has been fundamental to the 

cognition of chemistry and has allowed thought experiments to take place. We should never forget 

that the golden age of German organic chemistry at the beginning of the 20th century happened 

almost a century before quantum mechanical calculations became a standard tool and even a 

decade before Lewis’ bonding model. At the other extreme is the purist quantum mechanical view 

exemplified by Figure 1. This “language” is able to reproduce structures, energies, reactivities, 

Figure 2: Jacobus van’t Hoff’s molecular models. The photography was reproduced from: 

https://rijksmuseumboerhaave.nl/steun-het-museum/particulieren/schenken/geadopteerde-objecten/ 

(access date 19.06.2020) with permission from the Rijksmuseum Boerhaave. © the National Museum 

Boerhaave, Leiden. For any reproduction for this photography the National Museum Boerhaave, 

Leiden has to be asked for permission. 

 

https://rijksmuseumboerhaave.nl/steun-het-museum/particulieren/schenken/geadopteerde-objecten/
https://www.google.de/url?sa=i&url=https://rijksmuseumboerhaave.nl/steun-het-museum/adopteer-een-object/geadopteerde-objecten/&psig=AOvVaw1fFU3uGPkVG4U-1NzYI-sB&ust=1582304674420000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDZorbO4OcCFQAAAAAdAAAAABA4
https://www.google.de/url?sa=i&url=https://rijksmuseumboerhaave.nl/steun-het-museum/adopteer-een-object/geadopteerde-objecten/&psig=AOvVaw1fFU3uGPkVG4U-1NzYI-sB&ust=1582304674420000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDZorbO4OcCFQAAAAAdAAAAABA4
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optical properties etc. of chemical compounds essentially perfectly if we do it well enough. 

However, it is utterly useless as an everyday language of the subject unless we attempt to translate 

it into one of our bonding models; a language that has no inherent definition of atoms or bonds is 

not suitable for talking about molecules or reactions. Weisberg [10] describes this situation as 

using a so-called folk ontology (the everyday language of chemistry) as a fiction when discussing 

a very complex mathematical model (quantum mechanics). The third ontology, and the one that 

interests us most here, is how we describe molecules to computers for building databases, 

developing property prediction algorithms and now for ML and AI applications. In this case, 

external conditions apply that lead to a different ontology than the two others. We discuss some 

features of these languages in the following and relate them to existing concepts. 

The title “Models of Necessity” indicates that such concepts, which are conceptual models, make 

the systematic study of chemistry possible at all. One early and historically important model is that 

of van’t Hoff, which really was expressed in the physical models shown in Figure 2 [11]. As 

outlined below, a consistent workable framework model, or more accurately series of models, has 

developed in chemistry.  

The proliferation of AI and ML in chemistry will make new and far more extensive use of our 

models but will also impose new constraints and requirements on them that eventually will benefit 

all of chemistry by imposing a stricter intellectual discipline on the models used. We note here that 

the expressions “models”, “ontology” and “language of chemistry” are in this context equivalent. 

The underlying model; the Lewis picture 

Although van’t Hoff’s models provided a major step forward in the theory of molecular structures, 

they are poorly suited for written communication. This function is fulfilled almost ideally by 

Gilbert Lewis’ structural formulae [12]. Lewis drew on a long history of depicting molecules in 

terms of their constituent atoms [13] and added a rationalization in terms of stable electron octets 

that survives in an extended form to this day and bears his name. Not only do these formulae 

provide the basis for fundamental concepts such as functional groups but also for just about every 

cheminformatics representation of molecular structures. Figure 3 shows the Lewis formula of 



 

6 

clozapine (the molecule shown in Figure 1) together with its IUPAC systematic name [14], 

SMILES [15] and InChI [16] keys. 

Chemists immediately recognize the aromatic and heterocyclic rings, the piperazine ring and the 

chloro-substituent in the 2D-structure shown in Figure 3. Although the atomic coloring is not 

universal, most chemists would also recognize that the nitrogen atoms are blue and the chlorine 

green in the ball-and-sticks model, so that the atomic labels are not necessary. Even the alternating 

double and single bonds in the benzene rings are recognized to indicate aromaticity. Chemists 

immediately know where the molecule is most likely to be protonated or deprotonated and where 

the aromatic rings should be substituted, all from the Lewis structure. Many cheminformatics 

practitioners would also be able to write the structure from the SMILES string and medicinal 

chemists to recognize it as a benzodiazepine and assign it to a likely therapeutic area. The point is 

that these depictions are very different to the puritanical “truth” shown in Figure 1 but that they 

provide the basis to discuss and classify the molecule and to estimate its chemical, physical and 

even medicinal properties. As an aside, note that the 3D ball-and-sticks model only represents one 

Figure 3: IUPAC name, canonical SMILES, InChI and InChI key, Lewis structure (2D line 

diagram) and 3D ball-and-sticks model for clozapine, the molecule shown in Figure 1. Data taken 

from https://pubchem.ncbi.nlm.nih.gov/compound/Clozapine#section=IUPAC-Name  

https://pubchem.ncbi.nlm.nih.gov/compound/Clozapine#section=IUPAC-Name
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of several possible conformations of clozapine but that all these conformations are inherent in the 

2D-line structure.  

