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Abstract11

We investigate superconductor-insulator quantum phase transitions in ultrathin capacitively cou-12

pled superconducting nanowires with proliferating quantum phase slips. We derive a set of coupled13

Berezinskii-Kosterlitz-Thouless-like renormalization group equations demonstrating that interac-14

tion between quantum phase slips in one of the wires gets modified due to the effect of plasma15

modes propagating in another wire. As a result, the superconductor-insulator phase transition in16

each of the wires is controlled not only by its own parameters but also by those of the neighbor-17

ing wire as well as by mutual capacitance. We argue that superconducting nanowires with properly18

chosen parameters may turn insulating once they are brought sufficiently close to each other.19
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Introduction22

Quantum fluctuations dominate the physics of superconducting nanowires at sufficiently low tem-23

peratures making their behavior markedly different from that of bulk superconductors [1-4]. Many24

interesting properties of such nanowires are attributed to the effect of quantum phase slips (QPS)25

which correspond to fluctuation-induced local temporal suppression of the superconducting order26

parameter inside the wire accompanied by the phase slippage process and quantum fluctuations27

of the voltage in the form of pulses. By applying a bias current one breaks the symmetry between28

positive and negative voltage pulses and, as a result, a superconducting nanowire acquires a non-29

vanishing electric resistance down to lowest temperatures [5,6]. This effect was directly observed30

in a number of experiments [7-10].31

Likewise, quantum phase slips in superconducting nanowires yield shot noise of the voltage [11]32

which originates from the process of quantum tunneling of magnetic flux quanta across the wire.33

One can also proceed beyond the voltage-voltage correlator and evaluate all cumulants of the volt-34

age operator, thus deriving full counting statistics of quantum phase slips [12]. This theory enables35

one to obtain a complete description of superconducting fluctuations in such nanowires. Interesting36

QPS-related effects also occur in superconducting nanorings which can be employed, e.g., for pos-37

sible realization of superconducting qubits [13]. Such effects were investigated theoretically [14]38

and observed in a number of experiments [15,16].39

Each quantum phase slip generates sound-like plasma modes [17] which propagate along the wire40

and interact with other quantum phase slips. The exchange of such Mooĳ-Schön plasmons pro-41

duces logarithmic in space-time interaction between different QPS which magnitude is controlled42

by the wire diameter (cross section) [5]. For sufficiently thick wires this interaction is strong and43

quantum phase slips are bound in close pairs. Accordingly, the (linear) resistance of such wires44

tends to zero at ) → 0, thus demonstrating a superconducting-like behavior in this limit. On the45

other hand, inter-QPS interaction in ultrathin wires is weak, quantum phase slips are unbound and46

the superconducting phase fluctuates strongly along the wire. In this case the wire looses long scale47

superconducting properties, its total resistance remains non-zero and even tends to increase with48
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decreasing temperature thus indicating an insulating behavior at ) → 0. At zero temperature the49

transition between these two types of behavior comes as a quantum phase transition (QPT) driven50

by the wire diameter [5]. Below we will also refer to this QPT as superconductor-insulator transi-51

tion (SIT).52

In this work we are going to show that this SIT can be substantially modified in a system of ca-53

pacitively coupled superconducting nanowires even without any direct electric contact between54

them. In our previous work [18] we already elucidated some non-local QPS-related effects in such55

nanowires which yield non-equilibrium voltage fluctuations in the system which exhibit a non-56

trivial dependence on frequency and bias current. Here we will demonstrate that quantum fluctu-57

ations in one of the two wires effectively "add up" to those of another one, thereby shifting QPT in58

each of the wires in a way to increase the parameter range for the insulating phase. Qualitatively59

the same effect is expected to occur in a single superconducting nanowire that has the form of a60

meander frequently used in experiments.61

The model62

We first consider the system of two long parallel to each other superconducting nanowires, as it is63

schematically shown in Figure 1a.64

Figure 1: The systems under consideration: a) Two capacitively coupled superconducting
nanowires and b) Superconducting nanowire in the form of a meander.

