Preprint Title: Highly sensitive detection of estradiol by a SERS sensor based on TiO$_2$ covered with gold nanoparticles

Authors: Andrea Brognara, Ili F. Mohamad Ali Nasri, Beatrice R. Bricchi, Andrea Li Bassi, Caroline Gauchotte-Lindsay, Matteo Ghidelli and Nathalie Lidgi-Guigui

Publication Date: 19 Mär 2020

Article Type: Full Research Paper

ORCID® iDs: Beatrice R. Bricchi - https://orcid.org/0000-0002-4107-7106; Andrea Li Bassi - https://orcid.org/0000-0002-1265-4971; Nathalie Lidgi-Guigui - https://orcid.org/0000-0002-5631-1057
Highly sensitive detection of estradiol by a SERS sensor based on TiO₂ covered with gold nanoparticles

A. Brognara¹,², I. F. Mohamad Ali Nasri³, B. R. Bricchi¹, A. Li Bassi³, C. Gauchotte-Lindsay³, M. Ghidelli¹,², N. Lidgi-Guigui⁴

¹ Dipartimento di Energia, Laboratorio Materiali Micro e Nanostrutturati, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
² Department of Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-straße 1, 40237 Düsseldorf, Germany
³ James Watt School of Engineering, Rankine Building, Oakfield Avenue, G12 8LT, University of Glasgow, Glasgow, United Kingdom
⁴ CSPBAT, UMR 7244, Université Paris 13, Sorbonne Paris Cité, 99 Av. JB Clément, 93430 Villette France

E-mail: nathalie.lidgi-guigui@univ-paris13.fr

Received xxxxxx
Accepted xxxxxx
Published xxxxxx

Abstract
We propose the use of gold nanoparticles grown on the surface of nanoporous TiO₂ films as Surface Enhanced Raman Scattering (SERS) sensors for the detection of 17β-estradiol. Gold deposition on top of TiO₂ surfaces leads to the formation of nanoparticles, which plasmonic properties fit the requirements of a SERS sensor well. The morphological and optical properties of this surface were investigated. Specifically, we demonstrated that the TiO₂ background pressure during pulsed laser deposition and annealing conditions enabled the formation of a variety of Au nanoparticles with controlled size, shape and distribution thus resulting in a versatile sensor. We have exploited this surface for the detection of 17β-estradiol, an emerging contaminant in environmental waters. We have found a limit of detection of 10 nM with a sensitivity allowing dynamic range of five orders of magnitude (up to 100 µM).

Keywords: TiO₂ nanostructures, Au nanoparticles, plasmonics, SERS, estradiol, E2, sensor, aptamer

1. Introduction
Surface Enhanced Raman Scattering (SERS) as a sensing tool requires the optimization of the surface and its functionalization. The surface needs a combination of a good enhancement over a large range of wavelengths - so that molecules with various fingerprints can be detected - while it should also be easy to fabricate at a reduced cost. In addition, the surface functionalization must guarantee the selection, detection and quantification of a target molecule, namely a biomarker [1–3], or a pollutant [4,5] dissolved in complex media such as blood, plasma, urine or river and sea water.

SERS is mainly based on an electromagnetic effect which can originate from the excitation of a plasmon resonance, especially localized surface plasmon (LSP) reported for metallic nanoparticles (NPs). Other effects may contribute to
for the functionalization of SERS sensors [19–22]. These molecules are single stranded DNA that were specifically selected to bound to a targeted DNA. They are relatively cheap and their chemistry is easy to tune so they can attach to a metallic surface. They can be selected to be short enough to guarantee that the targeted molecule is in the enhanced volume of the plasmonic nanoparticle (the effect of SERS decreases exponentially with the distance from the surface and is negligible beyond 5 nm). Another interesting feature of aptamer is that their Raman fingerprint is easily recognizable as DNA is an extensively studied molecule.

