
License and Terms: This document is copyright 2020 the Author(s); licensee Beilstein-Institut.

This is an open access publication under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse,
redistribution and reproduction in particular requires that the author(s) and source are credited.

The license is subject to the Beilstein Archives terms and conditions: https://www.beilstein-archives.org/xiv/terms.
The definitive version of this work can be found at https://doi.org/10.3762/bxiv.2020.106.v1

This open access document is posted as a preprint in the Beilstein Archives at https://doi.org/10.3762/bxiv.2020.106.v1 and is
considered to be an early communication for feedback before peer review. Before citing this document, please check if a final,
peer-reviewed version has been published.

This document is not formatted, has not undergone copyediting or typesetting, and may contain errors, unsubstantiated scientific
claims or preliminary data.

Preprint Title In silico approach: Anthocyanin derivatives as potential inhibitors of
the COVID-19 main protease

Authors Muhammad I. Abdjan, Khusna A. Rakhman, Sri Handayani, Chairil
Anjasmara R. Putra and Imam Siswanto

Publication Date 15 Sep. 2020

Article Type Full Research Paper

Supporting Information File 1 Supporting Information.docx; 460.3 KB

ORCID® iDs Muhammad I. Abdjan - https://orcid.org/0000-0003-0783-5791

https://creativecommons.org/licenses/by/4.0
https://www.beilstein-archives.org/xiv/terms
https://doi.org/10.3762/bxiv.2020.106.v1
https://orcid.org/0000-0003-0783-5791


 

1 

In silico approach: Anthocyanin derivatives as 

potential inhibitors of the COVID-19 main protease 

Muhammad Ikhlas Abdjan1, Khusna Arif Rakhman2, Sri Handayani3, Chairil Anjasmara 

Robo Putra4, Imam Siswanto1* 

1Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 

kampus C Mulyorejo, Surabaya 60115, Indonesia 

2Department of Chemistry Education, Universitas Khairun, Ternate, Indonesia 

3Department of Chemical Education, Faculty of Mathematics and Natural Sciences, 

State University of Yogyakarta, Yogyakarta, Indonesia 

4Post Graduate School, Universitas Airlangga, Jl. Dharmawangsa 30, Surabaya 60286, 

Indonesia 

 

Email: imamsiswanto@fst.unair.ac.id 

* Corresponding author 

 

Abstract 

In silico approach has been carried out for the determination of drug candidates from 

anthocyanin derivative as inhibitors of the COVID-19 main protease. Geometry 

optimization has performed using the DFT/B3LYP/6-31G(d,p) method as an initial step to 

prepare candidate ligand. The results of molecular docking showed that candidates C5 

and C6 had promising results with a grid score smaller than the ligand reference (X77) 

mailto:imamsiswanto@fst.unair.ac.id


 

2 

with a flexible conformation type. Studies on absorption, distribution, metabolism, 

excretion, and toxicity of C5 and C6 candidates were conducted to study the 

physicochemical properties of drug candidates and to show good predictive results as 

drugs. Molecular dynamic simulation uses the ffSB14 force field for 200 ns to study the 

interaction between ligand and receptor, the system stability, solvent accessibility, energy 

interactions, and hydrogen bonds. The results show good interaction stability on the C5 

complex compared to the reference ligand which is characterized by the binding free 

energy value of C5 was -42.77 ± 0.37 kcal/mol and X77 was -42.37 ± 0.41 kcal/mol. 

Keywords  

anthocyanin; COVID-19 main protease; molecular docking; molecular dynamic simulation 

Introduction 

The new generation coronavirus (SARS-Cov-2) which infects the respiratory tract was 

first detected in December 2019 in Wuhan, China [1–3]. Recorded on 11 March 2020 the 

World Health Organization (WHO) established the coronavirus outbreak as a COVID-19 

pandemic with a total of 118,000 cases from 110 countries [4,5]. The spread of this virus 

occurs until the world division of various countries has increased very rapidly in the past 

9 months. Besides, the latest data in the last 9 months of July 2020 shows that the spread 

of the COVID-19 virus has increased quite rapidly, especially in countries in the Americas 

and Europe. Where, WHO has confirmed the grand total of COVID-19 cases in the world 

on september 09, 2020, showing a total of 27,486,960 cases with total death cases were 

894,983 cases [6]. The spread of the virus is increasing and uncontrolled making research 
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groups in various countries make contributions to prevent and develop drugs and 

vaccines to reduce the increasing number of COVID-19 cases [7]. 