The wires are described by geometric capacitances �1 and �2 (per unit wire length) and kinetic in-65
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ductances L1 and L2 (times length) effectively representing the two transmission lines. Capacitive66

coupling between these two nanowires is accounted for by the mutual capacitance �<. The cor-67

responding contribution to the system Hamiltonian that keeps track of both electric and magnetic68

energies in these coupled transmission lines reads69

�̂)! =
1
2

∑
8, 9=1,2

∫
3G(L−1

8 9 Φ̂8 (G)Φ̂ 9 (G) + (1/Φ2
0)�

−1
8 9 (∇ ĵ8 (G)∇ ĵ 9 (G)), (1)70

where G is the coordinate along the wires, L8 9 and �8 9 denote the matrix elements of the inductance71

and capacitance matrices72

Ľ =

L1 0

0 L2

 , �̌ =


�1 �<

�< �2

 (2)73

and Φ0 = c/4 is the superconducting flux quantum.74

The Hamiltonian (1) is expressed in terms of the dual operators ĵ(G) and Φ̂(G) [14] which obey the75

canonical commutation relation76

[Φ̂(G), ĵ(G′)] = −8Φ0X(G − G′) (3)77

and are related to the charge density and the local phase operators, respectively &̂(G) and î(G), by78

means of the following equations79

&̂(G) = 1
Φ0
∇ ĵ(G), î = 24

G∫
0

3G′Φ̂(G′). (4)80

Physically, Φ̂8 (G) represents the magnetic flux operator, while the operator ĵ8 (G) is proportional81

to that for the total charge @̂8 (G) that has passed through the point G of the 8-th wire up to the some82

time moment C, i.e. @̂8 (G) = −ĵ8 (G)/Φ0.83

Provided the wires are thick enough the low energy Hamiltonian in Eq. (1) is sufficient. However,84

4



for thinner wires one should also account for the effect of quantum phase slips. The corresponding85

contribution to the total Hamiltonian for our system can be expressed in the form [14]86

�̂&%( = −
∑
9=1,2

W 9

∫
3G cos( ĵ 9 (G)), (5)87

where88

W 9 ∼ (6 9bΔ/b) exp(−06 9b), 9 = 1, 2 (6)89

denote the QPS amplitudes per unit wire length [6], 6 9b = '@/' 9b is dimensionless conductance of90

the 9-th wire segment of length equal to the superconducting coherence length b (here and below91

'@ = 2c/42 ' 25.8 KΩ is the quantum resistance unit and ' 9b is the normal state resistance of the92

corresponding wire segment), Δ is the superconducting order parameter and 0 ∼ 1 is a numerical93

prefactor. We also note that the Hamiltonian (5) describes tunneling of the magnetic flux quantum94

Φ0 across the wire and can be viewed as a linear combination of creation (48 ĵ8 ) and annihilation95

(4−8 ĵ8 ) operators for the flux quantum Φ0 .96

It is obvious from Eq. (4) that QPS events cause redistribution of charges inside the wire and gen-97

erate pairs of voltage pulses moving simultaneously in the opposite directions (cf., Figure 1a)98

+̂8 (C) = 1/Φ0
∑
9=1,2

�−1
8 9 (∇ ĵ 9 (G1, C) − ∇ ĵ 9 (G2, C)). (7)99

Clearly, in the presence of capacitive coupling quantum phase slips in one of the wires also gener-100

ate voltage pulses in another one.101

To summarize the above considerations, the total Hamiltonian for our system is defined as a sum of102

the two terms in Eqs. (1) and (5),103

�̂ = �̂)! + �̂&%(, (8)104
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representing an effective sine-Gordon model that will be treated below.105

Quantum phase transitions: renormalization group analysis106

In order to quantitatively describe QPT in coupled superconducting wires we will employ the107

renormalization group (RG) analysis. This approach is well developed and was successfully ap-108

plied to a variety of problems in condensed matter theory, such as, e.g., the problem of weak109