In this study, we focus on the detection of E2 with aptamer functionalization. E2 is the main female hormone responsible for growth, reproduction, breast development, maturation, bone formation, and childbearing in mammals. It is the most potent estrogen [23]. Estrogens found in the environment originate from human and animal excretions and are released in surface waters from agricultural activities, non-treated waste or wastewater treatment effluents [24]. High concentrations of E2 have been found in surface and groundwater in urban areas rising concerns in the EU. Studies have revealed that in some fish species, exposure to E2 has led to the feminization of males [25,26]. Routine instrumental methods for the detection of E2 in environmental waters are well established [27], they are very specific and very sensitive; however, they also are time-consuming and expensive [28]. SERS sensors are therefore investigated as an alternative as they present the potential for in-situ near real-time analysis.

In the following we will present the extent of possibilities given by the use of TiO2 porous surfaces decorated with Au NPs as SERS sensors. The tuning of TiO2 growth and Au deposition gives access to a variety of surfaces with specific optical properties. In a second part, we show that it is possible to detect as low as 10 nM of E2 using these surfaces.

2. Materials and methods

2.1. Growth of the TiO2/Au nanostructured surfaces

TiO2/Au substrates were synthesized using a two-step deposition strategy. First, a nanostructured TiO2 film was synthesized by Pulsed Laser Deposition (PLD), then a Au NP layer was deposited on the top by thermal evaporation of Au followed by solid-state dewetting to induce the formation of NPs. Specifically, a 99.9% pure TiO2 target was ablated through a Nd:YAG ns-pulsed laser ($\lambda = 532$ nm) with pulse duration of 5-7 ns and 10 Hz repetition rate, laser fluence on the target of 3.5 J/cm² and pulse energy of 200 mJ. Film synthesis occurred at room temperature in oxygen (O2) atmosphere, using both Si (100) and soda-lime glass substrates, which were mounted on a sample holder at a fixed target-to-substrate distance of 5 cm. According to what has
been reported in previous works [29,30], control of background pressure within the deposition chamber allowed tuning of film morphology (i.e. higher pressure resulted in higher film porosity). Samples were therefore deposited with two pressure values of 8 Pa and 12 Pa, to obtain different film porosities.

A thin layer of (99.9% pure) Au was then evaporated through an Edwards E306A resistive heating thermal evaporator. The equivalent (i.e. nominal) thickness of the evaporated layers was monitored through a quartz microbalance sensor. Three different values of Au thickness, namely 3, 6 and 15 nm, were selected enabling the formation of different sizes of AuNPs by subsequent annealing. Selected samples underwent annealing treatment at 500°C for 2 hours in air, in a Lenton muffle furnace with 4°C/min heating ramp. The thermal treatment was carried out to induce both crystallization of the as-deposited amorphous TiO$_2$ into anatase phase (as discussed in previous works [29,30]), and the formation of AuNPs exploiting solid-state dewetting phenomena of the Au films.

A field emission scanning electron microscope (FEG-SEM, Zeiss Supra 40) was used to perform morphological characterization analyzing films deposited on Si(100) substrate. Average size distribution of Au NPs was estimated through statistical analysis on top view SEM images with the open source software ImageJ®. Since Au NPs shape was not always perfectly circular, their area was measured with ImageJ® in order to calculate the equivalent diameter, which was used to define NPs size.

2.2. Chemicals and Reagents

Mercaptobenzoic acid (MBA), 6-mercapto-1-hexanol (MCH), 17β-Estradiol (E2), and ethanol were purchased from Sigma Aldrich.

A 17β-Estradiol binding aptamer was previously isolated by the SELEX process by Kim et al. [18]. It was purchased from Eurogenetec with the following 76-mer-long sequence 5'-SH-C6-S'GCT-TCC-AGC-TTT-TTA-TTT-AAC-AGG-GTA-GGC-GCT-CTG-CGC-ATT-CAG-AGG-GTA-GGC-GCT-CTG-CGC-GCT-GAA-GCG-CGG-AAG-C-3'. The thiol SH group was added on the 5' end of the aptamer for functionalization via a Au-S bond. The aptamer was diluted and aliquoted upon arrivals and kept at -18°C.