The dichotomy between Figures 1 and 3, which is really that between fundamental quantum 

chemistry and the common bonding models, is the subject of this article. It means that just about 

all practical chemistry and most data-processing applications in chemistry depend entirely on 

bonding models that are not inherent in the, as far as we know correct, quantum mechanical 

description of the model.  

In reality, even the quantum description is usually an approximation because it is often applied to 

single molecules and not to the reality of phases containing ensembles of the molecule in question, 

solvents, counterions, reagents etc. Simplifications and approximations within the quantum 

mechanical technique add another layer of imperfection. Biological systems are even more 

complex, with an extraordinarily large concentration of molecules in, for instance, cells. In such 

systems, the necessity to sample all possible geometrical configurations of the system becomes the 

second major hurdle to accurate simulations. Even today, high-level combinations of an accurate 

Hamiltonian to describe the structure and energy and adequate sampling of the dynamics of the 

system are extremely rare. 

Atoms, bonds and molecules 

Although there are no atoms or bonds in molecules, there have been many attempts to construct 

Lewis-like bonding pictures from quantum mechanical wavefunctions or electron densities. The 

first were so-called population analyses such as those of Coulson [17] or Mulliken [18] that 

assigned net atomic charges or bond orders. Ideally, single bonds in the Lewis picture should have 

a bond order of one, double bonds two, and so on. The concept of net atomic charges stems directly 

from Lewis’ polar covalent bond concept but has no unique definition for the fundamental reason 

that individual atoms are not uniquely defined within molecules.  

Although the positions of the atomic nuclei are clearly defined, the cloud of indistinguishable 

electrons prevents assignment of electrons, or fractions of them, to individual nuclei to make up 

atoms. Nonetheless, there are two principal ways to assign electron density to a given nucleus, 

both to a certain extent arbitrary and both subject to many variations. 
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The largest group of methods is based on the Linear Combination of Atomic Orbitals (LCAO) 

approximation [19]. LCAO is strictly speaking an approximation; molecular orbitals are built as 

weighted sums of constituent atomic orbitals, usually centered at the positions of the nuclei. This 

very convenient approximation for computational quantum chemistry has long attained the status 

of a bonding model to such an extent that many chemists outside the theoretical community are 

unaware that it is an approximation. Molecular-orbital bonding models based on the LCAO 

approximation discuss chemical bonds in terms of contributions from atomic orbitals. The inherent 

assumption in these techniques is that bonding contributions by orbitals centered on a given 

nucleus can be assigned to the corresponding atom. This assumption can be defended for basis sets 

(the atomic orbitals) that are small and localized but high-quality calculations use very space-

extensive atomic orbitals (AOs, basis functions) that extend into the neighborhood of adjacent 

atoms (however that is defined). This problem manifests itself concretely as basis-set superposition 

error (BSSE) [20] in ab initio calculations but rears its ugly head in every AO-based attempt to 

assign electron density to individual atoms. It casts doubt on techniques that rely on partitioning 

electron density on the basis of AOs, although techniques such as the Natural Population Analysis 

(NPA) [21] or Absolutely Localized Molecular Orbital (ALMO) [22] analyses have been 

developed to give more constant results as the extent of the basis set increases. The basic problem, 

however, remains that where a basis function is centered in space has little to do with how to assign 

electron density to notional atoms. 

The second, smaller group of analysis techniques relies on partitioning space around the nuclei 

into different volumes that can be assigned to individual atoms. The most prominent of these is 

Bader’s Quantum Theory of Atoms in Molecules (QTAIM) [23] which provides a consistent 

definition of the partitioning between atoms based on the topology of the electron density. QTAIM 

is well defined (but still arbitrary) but has been criticized because it sometimes gives 

counterintuitive atomic charges, for instance. Extensions to the partitioning of the space around 

atoms, such as bond-critical paths, are not accurate descriptions of molecular structures [24]. The 

current situation is that each technique has its followers, often on the basis that it gives results with 

which the users feel comfortable. It is hard to believe that such criteria are objective and unique. 
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Molecular orbitals 

Two bonding models exist side by side in chemistry, most obviously in organic chemistry. 