Coulomb blockade in tunnel [19-22] and non-tunnel [23-25] barriers between normal metals or110

that of a dissipative phase transition in resistively shunted Josephson junctions [19,26-28]. In the111

case of superconducting nanowires QPT was described [5] with the aid of RG equations equivalent112

to those initially developed for two-dimensional superconducting films [29] which exhibit classical113

Berezinskii-Kosterlitz-Thouless (BKT) phase transition driven by temperature. In contrast, quan-114

tum SIT in quasi-one dimensional superconducting wires [5] with geometric capacitance � and115

kinetic inductance L is controlled by the parameter [5]116

_ =
'@

8

√
�

L (9)117

proportional to the square root of the wire cross section B.118

It follows immediately from the analysis of Ref. [5] that provided the two superconducting wires119

depicted in Figure 1a are decoupled from each other, i.e. for �< → 0, one should expect two inde-120

pendent QPT to occur in these two wires respectively at _1 = 2 and at _2 = 2 where, according to121

Eq. (9), we define _1,2 = ('@/8)
√
�1,2/L1,2. The task at hand is to investigate the effect of capaci-122

tive coupling between the wires on these two QPT.123

For this purpose let us express the grand partition function of our systemZ = Tr exp(−�̂/)) in124

terms of the path integral125

Z =

∫
�j1

∫
�j2 exp(−([j1, j2]), (10)126
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where127

( =
1

2Φ2
0

∑
8, 9=1,2

∫
3G3g

(
bΔL8 9mgj8mgj 9 +

1
bΔ
�−1
8 9 mGj8mGj 9

)
−

∑
8=1,2

H8

∫
3G3g cos j8 (11)128

is the effective action corresponding to the Hamiltonian (8) and129

H8 = W8b/Δ ∼ 6 9b exp(−06 9b) � 1 (12)130

denote effective fugacity for the gas of quantum phase slips in the 8-th wire. Note that, having in131

mind that the QPS core size in G- and g-directions is respectively G0 ∼ b and g0 ∼ Δ−1, in Eq. (11)132

for the sake of convenience we rescaled the spatial coordinate in units of G0, i.e. G → Gb and the133

time coordinate in units of g0, i.e. g → g/Δ.134

In the spirit of Wilson’s RG approach we routinely divide the j-variables into fast and slow compo-135

nents j8 = j 58 + jB8 , where136

j
5

8
(G, g) =

∫
Λ<l2+@2<Λ+XΛ

3l3@

2c
jl,@4

8lg+8@G , jB8 (G, g) =
∫

l2+@2<Λ

3l3@

2c
jl,@4

8lg+8@G . (13)137

Setting XΛ/Λ � 1, expanding in the fast field components j 5
8
and integrating them out we pro-138

ceed perturbatively in H1,2 and observe that in order to account for the leading order corrections it is139

necessary to evaluate the matrix Green function at coincident points which reads140

�̌ 5 (0, 0) = Φ2
0

∫
3l3@

(2c)2
(
bΔĽl2 + 1

bΔ
�̌−1@2

)−1
= 2(XΛ/Λ)_̌, (14)141

where _̌ = ('@/8)V̌�̌ and V̌ = (�̌Ľ)1/2 is the velocity matrix for plasmon modes propagating142
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along the wires. The matrix _̌ has the form143