2.3. Sample functionalization

MBA was used as a common Raman reporter to sort out the best deposition parameters for Raman scattering enhancement. The thiol group is known to have strong affinities with Au but none with TiO$_2$. Moreover, its Raman spectrum is well known and the molecule demonstrates a large scattering cross section [31]. For the functionalization of TiO$_2$/Au surfaces, MBA was diluted in ethanol at the concentration of 2.9 mM. TiO$_2$/Au samples were then soaked in the solution overnight. Then, they were thoroughly rinsed with ethanol before drying with nitrogen.

For E2 detection, the TiO$_2$/Au surfaces were first functionalized with the aptamers. For this a fresh 3 µM solution of aptamer was prepared in Tris-HCl buffer solutions (20 mM Tris-HCl contained 1 M of HCl, 0.1 M of NaCl and 5 mM of MgCl$_2$ with pH of 7.5). The samples were left for 2h in this solution before rinsing with Tris-HCl buffer solution and Milli-Q water. In order to prevent unspecific interactions between E2 and the gold surface, the sample was then left for 2h in a solution of the blocking agent, MCH. This latter molecule occupies sites on gold not bound to aptamers (Figure 1) and thus prevents direct deposition on gold of contamination molecules that could blur the signal. It also prevents the DNA's amine functional groups to form weak bonds with the gold and it helps the aptamer to have a homogeneous orientation on the surface [32].

The MCH solution was prepared in phosphate buffer saline (PBS) solution mixed with 10 mM of MgCl$_2$. The concentration of MCH was constant at 14.6 µM. The samples were rinsed three times with PBS and Reverse Osmosis water (RO water) to remove any unbound or excess molecules after the deposition.

Samples with different concentrations of E2 were prepared in order to test the sensitivity of the sensor. E2 was first diluted in ethanol at saturation (36 mM). This solution was further diluted in RO water to obtained E2 solutions with concentrations of 1 nM, 10 nM, 100 nM, 1 µM, 10 µM, 100 µM and 1 mM. Samples were left in the E2 solutions for 1 hour before being rinsed with RO water and blown dried. Figure 1 gives a schematic of the final system.

![Figure 1: Schematic of the SERS sensor. The figure is out of scale for the sake of clarity.](image-url)
2.4. Optical and SERS measurements

Plasmon resonance was evaluated via optical spectroscopy. For this purpose, transmission spectra were acquired through a UV-vis-NIR PerkinElmer Lambda 1050 spectrophotometer with a 150 mm diameter integrating sphere in the range 250-2000 nm, illuminating the sample from the glass substrate side. All the acquired spectra were normalized with respect to glass substrate contribution.

The SERS spectra were recorded with a Jobin-Yvon micro-Raman spectrophotometer (Labram 300), using a 100x magnification objective (NA = 0.90) in back-scattering geometry, with a spectral resolution of 3 cm\(^{-1}\) and a spatial resolution of about 1 \(\mu\)m. The employed excitation wavelength was 633 nm, with a power of 1 mW for an acquisition time of 300 s. The typical peak of silicon at 521 cm\(^{-1}\) was used as an internal reference to normalize the intensities of all the spectra. The spectra presented here are the average of four spectra taken on different points of each sample.

3. Samples growth and structural characterization

3.1. Morphology

Nanostructured TiO\(_2\) films with hierarchical micro/nanoscale morphology and tuned porosity were deposited by Pulsed Laser Deposition (PLD) as already reported in [29]. Specifically, by increasing the background O\(_2\) pressure during deposition, it is possible to deposit films that are more porous; samples were therefore synthesized at 8 Pa or 12 Pa. Au layers were then evaporated on top of the TiO\(_2\) films. Three nominal thickness values of 3, 6 and 15 nm were chosen, in order to obtain NPs with different diameters (see Table 1). After deposition of Au, samples underwent an annealing treatment in a furnace at 500\(^\circ\)C for 2 h, which leads to crystallization of TiO\(_2\) to the anatase phase (as demonstrated by Raman spectra, not shown) and caused a dewetting processes on the Au layer and the formation of NPs [33]. Evaporation-dewetting of Au on TiO\(_2\) layers with different porosity was aimed at exploiting the effect of the surface morphology on the formation of Au NPs with different size distribution and density.

