Supporting Information:
Acremochlorin O and Other Prenylated Chlorophenol Antimicrobial Metabolites from the Fungus Acremonium sp. Strain MNA-F-1

Mohamed S. Elnaggar1,2,*, Nada M. Mostafa1, Ahmed M. Elissawy1,3, Kunthida Phutthacharoen4,5, Paul Eckhardt6, Birthe Sandargo7, Lasse van Geelen2, Sherif S. Ebada1,*, Till Opatz6, Abdel Nasser B. Singab1,3, and Rainer Kalscheuer2,*

1 Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.

2 Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.

3 Center of Drug Discovery Research and Development, Ain Shams University, 11566 Cairo, Egypt.

4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.

5 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.

6 Johannes Gutenberg University Mainz, Department of Chemistry, 55128 Mainz, Germany.

7 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), 38124 Braunschweig, Germany.

*Corresponding author: mohamed.s.elnaggar@pharma.asu.edu.eg (M.S.E.); sherif.elsayed@helmholtz-hzi.de, sherif_elsayed@pharma.asu.edu.eg (S.S.E); rainer.kalscheuer@uni-duesseldorf.de (R.K.); Tel.: +49 0211-81-14180
Contents of Supporting Information

<table>
<thead>
<tr>
<th>#</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure S1. HPLC chromatogram of 1.</td>
<td>S3</td>
</tr>
<tr>
<td>2</td>
<td>Figure S2. UV spectrum of 1.</td>
<td>S3</td>
</tr>
<tr>
<td>3</td>
<td>Figure S3. HRESIMS of 1.</td>
<td>S4</td>
</tr>
<tr>
<td>4</td>
<td>Figure S4. Comparison of experimental and calculated ECD spectra of 1.</td>
<td>S4</td>
</tr>
</tbody>
</table>
| 5 | Figure S5.
H NMR spectrum of 1 in chloroform-\textit{d} at 500 MHz. | S5 |
| 6 | Figure S6. \nC NMR spectrum of 1 in chloroform-\textit{d} at 125 MHz. | S6 |
| 7 | Figure S7.
H-\H COSY spectrum of 1 in chloroform-\textit{d} at 500 MHz. | S7 |
| 8 | Figure S8.
MBC spectrum of 1 in chloroform-\textit{d} at 500 MHz. | S8 |
| 9 | Figure S9.
SQC spectrum of 1 in chloroform-\textit{d} at 500 MHz. | S9 |
| 10 | Figure S10.
ROESY spectrum of 1 in chloroform-\textit{d} at 500 MHz. | S10 |
Figure S1. HPLC chromatogram of 1.

Figure S2. UV spectrum of 1.
Figure S3. HRESIMS of 1.

Figure S4. Comparison of experimental (black) and simulated Boltzmann-averaged (red: (16R,18R), similarity factor: 0.90; green: (16S, 18S), similarity factor: 0.02) ECD spectra of compound 1 (Δ-value: 0.88).
Figure S4. 1H NMR spectrum of 1 in chloroform-d at 500 MHz.
Figure S5. 13C NMR spectrum of 1 in chloroform-d at 125 MHz.
Figure S6. 1H-1H COSY spectrum of 1 in chloroform-d at 500 MHz.
Figure S7. HMBC spectrum of 1 in chloroform-d at 500 MHz.
Figure S8. HSQC spectrum of 1 in chloroform-d at 500 MHz.
Figure S9. ROESY spectrum of 1 in chloroform-\textit{d} at 500 MHz.