_̌ =
1√√

1
E2

1
+ 1
E2

2
+

2
√

1− �2
<

�1�2
E1E2


_1

©« 1
E1
+

√
1− �2

<
�1�2
E2

ª®¬ '@�</8

'@�</8 _2
©« 1
E2
+

√
1− �2

<
�1�2
E1

ª®¬


, (15)144

where E8 = 1/
√
�8L8 is the velocity of the Mooĳ-Schön modes in the 8-th wire in the absence of145

capacitive coupling between the wires, i.e. for �< → 0.146

Following the standard procedure [29] and proceeding to bigger and bigger scales Λ, we eventually147

arrive at the following RG equations for the QPS fugacities H1 and H2:148

3H8

3 logΛ
= (2 − _88)H8, 8 = 1, 2, (16)149

where _11 and _22 are diagonal elements of the matrix _̌ (15). Note that here we restrict our RG150

analysis to the lowest order in H1,2 which is sufficient for our purposes. As long as one keeps only151

the linear in H1,2 terms in the RG equations all other parameters of our problem, e.g., _88, remain152

unrenormalized.153

As it can be observed from Eqs. (16), our system exhibits two BKT-like QPT at _11 = 2 and _22 =154

2. In the limit �< → 0 the wires are independent from each other, _11(22) → _1(2) and these QPT155

obviously reduce to that predicted in Ref. [5]. However, for non-zero capacitive coupling between156

the wires the two QPT occur at the values of _1,2 exceeding 2. For the first wire the corresponding157

phase transition point is fixed by the condition158

_1 = 2

√
1 + E2

1
E2

2
+ 2 E1

E2

√
1 − �2

<

�1�2

1 + E1
E2

√
1 − �2

<

�1�2

. (17)159

The same condition for the second wire is obtained from Eq. (17) by interchanging the indices 1↔160

2.161
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The above results allow to conclude that in the presence of capacitive coupling SIT in both wires162

occurs at larger values of _1,2 than in the absence of such coupling. In other words, quantum fluctu-163

ations in one of these wires effectively decrease superconducting properties of the other one.164

It follows from Eq. (17) that the magnitude of such mutual influence depends on the ratio of the165

plasmon velocities in the two wires E1/E2 and on the strength of the capacitive coupling controlled166

by �<. Provided the wire cross sections B1 and B2 differ strongly the plasmon velocities E8 ∝
√
B8167

also differ considerably. Assume, for instance, that the first wire is much thinner than the sec-168

ond one. In this limit we have E1 � E2 and, hence, the QPT condition (17) in the first wire re-169

mains almost unaffected for any capacitive coupling strength. If, on the contrary, the first wire170

is much thicker than the second one, then one has E1 � E2 and the condition (17) reduces to171

_1 ' 2/
√

1 − �2
</(�1�2) demonstrating that the critical value _1 can exceed 2 considerably for172

sufficiently large values �<.173

Figure 2: a) Critical surfaces corresponding to SIT at _11 = 2 and _22=2. b) Phase diagram for
two capacitively coupled superconducting nanowires with _1 = 2.01 and _2 = 2.03. Both curves
_11(�<) and _22(�<) decrease and cross the critical line _2 = 2 with increasing mutual capaci-
tance �<.

It is obvious that the strength of capacitive coupling depends on the distance between the wires. At174

large distances this coupling is negligible �< → 0, whereas as the wires get closer to each other175

the value �< increases and, hence, their mutual influence increases as well. Let us choose the wire176

parameters in such a way that for �< = 0 both these wires remain in the superconducting phase be-177

ing relatively close to SIT. In this case the parameters _1 and _2 should be just slightly bigger than178
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2. Moving the wires closer to each other we "turn on" capacitive coupling between them, thus, de-179

creasing both values _1 and _2 below 2. As a result, two superconducting wires become insulating180

as soon as they are brought sufficiently close to each other. This remarkable physical phenomenon181

is illustrated by the phase diagram in Figure 2b.182

In order to complete this part of our analysis we point out that transport properties can be investi-183

gated in exactly the same manner as it was done, e.g., in Ref. [5] in the case of a single nanowire.184

Generalization of the technique [5] to the case of two capacitively coupled superconducting185

nanowires is straightforward. For a linear resistance of the 8-th wire '8 ()) and for _88 > 2 (or for186

any _88 at sufficiently high temperatures we obtain187

'8 ()) ∝ W2
8 )