Alongside the Lewis picture and its mechanistic “curly arrow” treatment [25] it is common to 

rationalize organic structures and reactivities within the molecular-orbital picture, as pioneered by 

Walsh [26] and Fukui [27]. Elementary organic chemistry is taught almost exclusively within the 

“curly arrow” model until it is necessary to switch to the molecular-orbital picture to treat, for 

instance, the Woodward-Hoffmann rules [28]. Similarly, an extended version of the Lewis model 

exists alongside the molecular-orbital picture in inorganic chemistry. Is this not a solution to the 

problems described above?  

Unfortunately not: Molecular orbitals (MOs) were introduced by Mulliken [29] as an 

approximation in order to be able to solve the Schrödinger equation approximately for atomic or 

molecular systems. The approximation is that, rather than trying to solve a completely intractable 

N-electron problem, we solve N easier one-electron problems. The resulting one-electron 

wavefunctions were named molecular orbitals by Mulliken. Thus, they are not real, but another 

approximation.  

How, then, do we account for the success of qualitative MO-theory if it is based on fictitious one-

electron wavefunctions? The answer is that the commonly used Hartree-Fock MOs strongly 

resemble Dyson orbitals [30] which are real and measurable [31]. This observation provides a link 

between MO-theory and real observables, so that qualitative MO theory is a widely used and 

successful approach to understanding chemical structures and reactivity. However, it is too 

unwieldy for everyday communication. 

Qualitative bonding concepts 

The basic conundrum remains. If we cannot define atoms within molecules, we cannot define 

atomic charges or bonds between atoms or interatomic concepts such as charge transfer. It is 

important to emphasize here that this fundamental problem cannot be resolved because of the 

nature of the quantum mechanical wavefunction or electron density. All models that aim to derive 

Lewis-like concepts from quantum mechanical calculations are therefore arbitrary, however 

reasonable they may seem, and can only be judged on how well the results fit with the user’s own 

preferences and prejudices.  
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Take, for instance, the concepts of polarization and charge transfer. Of these two closely related 

concepts, polarization is real and observable (e.g. through a change in dipole moment), whereas 

charge transfer is a qualitative concept that can neither be defined nor observed uniquely. This is 

illustrated in Figure 4. Polarization (above) involves a shift of electrons from the gray atom to the 

cyan one; charge transfer from the gray/cyan molecule to the red atom. The charge shift in the two 

examples is identical. Simply moving the black dashed borderline changes the definition from 

polarization to charge transfer. In a simple, Lewis-like picture, the distinction is clear but quantum 

mechanically the two processes are the same. Figure 4 shows that the difference between the two 

lies in the definitions of the atoms (and hence net atomic charges) and of the bond. Physically, 

both result in the same change in dipole moment. Objectively, they are not distinguishable, as has 

been pointed out many times [32]. 

Quantum mechanics to Lewis or the reverse? 

The preceding section could easily be expanded into a complete book but extracting Lewis 

structures and assigning bonding contributions from quantum mechanical calculations is actually 

a minority pursuit most often used to rationalize experimental results. Should the conversion 

between quantum mechanical calculations and Lewis structures be necessary, it is usually in the 

reverse direction: Lewis structures are drawn or defined by a line notation such as SMILES, 

Figure 4: Conceptual distinction between polarization and charge transfer. The distinction depends 

entirely on the definition of the atoms, and even the bond. In both cases, the result is the same increase 

in dipole moment. The vertical dashed lines indicate notional borders between atoms. The two 

phenomena are identical if neither atoms nor bonds can be defined. 

Polarization

Charge transfer



 
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converted by one of several algorithms into a realistic 3D molecular structure and the resulting 

structure used as input for a quantum mechanical calculation. What quantum mechanics does far 

better than rationalize results in terms of the Lewis picture is to provide hard, physically observable 

properties of molecules such as structures, energies (and energy differences), molecular 

electrostatic potential in space [33], polarizability [34] electronic spectra [35] or reactivity. Some 

of these properties may then be used in cheminformatics applications to derive structure-property 

relationships for partition properties or solubility or structure-activity relationships for biological 

activity. Note, however, that the non-physically-observable model properties such as net atomic 

charges [17,18,36,37] are used far more often as descriptors in this context, although the adequacy 

of these descriptors for reaction  prediction has been questioned [38]. 

