Circularly Polarized Luminescent Systems Fabricated by Tröger's Base Derivatives through Two Different Strategies

Cheng Qian, Yuan Chen, Qian Zhao, Ming Cheng, Chen Lin, Juli Jiang and Leyong Wang

01 Oct 2020

Letter

002 BJOC-SI-qiancheng-2020-10-01.pdf; 872.7 KB

Juli Jiang - https://orcid.org/0000-0001-5778-6380; Leyong Wang - https://orcid.org/0000-0001-5775-3714
Circularly Polarized Luminescent Systems Fabricated by Tröger's Base Derivatives through Two Different Strategies

Cheng Qian‡,1, Yuan Chen‡,1, Qian Zhao1, Ming Cheng1, Chen Lin1, Juli Jiang*1, and Leyong Wang*1,2

Address:
1Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China

2Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

E-mail:
jjl@nju.edu.cn, lywang@nju.edu.cn

*Corresponding authors

‡Equal contributors

Abstract

Tröger's base derivative rac-TBPP was synthesized and separated into two enantiomers R2N-TBPP and S2N-TBPP by chiral column, which emit strong circularly polarized luminescence with glum values of +0.0021, and −0.0025, respectively. The different way to fabricate the CPL-active material is to cogel the fluorescent rac-TBPP with a chiral D-glutamic acid gelator DGG by co-assembly strategies. At the molar ratio of rac-TBPP : DGG = 1 : 80, the glum value of the cogel was increased to be about
three times higher than that observed from R_{2N}-TBPP and S_{2N}-TBPP enantiomers. Interestingly, the CPL handedness of the rac-TBPP/DGG cogel could be adjusted effectively by changing their stoichiometric ratios.

Keywords

Tröger's base; circularly polarized luminescence; chiral resolution; co-gelation; inversion of CPL handedness

Introduction

Recently, much effort has been devoted to constructing the luminescent materials with efficient high emission in the solid state [1-3]. More and more types of fluorophores with aggregation-induced emission (AIE) characteristics have been discovered and applied in practice [4-6]. Among them, the fluorescent materials emitting circular polarized luminescence (CPL) have attracted intensive interest owing to their wide applications in various researching field including 3D displays, chiroptical materials, and so on [7-10]. Circular dichroism (CD) absorption spectrum reflects the chirality of the fluorescent materials in the ground state, and circularly polarized luminescence (CPL) spectrum reflects the chirality of fluorescent materials in the excited electronic state. So CD spectrum and CPL spectrum are two most important tools to test the chirality of luminescent materials [11-12].
As a useful building block in constructing functional material [13-14], Tröger's base (TB), first synthesized in 1887 [15], shows high controllability and obvious advantages. Without considering the side chain there are eleven sites in its framework that could be modified, and the loose stacking of TB unit could reduce the distance-dependent intermolecular quenching effect in the aggregation state, which caused by its V-configuration [16]. Moreover, large dihedral angle of TB (80-104°) [15] permits less self-absorption and wider stokes shift [17]. Further, steric hindrance and highly rigidity could reduce non-radioactive transition and restrict the internal rotation [18]. Although TB shows excellent performance in constructing AIE materials, its derivatives emitting CPL have rarely been reported. To construct a CPL-active material, a luminescent part and a chiral part are necessary [19-21]. As far as TB is concerned, it can be modified

Scheme 1. Cartoon representative for CPL systems fabricated by TBPP through two different strategies