![Table 1: Average equivalent diameter with standard deviation of Au NPs on TiO\(_2\) films after annealing.](image)

<table>
<thead>
<tr>
<th>AuNPs diameter</th>
<th>8 Pa</th>
<th>12 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Au 3 nm</td>
<td>Au 6 nm</td>
</tr>
<tr>
<td>Average diameter [nm]</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Standard deviation [nm]</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Au surface coverage (%)</td>
<td>9.5</td>
<td>21.6</td>
</tr>
</tbody>
</table>

Figure 2 shows the two limit cases of 3 and 15 nm of evaporated Au on a TiO\(_2\) film deposited at 12 Pa, observations were similar for the 8 Pa films. The effects of heat treatment are clearly visible: in the case of 15 nm of Au (Figure 2 c, d), a continuous layer is formed on the underlying TiO\(_2\) surface which, upon thermal treatment, leads to the formation of isolated, large Au nanoislands. Evaporation of 3 nm of Au resulted instead in a non-continuous nanostructured layer for which thermal treatment leads to the growth of well separated AuNPs (Figure 2 a, b).
Statistical analyses on top-view SEM images of samples after annealing (some of which are reported in Figure 3), proved that by increasing the quantity of evaporated Au, it was possible to increase NPs size, for which average equivalent diameters varied from 12 nm up to 115 nm (see Table 1). Moreover, the morphology of the TiO₂ film also played a role in determining final Au NPs diameters, with smaller equivalent diameters obtained in the case of more porous films (i.e. deposited at 12 Pa). Finally, the Au coverage increased with the amount of Au deposited on the TiO₂ surface up to almost 30%, while it is almost independent of the TiO₂ porosity.

Figure 3: Comparison between SEM top view images of TiO₂ 8 Pa with 3 nm (a), 6 nm (c), 15 nm (e) of Au and TiO₂ 12 Pa with 3 nm (b), 6 nm (d), 15 nm (f) of Au. All micrographs are acquired after annealing treatment.

3.2. Optical properties

Figure 4 reports the optical transmittance of TiO₂/Au samples. Our previous studies involving TiO₂/Au systems have shown that the reflectance has limited values around 5% and is thus considered negligible [29]. A general decrease of the optical transmittance is observed for large quantities of Au and the transmittance was influenced by the growth conditions and the thermal treatment. For example, in the case of 6 nm of Au, the wavelength at which maximum absorption occurs changed after annealing from about 620 nm to 560 nm (Table 2). These trends were outlined also in works from Doron-Mor et al. [34] and Karakouz et al. [35]. More specifically, as deposited TiO₂/Au samples displayed a very broad absorption feature, especially for higher quantities of evaporated Au, where an almost continuous Au layer was formed. However, after annealing the absorption peak became sharper and blue-shifted, which can be attributed to the formation of the Au NPs. In annealed samples the LSP resonance (LSPR) red-shifted as a function of Au NPs size, i.e. the wavelength for maximum absorption varied from 549 nm (i.e. for the 12 Pa with 3 nm of Au) up to a maximum value of 575 nm (i.e. for the 8 Pa with 15 nm of Au) [36]. Moreover, the full width at half maximum (FWHM) increased as a function of AuNP size, due to the fact that NPs were characterized by broader dispersion, as reported by Gaspar et al. as well [37].

In other words, the optical properties and the LSPR revealed changes due to the annealing: from an almost continuous layer, to various shape/aspect ratios, size distributions and average distances between Au NPs (Figure 3).