The Role of Models in Describing Molecules and Reactions for AI and ML 

Only thirty years’ ago, before the advent of everyday computer graphics programs and tools that 

allow chemical structures to be displayed and manipulated in 2D and 3D, most chemists used small 

physical model building sets, the successors of van’t Hoff’s models, that allowed them to create 

3D structures of molecules of interest [39]. These were very useful for solving issues of 

conformation, reactivity and structure, for example in the determination of the structure of DNA 

[40]. In inorganic chemistry, the standard Lewis eight-electron picture is complemented by the 

VSEPR (Valence Shell Electron Pair Repulsion) or Gillespie-Nyholm model [41], which gives 

rise to a series of standard geometrical shapes that describe common coordination patterns ( linear, 

trigonal planar, tetrahedral, trigonal bipyramid and octahedral) around central (usually metal) 

atoms. Neither the Lewis nor the VSEPR model is universally successful but they provide a 

conceptual basis for understanding and communicating ideas about chemical structures and 

reactions. This early extension of the Lewis model and the introduction of two-center three-

electron bonding [42] serve as prototypes for what will become necessary improvements to handle 

in particular non-covalent interactions but in general any structures or interactions not treated by 

the existing model. 

Chemistry and chemists need to describe more than static molecules: A large part of the science is 

devoted to reactions, in which molecules combine or dissociate and result in new, different 

molecules. On the one hand, combining two or more poorly described entities (molecules) 

exacerbates the situation, multiplying the inadequacies. On the other hand, since chemists describe 
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reactions in terms of bonds made or broken, the Lewis model lends itself well to describing both 

molecules and reactions. Furthermore, as with single structures, the storage and searching of 

reactions in chemical databases, based on connectivity of atoms has become a very useful tool for 

the synthetic chemist. We have mentioned one limit above; that the Woodward-Hoffmann orbital-

based rules are necessary to describe electrocyclic reactions [28]. 

Reaction databases that only store reactions are relatively straightforward constructions, if we look 

further, for example to systems for predicting reactions or suggesting synthetic routes [43], 

whether using manually coded transformations or developments using automated machine 

learning and AI techniques, limitations of the Lewis model become apparent [38]. This is because 

non-equilibrium structures such as transition states that cannot be described by the conventional 

Lewis model are passed through during reactions. Quantum chemical methods, often in 

combination with molecular dynamics, can predict the course of a specific reaction accurately but 

at a high cost in human and computer time for all but the simplest reactions. Additionally, reactions 

do not usually occur for isolated molecules but in solution, on a surface or within porous solids, at 

high temperatures or pressures. These conditions can seldom be considered completely in 

computational studies. Furthermore, reactions often follow competing paths, where the dominance 

of one over another often depends on the specific reaction conditions and only minor variations 

can give rise to a different outcome. Biological systems have a network of pathways and it is often 

very difficult to determine which path predominates.   

Optimizing reaction conditions is often down to trial and error. In this regard it is worth noting that 

a major deficit in information lies in the scope of a particular reaction and of negative results; i.e. 

reactions that do not work. Until there are sufficient standardized data available regarding 

variations in the parameters for a reaction (e.g. temperature, pressure, pH, solvents, reagents, 

catalysis etc.) it will be difficult to use AI/ML methods successfully and routinely. What is needed 

is true Big Data, where real-time data is captured from laboratories carrying out experiments under 

defined conditions. Currently, several research groups are working on the area of automated 

syntheses so that not only the reactions and workup are automated, but also the conditions of the 

reaction closely monitored, controlled, varied and automatically recorded. For examples see: 

[44,45,46,47]. A convergence of technologies, such as robotics, telemetrics, analytics, in addition 
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to using ML/AI techniques, could enable an infrastructure to develop that enables data-driven 

discovery [48]and transforms chemistry from an empirical to a predictive science [49]. 

Computer systems for predicting reactions or suggesting synthetic routes have been developed 

since the 1960s. They usually differ in one of two ways: They either involve considerable work in 

manual annotation of the transformations, as with the seminal work of Corey and Wipke with 

LHASA (Logic and Heuristics Applied to Synthetic Analysis) [50], or implement an automatic 

ML approach that encodes the reactions based on a training set, as pioneered by Gelernter [51,52]. 

Latterly, hard- and software improvements have made advances possible (see, for example 

[53,54,55]), as has an unprecedented effort in the manual coding of reactions for Chematica [56]. 

This work has shown that for many cases of reactions, the information implicit in the molecular 

graph is insufficient to give necessary discrimination [38]. Thus, electron densities or 

wavefunctions are needed. While such information can be calculated routinely using quantum 

mechanics, the effort and time involved makes this impractical for large numbers of molecules, 

and impossible for the hundreds of millions of known molecules. Program developers [54] have 

gone back to methods developed in the 70s and 80s such as the Gasteiger-Marsili [36,37] method 

for calculating partial charges. Such methods, although seemingly outdated, are uniquely fast 

because of the limits in computer power when they were developed. Chematica [56] uses among 

other parameters the Hammett substituent constant [57] developed in the 1930s. These uses of 

group contribution methods, or of very approximate calculations in general, suggests that, in many 

areas of cheminformatics, the size of the data generated has outgrown the methodology to process 

it effectively. This conclusion, however, may be premature. Fast and approximate quantum 

mechanical techniques provide alternatives, as was shown as long ago as 1988 [58], admittedly for 

“only” 53,000 molecules. 