As a useful building block in constructing functional material [13-14], Tröger's base (TB), first synthesized in 1887 [15], shows high controllability and obvious advantages. Without considering the side chain there are eleven sites in its framework that could be modified, and the loose stacking of TB unit could reduce the distance-dependent intermolecular quenching effect in the aggregation state, which caused by its V-configuration [16]. Moreover, large dihedral angle of TB (80-104°) [15] permits less self-absorption and wider stokes shift [17]. Further, steric hindrance and highly rigidity could reduce non-radioactive transition and restrict the internal rotation [18]. Although TB shows excellent performance in constructing AIE materials, its derivatives emitting CPL have rarely been reported. To construct a CPL-active material, a luminescent part and a chiral part are necessary [19-21]. As far as TB is concerned, it can be modified
to be a luminescent material building block, and its bridged methylene groups of diazocine chiral nitrogen atoms prevent the inversion of the configuration, and two enantiomers could be formed then. Herein, we take two strategies to construct Tröger’s base derivatives TBPP-based CPL material. One method is to separate non-CPL emission rac-TBPP into CPL-active enantiomers R_{2N}-TBPP and S_{2N}-TBPP. The other strategy is to co-assemble the fluorescent rac-TBPP with a chiral D-glutamic acid gelator DGG to form the CPL-active co-gel. Interestingly, adjusting the stoichiometric ratios of rac-TBPP/DGG of the co-assembling system, the handedness of CPL-active co-gel can be controlled effectively.

Results and Discussion

The synthetic routes of rac-TBPP are outlined in Scheme S1. Firstly, 2,8-dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine was synthesized according to the reported procedure [22], and then, by Suzuki coupling reaction between 2,8-dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine and 4-vinyl pyridine, rac-TBPP was successfully obtained in 51.8% yield. Detailed experiments and characterization were described in the ESI (Figure S1-S3). Then, rac-TBPP was separated into two fractions R_{2N}-TBPP and S_{2N}-TBPP by chiralpak IB column using MeOH/DCM (80/20, v/v) as the eluent (Figure S5). CD spectrum of the first fraction exhibited a positive Cotton effect at 352 nm, assigned to R_{2N}-TBPP, while the second one showed a negative Cotton effect at the same wavelength, assigned to S_{2N}-TBPP (Figure 1a) [23]. Then, R_{2N}-TBPP and S_{2N}-TBPP were tested in CPL spectroscopy, and the magnitude of CPL
emission was estimated by a luminescence dissymmetry factor (g_{Lum}), defined as $2(I_L - I_R)/(I_L + I_R)$ where I_L and I_R are the intensity of the left-handed and right-handed CPL signals [24], respectively. Ranging from +2 for an ideal left-handed CPL to −2 for an ideal right-handed CPL, g_{Lum} value comes up to zero when no circular polarization of the luminescence was detected. The calculated value of g_{Lum} of CPL signals for R_{2N}-TBPP and S_{2N}-TBPP are +0.0021, and −0.0025, respectively (Figure 1b), which is much larger than many small organic molecules [25].

In order to avoid tedious chiral separation, we try to construct the CPL-active material by co-assembling the achiral fluorophore rac-TBPP with a chiral gelator. In co-assembly CPL-active systems, achiral fluorophores are always involved in forming the chiral supramolecular structure through non-covalent weak interactions. So, the CPL emission of co-assembly systems could be easy to be adjusted by external stimuli. D-glutamic acid gelator DGG and its enantiomer LGG possess three hydrogen-bond sites, two carboxylic acid groups and one amide, which could form the stable spiral structure
by hydrogen-bond and other non-covalent interactions. DGG was synthesised by introducing octadecyl into the glutamic skeleton in 78.6% yield according to the reported route (Scheme S2) [26]. When rac-TBPP was mixed with DGG at molar ratios from 1/100 to 1/16 (rac-TBPP/DGG), transparent yellow cogels were successfully formed by being heated to dissolve in chloroform, and then cooled to ambient temperature (Figure S6). Owing to AIE effect of TB unit the fluorescence intensity of
Figure 2. (a) Fluorescence spectra of rac-TBPP in solution (dash line) and in the rac-TBPP/DGG cogels. (b) CPL spectra of the rac-TBPP/DGG cogel at molar ratios from 1:100 to 1:16. (c) Plot of g\textsubscript{ Lum} value of CPL signals versus ratios of rac-TBPP/DGG in the cogel. (d) Mirror CPL spectra of rac-TBPP/DGG and rac-TBPP/LGG cogel at the molar ratio of 1:80.

these co-assembly cogels enhanced sharply. At the molar ratio of rac-TBPP/DGG = 1:16, the CPL spectra of the cogel shows negative Cotton signal. At the molar ratio of rac-TBPP/DGG = 1:32 or higher, positive Cotton signal exhibiting left-handed CPL signals were observed (Figure 2b). At the molar ratio of rac-TBPP/DGG = 1/80, the CPL spectra shows positive Cotton signal with g\textsubscript{ Lum} value about +0.0073, which was almost three times higher than g\textsubscript{ Lum} value of TBPP enantiomers (Figure 2c). The
chiroptical activity measured from CPL spectra shows an inversion of CPL handedness at the molar ratio of \textit{rac}-TBPP/DGG = 1:16. Mirror patterns were obviously observed in the CPL spectra for DGG and its \textit{L}-enantiomers \textit{LGG} (Figure 2d).