 

The SARS-CoV-2 is a single-stranded positive-RNA virus that belongs to the beta-corona 

virus group but is different from MERS-CoV and SARS-CoV [8]. Where the coronavirus 

is covered by a positive RNA strand with the largest RNA genome of 30-32 kb [9]. In 

addition, recent studies have shown that CoV contains at least six ROFs where ORF1 

and ORF2 are responsible for producing two pp1a and pp1ab polypeptides [10]. Then the 

polypeptide is processed by the main protease (MPro or 3CLPro) which is responsible for 

the coronavirus replication sequence [11]. Therefore, this enzyme is often used as one of 

the very promising drug targets in inhibiting coronavirus activity [12,13]. 

 

The development of drug candidates from natural ingredients has promising potential as 

an antiviral, including anthocyanin derivatives [14]. Around 17 Anthocyanin derivatives 

have been found in nature and only 6 major anthocyanin derivatives are widely 

distributed, namely pelargonidin, delphinidin, petunidin, cyanidin, peonidin, and malvidin 

[15]. The placement of different functional groups in the basic structure of anthocyanin 

will determine the activity and characteristics of anthocyanin compounds [16]. Some 

studies report that anthocyanin in the flavonoid group has biological activity as antiviral 

[17,18]. Recent studies have shown that flavonoid derivatives with the same basic 

structure as anthocyanins have the potential as SARS-CoV antivirals against COVID-19 

main protease [19]. Several anthocyanidin derivatives that bind to carbohydrate groups 

such as rhoifolin and pectolinarin have been known to have SARS-Cov 3CLpro inhibitory 
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activity with IC50 values of 27.45 μM and 37.78 μM, respectively [19]. Additionally, 

anthocyanin-derived compounds that have a hydroxy group in their structure are 

expected to be able to inhibit the activity of the virus by binding to the target protein at the 

molecular level. These have been reported by previous studies of adding hydroxy groups 

to candidates giving effective results against the toxicity and inhibition of SARS-CoV2 

[20,21]. 

 

This article reports of studies of anthocyanin activity as an anti-SARS-Cov-2 used in silico 

approach. The study of antiviral activity using the in silico approach is one of the most 

effective and efficient alternatives in studying and predicting the interaction of drug 

candidates with protein targets [22–26]. In addition, the in silico approach is able to predict 

the physicochemical and biological activity of a drug candidate before a wet laboratory 

test is carried out [27–29]. The combination of several computational techniques used 

such as molecular docking, and molecular dynamic simulation is expected to be able to 

provide accurate prediction results through complex calculations [30]. Besides, the 

quantum mechanics approach using density functional theory (DFT) on small molecules 

especially anthocyanin derivative molecules shows promising results in molecular 

modeling [31,32]. Therefore, the selection of an in silico approach is able to offer fast, 

effective, and accurate alternatives in finding a SARS-CoV2 drug or vaccine. 

 

Materials and Method 

Computational Resource and Data Set 
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The operating systems and hardware used in this study are Windows operating systems 

(Intel Core i5-9300H, 2.40 GHz, GPU Nvidia GTX 1650, and 8.0 GB RAM) and Linux 

operating systems (Intel Core i7-8700, 32 GB RAM, NVidia GPUs GTX 1080 Ti 11GB 

and SSD 500GB SATA). Where the Windows operating system is used for preparation 

and analysis. Meanwhile, the Linux operating system is used to perform heavy 

computational chemical calculations. The software used in this study, namely Gaussian 

09W, ChemOffice 2016, Chimera 1.13, Open Bubble GUI, Putty, WinSCP, Dock6, 

AMBER18, and Discovery Studio 2019. The target protein used in this study as a receptor 

is COVID-19 main protease (PDB: 6W63) obtained from the Protein Data Bank website 

(http://www.rcsb.org/structure/6W63). Where the target protein is included in the 

classification of viral protein with a resolution of 2.10 Å using the XRD method. The 

candidate compounds modeled in this study were 6 anthocyanin derivatives, namely 

pelargonidin, delphinidin, petunidin, cyanidin, cyanidin-3-rutinoside, and cyanidin 3,5-O-

diglucoside. 