A problem is that chemistry is not a traditional data science; a major difference between chemistry 

and other scientific disciplines is that chemists continuously create new research entities; 

molecules. Thus while each new molecule is a piece of new knowledge that increases the known 

chemical space, the interaction of new molecules with those previously known is essentially 

unknown and will in general not be investigated: Chemists are in fact increasing the relative lack 

of knowledge. Largely, chasing after the new is prioritized over fully investigating the known. 
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This is exemplified by the fact that for many researchers, the most valuable search in a large 

chemical structure database is often one that retrieves (correctly) zero hits. 

Cheminformatics is an old discipline that preceded the current interest in ML and AI by several 

decades, as shown by the subject of the 2000 Beilstein Bozen Symposium [59]. A recent discussion 

of AI and ML in chemistry and drug design [60] traces the beginning back to the classical 1964 

papers of Hansch and Fujita [61] and Free and Wilson [62]. All that has really changed recently is 

the amount of data that is available and the upsurge of deep-learning algorithms, which date back 

to the late 1960’s [63] but were preceded in chemistry by far simpler back-propagation neural nets 

[64] and made their first impact around 2015 [65]. At the second Beilstein Bozen Symposium in 

1990, Prof. Gerald Maggiora described a then novel use of a back-propagation neural net to predict 

the products of organic reactions [66] and Prof. Herbert Gelernter the use of inductive and 

deductive machine learning to build a knowledge base for synthetic organic chemistry [52]. It is 

therefore not surprising that the problem of describing molecules to computers was essentially 

solved more than thirty years ago. The first simple line notations eventually gave way to SMILES 

[15], which is still very widely used, and later to the less instinctive but more powerful InChI [16]. 

These line notations and connection tables [67] are based entirely on a Lewis bonding picture. 

Indeed, there is no need to use the chemical structure to generate descriptors for modeling, 

structure-activity and structure-property relationships, the forerunners of today’s ML approaches. 

SMILES strings themselves and fragments thereof serve equally well as descriptors [68]. Thus, 

with very few exceptions based on physical observables such as the molecular electrostatic 

potential [33], cheminformatics, including the use of ML and AI, is based on Lewis structures. 

Even the widespread fingerprints used for very high-throughput screening [69] are based on the 

occurrence of patterns within the Lewis structure. 

For chemists, the Lewis represents both metadata for AI/ML and an essential language for 

communication. However, like language, the Lewis model is context dependent (aromatic bonds, 

boron bonding…) and relies on the interpretive knowledge of the chemist, which limits its 

suitability as a metadata model. Here, we return to the three languages of chemistry mentioned 

above. We are unaware of another branch of science in which the principal language of everyday 

communication in the science is “only” a model and a context-dependent one at that [70]. It is 

idiomatic, fuzzy, incomplete and sometimes redundant, exactly like a real written and spoken 
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language. These properties, which embody the power of our everyday chemistry language, all 

hinder communication with learning machines or artificial intelligence. The consequence is that 

we must distinguish far more clearly between the chemical ontology of AI and ML and our 

everyday language.  

The use of the Lewis model goes even further. Biomolecular simulations are based on molecular 

force fields, which are simply Lewis structures translated into a classical mechanical model that 

punishes deviation from preferred bond lengths, angle and dihedrals, and considers non-bonded 

electrostatic and van der Waals contributions. Thus, there are potentials for bonds, angles between 

bonds, dihedrals and interactions between distant atoms combined with a point-atomic 

representation [71]. These force fields have attained a remarkable level of accuracy for proteins, 

so that force-field based simulations have become predictive in many fields of biology, medicinal 

chemistry and biophysics [72].  

Models, approximations and paradigms 

Despite the many advances made since chemists reached an understanding of chemical structures, 

there is still no all-encompassing theory to enable accurate prediction of structure-activity or 

structure-function relationships. Chemistry remains a confusing science in which the often 

overlapping concepts of models, approximations, ontologies and paradigms are blurred. Kuhn’s 

incommensurable paradigms [73] are easy to discern, if controversial, in physics but far less so in 

chemistry, where they may not even be recognizable. Bonding models are one such case.  