2_88−3, 8 = 1, 2. (18)188

Extension to other geometries189

The effects discussed here can be observed in a variety of structures involving superconducting190

nanowires. For instance, superconducting nanowires in the form of a meander (see Figure 1b) are191

frequently employed in experiments. In this case different segments of the wire are parallel to each192

other being close enough to develop electromagnetic coupling. Having in mind the above analysis193

one expects that the wire of such a geometry would be "less superconducting" than the same wire194

that has the form of a straight line.195

For an illustration, let us mimic the behavior of the wire depicted in Figure 1b by considering three196

identical parallel to each other capacitively coupled superconducting nanowires. For simplicity we197

will assume the nearest neighbor interaction, i.e. the second (central) nanowire is coupled to both198

the first and the third nanowires via the mutual capacitance �< whereas the latter two are decou-199

pled from each other. We again assume that the wires are thin enough and quantum phase slips200

may proliferate in each of these wires.201

Quantum properties of this system are described by the same effective action (11) where the induc-202
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tance and capacitance matrices now take the form203

Ľ =


L 0 0

0 L 0

0 0 L


, �̌ =


� �< 0

�< � �<

0 �< �


, (19)204

and the summation runs over the indices 8, 9 = 1, 2, 3. Proceeding along the same lines as in the205

previous section we again arrive at Eq. (14), where the diagonal elements of the matrix _̌ now read206

_22 =
_

2

(√
1 −
√

2
�<

�
+

√
1 +
√

2
�<

�

)
, (20)207

_11 = _33 =
_

2

(
1 + 1

2

(√
1 −
√

2
�<

�
+

√
1 +
√

2
�<

�

))
(21)208

and the QPS interaction parameter _ is defined in Eq. (9). We again arrive at the RG equations of209

the form (16) (now with 8 = 1, 2, 3). Being combined with Eqs. (20), (21) these RG equations210

demonstrate that in the presence of capacitive coupling SET occur at _88 = 2 implying _ > 2 for211

each of the three wires. This observation is fully consistent with our previous results derived for212

two coupled nanowires.213

Furthermore, the RG equation (16) with 8 = 2 combined with Eq. (20) also describes the effect of214

interacting quantum phase slips and QPT in the wire having the form of a meander (Figure 1b). In215

this case, within the approximation of the nearest neighbor capacitive interaction between the wire216

segments QPT occurs at217

_ =
4√

1 −
√

2�<
�
+

√
1 +
√

2�<
�

, (22)218

i.e. the critical value of the parameter _ exceeds 2 as soon as the mutual capacitance �< differs219

from zero. As it is clear from Eqs. (20), (21), the approximation of the nearest neighbor interac-220

tion appears to be well justified in the limit �< � �. For stronger interactions with �< ∼ � this221

approximation most likely becomes insufficient for a quantitative analysis. However, on a qualita-222
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tive level our key observations should hold also in this case: A nanowire in the form of a straight223

line with _ slightly exceeding the critical value 2 should demonstrate superconducting-like behav-224

ior with '()) ∝ )2_−3 [5] whereas the wire with exactly the same parameters may turn insulating225

provided it has the form of a meander with capacitive coupling between its segments.226

Conclusions227

We have analyzed the effect of quantum fluctuations in capacitively coupled superconducting228

nanowires. We have demonstrated that plasma modes propagating in one such nanowire play the229

role of an effective quantum environment for another one modifying the logarithmic interaction be-230

tween quantum phase slips in this wire. As a result, the superconductor-insulator quantum phase231

transition gets shifted in a way to increase the parameter range for the insulating phase. Hence,232

superconducting nanowires may turn insulating provided they are brought close enough to each233

other. It would be interesting to observe this effect in forthcoming experiments with superconduct-234

ing nanowires.235

We acknowledge partial support by RFBR Grant No. 18-02-00586. AGS acknowledges support by236

the Russian Science Foundation (project No. 19-72-10101).237
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