Modeling and Preparation of Data Set 

Modeling anthocyanin derivatives using the DFT/B3LYP/6-31G(d,p) method to determine 

the geometry optimization using Gaussian 09W (Gaussian 09) [33]. Anthocyanin 

geometry optimization using density functional theory [34] with Becke 3-parameter Lee-

Yang-Parr [35] hybrid functional based on considerations from previous studies that 

showed good correlation results with experimental results on spectroscopic modeling and 

chemical properties [36]. The energy calculation from the process of optimizing the 

geometry of molecular data sets, namely anthocyanin derivatives aims to obtain optimal 
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geometrical conformation [37]. Meanwhile, receptor preparation and reference ligands 

are carried out using the ff14SB force field with AM1-BCC ligand charge through the 

Chimera 1.13 package. Besides, some handlers of the force field and charge aims to 

prevent charge imbalances in the system when performing molecular dynamic 

simulations. 

Study of Molecular Docking 

Molecular docking is done using the dock6 package through the calculation command in 

parallel using the Linux operating system. The molecular docking stage includes the 

validation stage and the candidate docking stage into the active side of the receptor. The 

selection of cluster spheres at the receptor is carried out within a 10 Å radius with a grid 

spacing of 0.3 in determining the grid box system used. Additionally, the type of 

conformation used in the docking validation process uses two types of conformation, 

namely rigid conformation and flexible conformational. The conformation with the smallest 

grid score will be selected as the reference ligand at the candidate docking stage. Also, 

the ligand validation stage was stated to comply with the criteria if the reference ligand 

had RMSD value ≤ 2.0 Å [38]. The candidate docking stage is run with a grid-based score 

function with a fast calculation which aims to obtain the initial coordinates of each 

candidate on the active side of the receptor. 

Molecular Dynamic Simulation 

The initial coordinates of the reference ligands and candidate obtained from the results 

of molecular docking continued as a basis for building the topology of each complex using 

tleap. Where the force field used the ff14SB force field and a solvated box used the TIP3P 
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box with a distance of 12 Å. The stages of MD simulation are carried out in several stages 

such as minimization, heat, density, equilibration, and production. All stages are carried 

out for 200 ns which is used as the basis for the analysis of several bonding variables 

between ligands and receptors. Analysis of several variables measured in this study uses 

output files and trajectory files generated during the simulation process. Besides, the 

analysis using the MM-GBSA method is also used to calculate the binding free energy of 

each complex based on the number of frames produced during the simulation when the 

system has reached stability [39]. 

 

Result and Discussion 

Molecular Docking Validation 

The molecular docking validation stage is performed using a grid-based cluster sphere 

selection as a score function (Figure 1A). The validation process is carried out to 

determine the active site or ligand-binding site of the receptor [40]. The validation process 

by redocking the reference ligand (code: X77) aims to find the initial coordinates of the 

ligand. The results show that the reference ligand pose is very promising with an RMSD 

value ≤ 2.0 Å for each conformation, namely XRD: yellow, rigid: orange, and green: 

flexible (Figure 1B). Based on the value of RMSD shows that flexible conformation has a 

smaller RMSD value compared to rigid conformation. Thus, flexible conformation is 

chosen as the reference ligand in determining the initial coordinates of molecular docking. 

The active site of the receptor shows that there are amino acid residues responsible for 
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binding to the reference ligand such as Thr26, Leu27, His41, Met49, Leu141, Asn142, 

Gly143, Cys145, Met165, Glu166, and Pro168 with different types of interactions (Figure 

1C and Figure 1D). 