Approximations very often become models in chemistry. The two most prominent examples are 

perhaps the LCAO approximation and molecular orbitals, as outlined above. Some approximations 

are short lived as models because their deficits quickly become apparent. Others, above all LCAO 

and MOs, become part of the conceptual fabric of the science because they work so well. The 

frequency with which necessary approximations attain the status of models is, however, perhaps 

unique to chemistry. 

Paradigms are another matter. The majority of chemists probably cannot recognize Kuhn’s 

incommensurable paradigms in their subject, no more than they can identify scientific revolutions 

within chemistry. Halloun’s alternative view of paradigms [74] is closer to chemical reality. 

Halloun regards paradigms as being personal, rather than universal to the science, and allows 
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apparently incommensurable paradigms to exist side by side in a personal paradigm. Wendel [75] 

characterized this change as follows: 

“By atomizing and personalizing paradigms, Halloun has reduced the vision-altering, 

community defining character of the Kuhnian paradigm to a matter of choosing the 

appropriate paradigm for the situation at hand.  Instead of a crisis over how scientists see 

the world, we have an epistemological supermarket.” 

Halloun’s personal paradigm describes the community paradigm in chemistry almost perfectly. 

Chemists allow Lewis bonding theory, which is closely related to Valence Bond (VB) [76] theory, 

to coexist with MO theory, using whichever they find most appropriate for the question at hand 

[77]. For instance, an MO picture of the SN2 reaction is attractive but less common than the 

compact and informative “curly arrow” picture. The Diels-Alder reaction or aromaticity, on the 

other hand, cannot really be treated adequately within the Lewis picture without resorting to the 

Dewar-Zimmerman rules [78,79] or quantitative VB calculations. If we delve deeper, we find MO 

interpretations of, for instance non-covalent interactions [80] coexisting with more fundamentally 

physical electrostatic pictures [81]. Indeed, the polarization/charge transfer shown in Figure 4 is 

often interpreted as donation into an antibonding *-orbital. 

One feature with this Halloun-like situation in chemistry is that many practitioners do not 

recognize it for what it is, which leads to controversial discussions about which model is correct, 

or more precisely, more correct. This is neither constructive nor of any practical use but has led to 

some controversial contributions [82]. Above all, claiming that one model (usually applied 

incorrectly) “does not work” in order to promulgate an alternative model contributes nothing 

significant to chemistry but such claims are featured in the secondary literature disturbingly often 

[83,84]. Over and above the intellectual belief that chemistry in general needs a clarification of its 

approximations and models and the exact nature of chemistry paradigms, ML and AI must impose 

constraints and conditions on the ontology of chemistry. Conceivably, the ontology of chemistry 

within ML and AI could exist in parallel to the bonding models used and discussed in teaching and 

research. This, however, would waste a unique opportunity to rationalize chemical thinking and 

communication and to establish the concept of models as the language of chemistry. The major 

requirements of a chemical ontology for AI and ML are that it 
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1. Can handle all the bonding and structural features necessary to achieve the required 

goals (i.e. that it can describe current chemistry as completely as possible) 

2. Is suitable for fast and efficient machine code based on existing or future line notations 

or other 2D representations 

3. Is non-redundant in order to avoid dependencies within the ML process. 

These requirements are imposed by external conditions and likely future applications. 

Requirement (1), for instance, must in future include supramolecular chemistry, which means that 

the models should be able to reproduce molecular aggregation via weak interactions. 

Paradoxically, exactly such interactions between drug molecules and proteins form much of the 

basis of classical cheminformatics. These are, however, very specific in nature and have generally 

been defined in detail for, for instance scoring functions. Current models and descriptions are 

poorly suited for the more varied interactions involved in, for instance, self-organization in 

technical systems. 

Requirement (2) results from the conformation problem. Any technique or model that requires a 

specific 3D molecular structure must deal with conformational flexibility, which introduces an 

additional step into the descriptor-generation process that expands exponentially with increasing 

size of the system. This very often rules out MO-based descriptions. 

Requirement (3) pays tribute to the statistical nature of AI and ML: Dependencies between 

descriptors lead to poorly determined statistical modeling.  

As outlined above, this will happen almost exclusively based on the Lewis bonding model. Such 

applications must extend the scope of the Lewis model by automatically recognizing the context-

dependent features like aromaticity or a tendency to undergo electrocyclic reactions. This is 

nothing magical; chemists do it all the time. The most likely conclusion is that the Lewis model 

combined with patter-recognition techniques can do just about anything that alternative MO-based 

models can, even though it is a context-dependent model.  