In order to get an in-depth understanding on the inversion of CPL handedness, the \textit{rac}-TBPP/DGG cogels at molar ratios of 1:16 and 1:80 was explored further by UV-vis and FT-IR (fourier transform infrared) spectra. UV-vis absorption spectra of \textit{rac}-TBPP/DGG...

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{(a) UV-vis absorption spectra of \textit{rac}-TBPP and \textit{rac}-TBPP/DGG cogel (\textit{rac}-TBPP/DGG = 1:80). (b) FT-IR spectra of DGG and \textit{rac}-TBPP/DGG cogels at molar ratios of 1:80 and 1:16, respectively. SEM images of \textit{rac}-TBPP/DGG cogels at molar ratios of 1:80 (c) and 1:16 (d).}
\end{figure}
cogels exhibits a strong absorption band at 333 nm, assigned to the conjugated structure of benzene and pyridine in the rac-TBPP (Figure 3a). However, a red-shift broaden absorption band situated at 372 nm appears in the rac-TBPP/DGG cogel, implying the formation of the ordered packing of rac-TBPP in supramolecular assemblies. At the molar ratio of rac-TBPP/DGG = 1 :80, FT-IR spectra was similar to that of the DGG gel, in which νC=O bonds at 1729, 1691, and 1645 cm⁻¹ reveal that carboxyl acid groups of DGG could be involved in the formation of various hydrogen bonds (Figure 3b, Figure S7). At the molar ratio of rac-TBPP/DGG = 1 :16, the intensity of the peak at 1691 cm⁻¹ decreases, and the peak at 1729cm⁻¹ broadens. A new peak adjacent to 1645 cm⁻¹appears at 1627 cm⁻¹. All results demonstrates that some of the acid–acid hydrogen bonds between DGG molecules might be replaced by acid–pyridine hydrogen bonds between DDG and rac-TBPP [27]. In addition, the influence of the stoichiometric ratios to the morphologies of rac-TBPP/DGG cogels was investigated using a scanning electron microscope (SEM). At the molar ratio of rac-TBPP/DGG = 1 :80, the cogel shows belt-like nanofibers (Figure 3c) while fibrous morphology could not be observed at the molar ratio of 1:16 (Figure 3d). It indicates that two different kinds of supramolecular assemblies was formed at the ratios of rac-TBPP/DGG 1:80 and 1:16, respectively, which is coincident with the inversion of the CPL responses.

Conclusion

In conclusion, two strategies were demonstrated to obtain CPL-active material based
on Tröger’s base derivatives rac-TBPP. One method is to separate rac-TBPP into two enantiomers R_{2n}-TBPP and S_{2n}-TBPP, which emit strong circularly polarized luminescence. The other strategy is to cogel the fluorescent rac-TBPP with a chiral D-glutamic acid gelator DGG by the co-assembly strategy. The cogels show significant CPL emission and stoichiometry-controlled inversion of chirality due to the hydrogen bonding interactions and packing modes in the supramolecular co-assemblies.

Acknowledgements

We thank Prof. Carsten Schmuck for valuable suggestions and discussion to our researchs on molecular recognition during his visit in Nanjing Univ. in 2011 and afterwards.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21901113, 21871135, 21871136), and the Natural Science Foundation of Jiangsu Province (No. BK20190287).

ORCID® iDs

Juli Jiang – https://orcid.org/0000-0001-5778-6380

Leyong Wang – https://orcid.org/0000-0001-5775-3714

References

1. 10.1002/anie.201901882

doi:10.1002/chem.201501178