 

Figure 1: Visualization of molecular docking validation: (A) Cluster sphere selected (PDB 

code: 6W63), (B) Pose of reference ligand (X77), (C) Fleksibel conformation: 3D 

interaction between X77 and residues, and (D) Fleksibel conformation: 2D interaction 

between X77 and residues. 
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The results of molecular docking validation of the two types of conformation also show 

grid score values that are not too much different from the difference of ~ 0.90 kcal/mol. 

Several variables are also generated in molecular docking using the dock6 package, 

namely Van der Waals energy (EVDW), electrostatic energy (Ees), and internal energy 

repulsive (Einter). However, flexible conformation shows more promising results because 

it has a smaller grid score compared to rigid conformation (Table 1). Thus, consideration 

of selection as a reference ligand is getting stronger. This consideration is caused by two 

key parameters that hold the key to molecular docking success such as a smaller RMSD 

value and a smaller grid score [41,42]. 

 

Table 1: Molecular docking validation of reference ligand (code: X77). 

Type 
RMSD 

(Å) 
H-bonds (Å) 

Grid score 

(kcal/mol) 

EVDW 

(kcal/mol) 

Ees 

(kcal/mol) 

EInter 

(kcal/mol) 

Rigid 0.79 Gly143: 2.14 

Glu166: 2.09 

-78.00 -74.82 -3.18 24.97 

Flexible 0.42 His41: 3.08 

Gly143: 2.22 

Glu166: 1.84 

-78.90 -75.00 -3.90 22.61 

 

Molecular Level Interactions of Anthocyanin Derivatives with COVID-19 Main 

Protease 
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The anthocyanin derivatives modeled in this study are secondary metabolites and 

derivative compounds that give a blackish-purple color to some tropical fruits [43,44]. 

Variations in the structure of different anthocyanin derivatives are expected to be able to 

provide different activities as antivirals, especially in inhibiting the expression of the 

COVID-19 main protease (Figure 2). The hydroxy group contained in each anthocyanin 

derivative compound is expected to provide good results in binding to amino acid residues 

on the active site of the receptor as a hydrogen bond donor. Geometry optimization of 

anthocyanins using the DFT/B3LYP/6-31G(d,p) method was expected to provide optimal 

geometry results as shown by previous studies [45]. 

 

 

Figure 2: Anthocyanin derivatives as inhibitor COVID-19 main protease (MPro). 

 

The candidate docking stage is carried out using reference ligands from the flexible 

conformations through some of the considerations previously mentioned. The results 

show that anthocyanin derivatives occupy the active site of the receptor very well (Figure 
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3). Where the candidate's position shows interactions with several amino acid residues 

that interact with the reference ligand. Additionally, the results of docking using the grid 

score function showed promising results on two anthocyanin derivatives, specifically at 

C5 (-83.25 kcal/mol) and C6 (-82.43 kcal/mol) which had a smaller grid score compared 

to the reference ligand (-78.90 kcal/mol). The other candidates such as C1, C2, C3, and 

C4 showed poor results with grid score values greater than reference ligands. This is 

because C5 and C6 candidates have carbohydrate groups at position 3 (C5) and position 

3,5 (C6) which have greater potential to bind to residues on the active site of the receptor. 

Several variables such as Van der Waals’s energy and electrostatic energy play an 

important role in determining the interaction energy between ligands and receptors 

expressed by grid scores [46]. The results show that the smaller the Van der Waals 

energy and electrostatic energy values, the smaller the grid score (Table 2). 

 

Table 2: Molecular docking result of best candidates used flexible conformation. 

Code 
Grid score 

(kcal/mol) 
EVDW (kcal/mol) Ees (kcal/mol) EInter (kcal/mol) 

C1 -50.92 -43.59 -7.43 2.55 

C2 -57.31 -44.69 -12.62 2.34 

C3 -57.97 -49.07 -8.89 3.04 

C4 -54.44 -42.67 -11.87 2.65 

C5 -83.25 -75.24 -8.01 30.17 

C6 -82.43 -76.66 -5.77 17.79 
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Figure 3: Visualization pocket area of active site: X77 (dim gray), C5 (magenta), and C6 

(purple). 