The Lewis, VSEPR, quantitative molecular orbital and two-center three-electron bond models 

already do quite a good job of describing the structure and chemistry of molecules, and the latter 

helps describe many reactions. Extensions of these models to recognize aromaticity also exist and 

similar ones can be imagined for electrocyclic reactions. There is, however, a need to add non-
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covalent interactions to the model in order to take the importance of complexation and aggregation 

via non-covalent interactions into account. This could be done in a purely ad hoc fashion for each 

type of interaction. This is how force-field developers have generally approached the subject. 

Specific potential functions are added to empirical force fields for hydrogen [85] or halogen [86] 

bonding. However, given that researchers have been busily defining additional non-covalent 

interactions such as tetrel [87], pnictogen [88] and chalcogen bonding [89], this approach leads to 

unnecessary complication of the model. As these interactions together with hydrogen and halogen 

bonding can all be treated within the single “-hole” framework [90], a single unified approach 

seems possible. However, such an approach would require a wavefunction or electron density, 

which is difficult to reconcile with requirement 2 above. A possible solution would be to use 

computationally very efficient quantum mechanics such as, for instance semiempirical molecular-

orbital theory or tight-binding density-functional theory. As outlined above, these techniques are 

fast enough to be applied to entire databases [58] and can be parameterized especially to reproduce 

key properties such as the molecular electrostatic potential [91] or the molecular polarizability 

[92]. Such calculations, however, have a serious practical disadvantage in AI/ML applications to 

very large datasets: Quantum mechanical calculations require 3D molecular structures, which each 

only represent one of sometimes very many energetically accessible conformations for flexible 

molecules. Thus, the calculations must be preceded by extensive conformational searches and 

many conformations must be stored for each molecule. The seemingly less sophisticated 2D 

models are the answer because they consider all conformations implicitly. For instance, the 2D 

Gasteiger-Marsili charge model [36,37] could be extended to produce fast, approximate 2D 

representations of electron densities that give extrema of the molecular electrostatic potential on 

the van der Waals surface of the molecule, rather than the outdated and often misleading net atomic 

charges [93]. Simple additive models for polarizability already exist [94]. As quantitative models 

for intermolecular interaction energies can be built using these quantities [95], developing a ML-

suitable model for intermolecular interactions is feasible. As noted above, old models such as 

Gasteiger-Marsili [36,37] charges or Hammett constants [57] have been used in recent 

applications. This development ignores the immense improvements in hard- and software of the 

last four decades. AI and ML mandate a rebirth of research into such techniques in a modern 

context. 
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The above discussion suggests an important role of Occam’s Razor (lex parsimoniae) in the design 

of such an ontology. Hoffmann, Minkin and Carpenter [96] have discussed the role of lex 

parsimoniae in chemistry and come to the correct conclusion that it is a philosophical but not 

scientific principle that should be applied with great caution, if at all, in chemistry. At the same 

time, they recognize the need for a model language in chemistry: 

“The facts by themselves are indigestible. They are, and must be, encased in language, 

connected to frameworks of understanding (theories).” 

This is what we called the everyday language of chemistry above. It is successful beyond all 

expectations and accounts for much of the creativity found in experimental chemistry. It is, 

however, pragmatic to the extent that the folk ontologies [10] or personal paradigms [74] of 

chemists are assembled from available models and switch happily between them. Consider, for 

instance, the alternative Woodward-Hoffmann [28] and Dewar-Zimmerman [78,79] rules for 

electrocyclic reactions. They can be used interchangeably and both give correct predictions. 

However, the Dewar-Zimmerman rules depend on the concepts of Hückel and Möbius aromaticity, 

which in turn are derived from molecular-orbital theory. In essence, the overlap arguments of 

Woodward and Hoffmann have been replaced by Lewis-like (plus aromaticity) principles by 

Dewar and Zimmerman. Thus, despite Occam, two models exist happily side by side in the 

everyday language of chemistry. There are many more examples. 

The requirement that a chemical ontology for ML be compact and non-redundant, however, 

elevates the lex parsimoniae to a guiding principle that does not apply to everyday communication. 

Notably, this requirement has been advocated on purely intellectual grounds for models of 

chemical bonding in general [97]. 

But, even if we had a suitable ontology that conforms to the three requirements, is chemistry ready 

for big data, ML and AI? Probably not: simply because there are not yet big data in chemistry. 

This would require sufficient measurements under the same conditions with varying parameters, a 

homogeneous spread of measured properties over chemical space, and adequate standards for data 

measurement and reporting. None of these exists in chemistry at present. Melting points of organic 

compounds are an example. Melting points have been reported for millions of organic compounds, 

which makes them an apparently good candidate for big-data applications. However, giving 
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melting points for solid compounds is mandatory in publications. Therefore, everybody measures 

melting points but they are not the primary interest. Varying purity, heating rates, and even if the 

experimentalist is actually looking when the compound melts, affect the results strongly. 