Figure 4: Optical transmission spectra of TiO₂/Au 8 Pa (a) and 12 Pa (b) samples before and after annealing.
4. Selection of the TiO$_2$/Au surfaces for E2 detection

<table>
<thead>
<tr>
<th>MBA deposition</th>
<th>As deposited</th>
<th>500°C 2h</th>
<th>As deposited</th>
<th>500°C 2h</th>
<th>500°C 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 nm</td>
<td>553</td>
<td>569</td>
<td>637</td>
<td>560</td>
<td>575</td>
</tr>
<tr>
<td>6 nm</td>
<td>579</td>
<td>549</td>
<td>615</td>
<td>562</td>
<td>569</td>
</tr>
<tr>
<td>15 nm</td>
<td>579</td>
<td>549</td>
<td>615</td>
<td>562</td>
<td>569</td>
</tr>
</tbody>
</table>

Table 2: LSPR wavelength (minima points of transmission spectra) and peak FWHM

In order to test the TiO$_2$/Au surfaces as SERS substrates, MBA was used as it is a well-known Raman reporter, showing two intense characteristic peaks at 1080 cm$^{-1}$ and 1590 cm$^{-1}$ which are due to aromatic ring vibrations [31]. The structure of MBA and the grafting process (thiol-gold interaction) guarantee that the molecule will preferentially attach to gold. The purpose here was to select TiO$_2$ growth and Au deposition parameters that would allow the best enhancement possible across the largest range of wavelength.

MBA was grafted on samples produced with the variety of growth conditions presented in the previous section. The detailed Raman spectra of MBA are displayed in Figure 5. MBA is barely detectable on the TiO$_2$/Au 3 nm samples. The peaks start to be visible when the TiO$_2$ surface is decorated with more than 6 nm of Au. A rule of thumb is that the highest enhancement is achieved when the wavelength of the LSPR is between the excitation wavelength (here 632 nm) and the Raman wavelength of the peak in consideration [13,38]. As shown in Figure 4 the plasmon resonances for all the samples were outside of the interval. The origin of the enhancement factor (EF) could thus be explained by the proximity of the NPs, which is higher for higher Au coverage (Table 1). The electric field between two nanoparticles is extraordinarily enhanced when NP are close to each other [7,39] and so called hot-spots can be formed this way.

To compare the enhancement capacity of the TiO$_2$/Au samples, EF was calculated as follow [39]:

$$EF = \frac{I_{\text{SERS}}}{I_{\text{Raman}}} \cdot \frac{M_{\text{Raman}}}{M_{\text{SERS}}}$$

I_{SERS} and I_{Raman} are the intensities of the analyzed peak of MBA acquired in SERS configuration and in Raman on MBA powder. M_{Raman} is the neat number of molecules within the
exciting laser volume, which can be calculated by knowing the density of MBA ($\rho_{\text{MBA}}=1.5$ g cm$^{-3}$), molecular weight ($MW=154.19$ g mol$^{-1}$), laser spot surface (A_{spot}) and penetration depth of the focused laser beam (which was assumed equal to $h=12$ μm), as:

$$M_{\text{Raman}} = A_{\text{spot}} h \frac{\rho_{\text{MBA}}}{MW} N_A$$ \hspace{1cm} (2)

in which N_A is the Avogadro constant.

<table>
<thead>
<tr>
<th>8 Pa</th>
<th>1080 cm$^{-1}$</th>
<th>1590 cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au 3 nm</td>
<td>1.9 10^4</td>
<td>2.9 10^4</td>
</tr>
<tr>
<td>Au 6 nm</td>
<td>9.3 10^4</td>
<td>8.2 10^4</td>
</tr>
<tr>
<td>Au 15 nm</td>
<td>2.5 10^4</td>
<td>2.3 10^4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 Pa</th>
<th>1080 cm$^{-1}$</th>
<th>1590 cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au 3 nm</td>
<td>1.1 10^5</td>
<td>3.7 10^5</td>
</tr>
<tr>
<td>Au 6 nm</td>
<td>8.0 10^4</td>
<td>3.3 10^5</td>
</tr>
<tr>
<td>Au 15 nm</td>
<td>2.4 10^5</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: EF of the MBA molecule calculated for the peak at 1080 cm$^{-1}$ and 1590 cm$^{-1}$.