 

 

Figure 4: Interaction between candidate and amino acid residues (2D-diagram): (A) C5 

and (B) C6. 

 

Anthocyanin derivatives C5 and C6 show promising results at the candidate docking 

stage to study the interaction of them with amino acids on the receptor active side. The 

interaction between the two candidates with the amino acid on the receptor was H-bond 
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interaction and Alkyl interaction (Figure 4). The C5 candidate who interact with 4 amino 

acid residues are the same as the reference ligand (X77), namely amino acid residues 

Leu141, Asn142, Met165, and Glu166. Meanwhile, The C6 candidate who interact with 3 

amino acid residues are the same as the reference ligand (X77), namely the amino acid 

residues His41, Cys145, and Glu166. Additionally, the number of hydrogen bonds 

produced by each complex shows good interaction results. Where, C5 has 6 hydrogen 

bonds (green line) with the type of bond in the form of a hydrogen bond donor (Phe140, 

Leu141, Glu166, and Arg168) and hydrogen bond acceptor (Ser46 and Glu166). 

Meanwhile, C6 has 3 hydrogen bonds (green line) with a type of hydrogen bond donor 

(Thr25, His41, and Glu166). Consideration regarding the number of hydrogen bonds 

strongly influences the strength of interactions between ligands and receptors [47]. Thus, 

based on the docking results of C5 candidate shows good result in the perspective of its 

binding with the COVID-19 main protease receptor. Additionally, the hydrophobicity 

property of anthocyanin derivatives C5 and C6 was modeling based on the surface area 

of the hydrophobicity on the receptor site (Figure 5). The results show that C5 and C6 

have many hydroxy groups that are polar so that they decrease their hydrophobicity, 

especially on the carbohydrate groups of each candidate [48]. 

 

 

Figure 5: Visualization of hydrophobic surface area: (A) C5 and (B) C6. 
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Molecular Dynamic Analysis: Stability, Solvent Accessibility, and 

Energy Interactions 

 

 

Figure 6: The summary of output files during the simulation 200 ns: (A) Temperature, (B) 

Energy total, (C) Pressure, (D) Density. 

 

The initial stages of MD simulation are carried out to see the system stability of each 

complex when given a different treatment. Some of the effects of the simulated 

parameters are minimization, heat, density, and equilibrium. Where the effect of the 

parameter result then becomes a strong consideration to see the stability of each system. 

MD simulation results show that temperature, total energy, pressure, and density show 

good graphs with no significant fluctuation changes (Figure 6). This indicates that during 
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the simulation time the stability of temperature, total energy, pressure, and density was 

achieved in each system. So, the stability at each stage shows good results so that it can 

be continued on the trajectory analysis of each system. 

 

Figure 7: Trajectories analysis of stability system: (A) Root mean square displacement 

of complex, (B) Root mean square fluctuation of complex, (C) Number of contacts, (D) 

Radius of gyration. 

 

The simulation stage is carried out for 200 ns on each system to measure several 

variables including RMSD of complex, RMSF of backbone, SASA, and energy 

interactions. The results of the trajectory analysis of each complex showed that the RMSD 

of the complex has good stability (Figure 7A). Where the graph shows the stability of the 

system in each complex reached during the simulation at trajectories 100 ns until 200 ns. 
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The stability of the RMSD plot is an important parameter for analyzing other parameters 

by looking at the stability of the system which is characterized by RMSD deviations that 

are not too significant [49]. Particularly, the C5 system showed very good stability with no 

significant deviation. Meanwhile, the C6 system began to reach its stability point at 

trajectory 100 ns until 200 ns with no significant deviation. 

 

Root mean square fluctuation of complex (RMSF) analysis is also performed on each 

complex by looking at the fluctuations that occur in the backbone receptor (Figure 7B). 