Measuring the melting point is a necessary chore. The result is that the data are of very poor quality. 

This can be seen in a quite recent quantitative structure-property relationship study that gave a 

mean square error between experiment and the models between 42 and 66K [98]. This is not useful 

performance and is unlikely to be the result of poor descriptors or modeling.  

The situation is subjectively even worse in biology. A very relevant factor for biological data is 

the laboratory in which they were measured. Very good agreement between simulations and 

experiment can be achieved for diverse systems [99] but generally, only if the experimental data 

were obtained in a single laboratory, which is the case for reference [99].  

The way forward probably lies in Halloun’s definition of paradigms [74]. Chemists in general, and 

cheminformaticians in particular, will extend the existing Lewis and VSEPR models to include 

necessary features to describe reactions, “non-classical” bonding etc. This is a normal process in 

chemistry, as shown by the introduction of three-center two-electron bonds into the Lewis picture 

[42] and is what Weisberg describes as a “folk ontology” [10]. This process will continue as 

hitherto unrecognized bonding features become apparent and the need arises to describe them in 

AI or ML applications. Descriptions of directional non-covalent interactions, for instance, are 

necessary for any applications involving crystal engineering. These can be treated adequately using 

anisotropic electrostatics [100] and dispersion [101]. It is, however, important to limit these 

extensions to models that are as parsimonious as possible but at the same time generally applicable 

[97]. The alternative patchwork of competing bonding models based on non-separable and non-

unique interactions cannot provide a stable framework for AI and ML. In this respect, the IUPAC 

definition of the hydrogen bond [102] serves as an admirable example of how not to do it. It is also 

important to avoid competing techniques for calculating notional characteristics of interactions 

such as polarization and charge transfer: Because the partitioning of a single effect into these two 

concepts is essentially arbitrary, techniques such as NPA [21] and ALMO [22] can give results 

that differ by large factors for the same system. Using one of these techniques exclusively would 

be feasible but an unnecessary breach of the non-redundancy condition outlined above. In this 
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respect, the requirements for a chemistry ontology for AI and ML are far more stringent than those 

of a folk ontology [10], which in many ways resembles Halloun’s personal paradigms [74]. 

Chemistry is not a solved science, so that the above process must be dynamic. Until 2007, for 

instance, just about all force fields and computer-aided drug design techniques treated the 

interaction between halogens and nucleophiles as repulsive; whereas we now know that halogen-

bonding attractions can be as strong as hydrogen bonds. There will be more such examples but it 

is important to identify the encompassing phenomenon, rather than defining a wealth of apparently 

unique interactions that in reality share a common origin. This common origin is the key to 

successful chemistry models.   

Conclusions 

Data infrastructures are evolving and growing in many areas without being interoperable, giving 

rise to a phase of creolization, in which many inefficiencies in working with data retard innovation 

[103]. Regarding chemistry as a large evolving infrastructure, with knowledge and data being 

generated on a daily basis, one can see not only many examples of such inefficiencies but also 

many practices that are still artisanal. 

Chemistry needs models but chemistry also needs to recognize that models are models. The future 

demands of AI and ML in chemistry will require not only that data collection and storage be 

revolutionized but also that the predominant 2D Lewis and VSEPR bonding models be extended 

rationally and carefully to allow them to describe the phenomena that influence physical, chemical, 

biological and medicinal properties of molecules and aggregates.  

Halloun’s view of paradigms [74], rather than Kuhn’s [73], appears to be most appropriate for 

chemistry. Existing, limping paradigms are typically extended pragmatically to encompass new 

situations. The personal nature of paradigms applies especially to different areas of chemistry. 

VSEPR, for instance, plays little or no role for most organic chemists. Indeed, these personal 

paradigms or folk ontologies not only vary from chemist to chemist but also over time. Chemists 

cherry pick their models to suit their needs. An organic chemist who uses predominantly the Lewis 

bonding picture or an inorganic chemist rooted in the VSEPR model switch quite happily to 

qualitative molecular-orbital arguments to explain electrocyclic reactions or the structure of 

ferrocene, even in teaching.  
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In contrast, cheminformatics will need to adopt a compact extended version of the Lewis/VSEPR 

model that relies as little as possible on arbitrary partitioning or analysis schemes and that can 

describe everything that needs to be described non-redundantly 

In this respect, the advent of AI and ML in chemistry can provide impetus for chemistry in general 

to recognize the role of models and to agree on unified, parsimonious model standards. This will 

not affect the everyday language of chemistry but may help understand the unique basis of 

chemical language. 
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