M_{SERS} corresponds to the number of molecules adsorbed on the AuNP surface within the laser spot which we assume to be a single monolayer of MBA fully covering the surface. From the SERS and Raman spectra of Figure 5 the EF were calculated and reported in Table 3. The sample that gave the most homogeneous EF through the investigated wavelengths was the TiO$_2$/Au 6 nm deposited at 12 Pa, and annealed at 500°C for 2h. It was hence chosen to test the detection of E2.

Even though the main SERS enhancement might be attributed to an electromagnetic effect arising from the Au NPs, the presence of TiO$_2$ could be beneficial for different reasons. In addition to the above-discussed role of the TiO$_2$ surface roughness in controlling Au NPs size (and consequently their plasmonic properties), a first motivation can be found in the optical properties of semiconductor nanostructured materials. Their light-scattering, light-trapping and antireflection abilities, have already been reported to improve SERS enhancement [14-16]. In addition, the nanostructured morphology contributes to provide a larger available surface for Au NPs growth, but also for analyte molecules to be adsorbed. The positive role played by nanostructured TiO$_2$ film was also confirmed by comparing SERS enhancements given by our composite TiO$_2$/Au 6 nm sensor with that given by a substrate of bare Si (100) on which the same equivalent thickness of Au (i.e. 6 nm) was evaporated and annealed at 500°C for 2h to guarantee NPs formation (data not shown). Both MBA peaks clearly show a larger enhancement in the case of TiO$_2$/Au sensor, as also confirmed by EF values reported in the table present in Figure 6 (about one order of magnitude). Therefore, the presence of the nanostructured TiO$_2$ film represents a benefit towards the overall SERS effect.

5. Application to E2 detection

Figure 6a presents the Raman spectrum of E2 powder and the SERS spectra of the detection of E2 by the selected sensor. The signal of the empty sensor is designated as Apt+MCH. It mostly reflects the signal of the aptamer as MCH is known to have a very low Raman cross-section and as so is not expected to present a significant signal.
In conclusion, TiO$_2$ nanoporous surfaces covered with Au NPs were tested as SERS surfaces for detection of E2. Different conditions of Au deposition were considered as they lead to a variety of shapes, sizes and distributions. The TiO$_2$/Au 6 nm deposited at 12 Pa and annealed for 2h at 500°C gives an enhanced factor (EF) of 3.7×10^3 and 3.4×10^3 at respectively 1080 cm$^{-1}$ and 1590 cm$^{-1}$. This high EF on two distant wavelengths has been exploited to test the detection of E2 in water solutions. For this the surfaces were functionalized with aptamers in order to guarantee a good specificity [18]. We thus have produced a sensor that is specific (with the use of aptamer), low concentration detection (1 nM compatible with environmentally relevant concentration) and wide dynamic range (up to 100 μM). These results combine with the fact that the sensor is all solid makes the nanoporous TiO$_2$/Au systems interesting for environmental detection applications.

Acknowledgements

The authors want to thanks the FARBand project of the Dept. of Energy, Politecnico di Milano and IFMAN acknowledges the Scottish Research Partnership In Engineering (SRPe) for funding the travel grant under PECRE Award 2017/18 and the University of Glasgow (Graduate School Mobility Scholarship).

References

[27] Shane A. Snyder †, Timothy L. Keith †, David A. Verbrugge †, Erin M. Snyder †, Timothy S. Gross †, Kurunthachalam Kannan † and and Giesy† J P 1999 Analytical Methods for Detection of Selected Estrogenic Compounds in Aqueous Mixtures

[31] Michota A and Bukowska J 2003 Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates J. Raman Spectrosc. 34 21–5

[34] Ilanit Doron-Mor †, Zahava Barkay ‡, Neta Filip-Granit †, Alexander Vaskevich † and and Israel Rubinstein* † 2004 Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties

[39] Le Ru E C and Etchegoin P G 2013 Quantifying SERS enhancements MRS Bull. 38 631–40