The RMSF of each complex was carried out during the last 20 ns when the system 

stability was achieved. This aims to save calculation time but not sacrifice calculation 

accuracy. Fluctuations that occur in each complex show the greatest fluctuations in C5 

and the lowest fluctuations occur in C6. This identifies that the bonds that occur between 

receptors and C6 are more flexible than the bonds between C5 and receptors during 

simulation time when system stability is achieved. 

 

The interaction between the ligands to the receptors in each system showed a decrease 

in contact during the initial simulation of 1 ns until 6 ns dramatically (Figure 7C). The 

results show that X77 as a reference ligand has the number of contacts 163 ± 14 over the 

last 20 ns. Meanwhile, anthocyanin derivatives showed that C5 (135 ± 24) had a greater 

number of contacts than C6 (28 ± 5) over the last 20 ns. The radius of gyration is 

performed to analyze the compactness of bonds between ligands and receptors in each 

system. It is indicated by the fixed value and there is no significant change in value. The 

results show that each complex formed during the simulation time (over the last 20 ns) 
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shows a fixed value for X77: 22.08 ± 0.08 Å, C5: 22.05 ± 0.08 Å, and C6: 22.01 ± 0.10 Å. 

This indicates that there is a stable folding of the protein when it binds to the ligand in 

each complex (Figure 7D). 

 

Solvent accessibility surface area analysis of COVID-19 Mpro active site was conducted 

to see the role of water molecules in playing the stability of each system during molecular 

dynamics simulations. This was done to see the interaction between water molecules with 

each complex during the 200 ns simulation time (Figure S1). The analysis was carried 

out on amino acids which were located on the active site of the receptor that had 

interactions with each ligand. The results show the average value of the X77 complex 

SASA as a reference ligand of 981.05 ± 74.47 Å with a surface area change that is not 

too significant over the last 20 ns. Meanwhile, C5 and C6 showed an average SASA value 

of 898.74 ± 90.48 Å and 1133.68 ± 100.59 Å over the last 20 ns. 

 

Table 3: Energy calculation of each complex used MM-GBSA method. Data are shown 

as mean ± standard error of mean. 

Energy component X77 C5 C6 

EVDW (kcal/mol) -52.17 ± 0.30 -61.35 ± 0.35 -48.17 ± 0.42 

EElec (kcal/mol) -29.82 ± 0.46 -136.07 ± 1.36 -127.59 ± 1.56 

EGB (kcal/mol) 45.65 ± 0.31 162.37 ± 1.26 158.51 ± 1.42 

ESurf (kcal/mol) -6.03 ± 0.02 -7.72 ± 0.02 -6.27 ± 0.04 

ΔGas (kcal/mol) -81.99 ± 0.57 -197.42 ± 1.32 -175.76 ± 1.54 
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ΔSolv (kcal/mol) 39.62 ± 0.30 154.65 ± 1.24 152.23 ± 1.41 

ΔG (kcal/mol) -42.37 ± 0.41 -42.77 ± 0.37 -23.52 ± 0.47 

 

Energy interactions analysis was carried out over the last 20 ns trajectory using MM-

GBSA (Molecular Mechanics-Generalized Born Surface Area) method where the energy 

calculations carried out included Van der Waals energy (EVDW), electrostatic energy 

(EElec), Generalized Born energy (EGB), energy of contribution nonpolar of solvent (ESurf), 

free energy gas (ΔGas), free energy solvent (ΔSolv), and binding free energy (ΔG) [50]. Data 

shows that each energy component shows a close relationship in its contribution to each 

complex in the system during the simulation. Where the role of solvents in the system is 

indeed a very crucial role. This is due to the fact that Generalized Born energy and energy 

of contribution of nonpolar of solvent contribute to free energy solvent [51]. Meanwhile, 

Van der Waals energy and electrostatic energy contribute to the value of free energy gas. 

Therefore, the contribution of each energy component will affect the final result of total 

energy or free binding energy which is an important parameter in determining the energy 

of interaction between ligands and receptors. The results show that the free binding 

energy of C5 is more promising compared to C6. It can be seen that the binding free 

energy value of C5: -42.77 ± 0.37 kcal/mol is smaller than C6: -23.52 ± 0.47 kcal/mol 

(Table 3). Additionally, C5 can be considered as the COVID-19 main protease inhibitor 

because it has a binding free energy value that is smaller than the value of the binding 

free energy reference ligand: -42.37 ± 0.41 kcal/mol with a deviation: ~ 0.40 kcal/mol. 
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Energy calculation using the MM-GBSA method can see the energy distribution of each 

residue through an analysis of the energy decomposition of each complex (Figure 9). The 

results show that amino acid residues that have values below -1.00 kcal/mol that interact 

with ligands are residues that are present at the active receptor site [52]. Specifically, C5 

has more amino acid residue interactions (12 amino acid residues) with energy values 

below -1.00 kcal/mol. The energy decomposition results show good suitability with the 

results of free binding energy. Therefore, the binding free energy value of C5 is smaller 

than C6 and X77. 

 

Figure 9: Energy decomposition analysis over the last 20 ns of each complex: (A) X77, 

(B) C5, and (C) C6. 

 

Hydrogen Bonds Analysis 



 

20 

Hydrogen bonds (H-bonds) plays an important role in the interaction between ligands and 

receptors at the molecular level [53]. Where one important parameter is the distance of 

the H-bonds interaction that determines the strength of the bond in the interaction of each 

complex. The H-bonds analysis is performed using molecular docking and MD 

simulations to see the properties of the bonds. The combination of the two computational 

techniques is done to reduce the cost of computational calculations. 

  

Table 4: Comparison of H-bonds result between molecular dynamic simulation and 

molecular docking. 

Code Frames Fraction 
Ligand-amino acid residues Distance (Å) 

Acceptor Donor MDS Docking 

X77 16775 

14810 

ND 

0.8065 

0.7120 

ND 

X77307: O13 

X77307: O01 

X77307: N32 

Glu166: H 

Gly143: H 

His41: H 

2.89 

2.93 

ND 

1.84 

2.22 

3.08 

C5 3162 

1376 

835 

566 

460 

83 

0.1520 

0.0662 

0.0401 

0.0272 

0.0221 

0.0040 

Glu166: OE1 

Arg188: O 

Leu141: O 

Unk307:O32 

Phe140: O 

Unk307: O19 

Unk307:H71 

Unk307:H66 

Unk307:H72 

Glu166: H 

Unk307:H72 

Ser46: HG 

2.62 

2.78 

2.89 

2.99 

2.86 

2.89 

2.43 

1.93 

2.91 

2.48 

2.78 

2.62 

C6 6573 

527 

6 

0.3170 

0.0254 

0.0003 

Glu166: OE1 

Thr25:OG1 

His41: ND1 

Unk307:H69 

Unk307:H67 

Unk307:H65 

2.64 

2.89 

3.04 

2.48 

2.42 

2.28 
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Molecular docking aims to find the initial coordinates of the H-bonds and amino acid 

residue responsible for that bond. Furthermore, to study the properties of H-bonds that 

are formed further such as the bond quality and quantity during a certain time, MD 

simulation is performed. The results show that in each complex several parameters are 

measured by making comparisons of the two computational techniques used (Table 4). 

 

The study of the number of H-bonds, H-bonds interactions, and H-bond lifetime is 

presented clearly in this article through molecular dynamics simulations (Figure 10). 

Further studies on H-bond interactions using molecular dynamics aim to look at the 

contribution of amino acid residues that have interactions with ligands based on the initial 

coordinates obtained from molecular docking. Complex X77 shows the results of docking 

there are three measured H-Bond. Meanwhile, during the simulation process, 200 ns only 

showed two bonds with the amino acid residues responsible for Glu166 and Gly143. This 

is caused by molecular docking taking only the best poses of H-Bond interactions that 

occur between ligands and receptors. When H-bonds His41 amino acid residue is treated 

with variations in several variables such as temperature, pressure, and density during the 

simulation time the bond is not detected (ND). In addition, residues have a long period of 

occupancy with a fraction of 80.65% (frame: 16775) and 71.20% (frame: 14810) which 

shows a very good level of bonding. The same thing is also shown by the complex 

candidates C5 and C6 which show the comparison of distances between molecular 

docking and MD simulation. Meanwhile, C5 and C6 all amino acid residues detected by 

molecular docking were also detected during the simulation time. Additionally, only one 
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amino acid residue had an H-bond fraction presentation> 10%, namely the Glu166 

residue in candidates C5 and C6. This is supported by the H-bonds lifetime time that is 

so fast with a decrease during the simulation on each complex dramatically. This is 

because the residues analyzed are specific residues. Where the residue analyzed is the 

residues obtained from the initial coordinates when performing molecular docking. 

However, it is hoped that the results of the analysis provide a clearer picture of hydrogen 

bond properties. 

 

 

Figure 10: Hydrogen bonds analysis: (A) Number of H-bonds (B) 3D Visualization of H-

bonds interaction between ligand-receptor, and (C) Lifetime of H-bonds. 
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Study of Bioavailability and Drug-Likeness Screening 

ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) used the 

admetSAR service website (http://lmmd.ecust.edu.cn/admetsar1/predict/). Prediction of 

several important variables of the candidate's biological activity as a drug in the body 

needs to be done as preliminary data on bioavailability and drug-likeness [54]. The 

absorption prediction results show that C5 and C6 do not penetrate the blood-brain barrier 

which, identifies that the candidate will not affect the central nervous system especially 

the brain [55]. Besides, variables such as human intestinal absorption show good results 

can be absorbed well. One important indication in absorption is the solubility of each 

candidate which shows very good results, namely LogS C5: -2.63 and LogS C6: -2.10.  

The hydroxy group in each candidate will be increasing the nature of its solubility. The 

metabolism stage shows that both candidates are non-inhibitors and non-substrates of 

cytochrome isoenzymes (CYP). This identified that both candidates were very promising 

as drugs because they did not inhibit or interfere with the activity of the enzyme which is 

the main enzyme in the process of metabolism [56]. As a result, C5 and C6 are expected 

to have no side effects on the body. 

 

Variable toxicity calculated in this study showed good results for each candidate. Where, 

it can be said that C5 and C6 are not toxic because the results show Weak inhibitor of 

the human-related gene, non-AMES toxic and non-carcinogens. Thus, over all the results 

show that each candidate has ADMET properties that are promising to be considered as 

drug candidates that can be considered (Table S1). 
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Conclusions 

The combination of computational chemistry techniques between molecular docking and 

molecular dynamic simulation is very promising in predicting drug candidates in silico by 

considering the efficiency and effectiveness of calculations without compromising 

prediction accuracy. An understanding of the COVID-19 main protease pathway needs 

to be well understood to determine the pathway of inhibition and interaction of drug 

candidates with the target protein. Anthocyanin derivatives have the potential to be 

considered as drug candidates. The results of molecular docking indicate that the 

validation stage is feasible to be used as an initial preparation in finding the active site of 

the target protein. The results show that flexible conformation produces better criteria 

than rigid conformation with RMSD value was 0.42 Å and the grid score was -78.90 

kcal/mol. Meanwhile, C5 and C6 showed promising docking results with a grid score 

smaller than the reference ligand of -83.25 kcal/mol and -82.43 kcal/mol respectively. This 

stage is a fundamental consideration to be studied more deeply about the bioavailability 

and drug-likeness properties of C5 and C6 candidates. Over all the results show that each 

candidate has ADMET properties that promise to be used as a drug candidate that can 

be considered. The MD simulation studies were also continued to study ligand-receptor 

interactions and free binding energy during the 200 ns simulation time using the ffSB14 

force field. The results show C5 candidate has the binding free energy value lower than 

the reference ligand with an energy deviation of ~ 0.40 kcal/mol. Overall, the C5 candidate 

showed good predictive results using the in silico approach and deserves to be 

considered as a COVID-19 main protease inhibitor to be continued experimentally in the 

future. 
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