The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetoamide carboxamide oxindole hybrids

Carolina S. Marques*1, Aday González-Bakker2, José M. Padrón2

 ¹LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000-641, Évora, Portugal
 ²BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG) Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain

*Email: carolsmarq@uevora.pt

Table of Contents

Page

1. Experimental Section	S2
1.1. General Remarks	S2
1.2. 5-Amino-3-protected oxindole component	S2
1.3. The Ugi4CR: General Procedure	S3
1.4. CuAAC reaction	S7
1.5. Deprotection of methoxyl group	S8
2. Biological Assays	S11
2.1. Cell lines and culture	S11
2.2. Antiproliferative tests	S12
3. References	S13
4. ¹ H and ¹³ C NMR spectra	S14

1. Experimental Section

1.1. General Remarks

All reagents were obtained from Sigma-Aldrich, Acros, Alfa Aesar and TCI and were used as received. Solvents were used as received. Reactions were conducted in round-bottom flasks, or in a Radley's® 12-position carousel reactor, or in vials or beakers. Microwave reactions were conducted with a Biotage Initator+ Microwave System with an automated position system. Column chromatography was carried out on silica gel (Carlo Erba, 40-63 µm, 60Å). Thinlayer chromatography (TLC) was carried out on aluminium-backed Kieselgel 60 F254 plates (Merck and Macherey–Nagel). Plates were visualized either by UV light or with phosphomolybdic acid in ethanol. NMR spectra were recorded with a Bruker Avance III instrument (400 MHz). Chemical shifts (δ) are given in parts per million (ppm) with respect to the solvent (CDCl₃, ¹H: δ = 7.26 ppm, ¹³C: δ = 77.2 ppm). Coupling constants (J) are reported in Hz and refer to apparent peak multiplicities. Splitting patterns are reported as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quadruplet), m (multiplet), br (broad). Mass spectra (MS) were recorded with a guadrupole mass spectrometer Waters ZQ4000 (Chemistry department, University of Salamanca). The ionization was performed by ESI and the samples were infused in methanol.

Benzyl azide **6** was synthesized using a previously literature reported microwave method.[1]

NBS: *N*-bromosuccinimide; TMOF: trimethyl orthoformate; *p*TsOH: *para*-toluenesulfonic acid; DMSO: dimethyl sulfoxide; TFA: trifluoroacetic acid.

1.2. 5-Amino-3-protected oxindole component

The synthesis and characterization of 5-amino-1-benzyl-3,3-dimethoxyindolin-2one **1** was already reported in literature by our group[2-4]. A general scheme is given in Scheme S1.

Scheme S1. Synthetic path to access 5-amino-1-benzyl-3,3-dimethoxyindolin-2-one **1**.[2-4]

1.3. The Ugi4CR: General Procedure

In a glass vial with a magnetic stirrer was added the corresponding 5-amino-1benzyl-3,3-dimethoxyindolin-2-one **1** (1 equivalent), the carboxylic acid **2a-o** (1.5 equivalents), the ketone/aldehyde **3a-d** (1.5 equivalents), the benzyl isocyanide **4** (1.5 equivalents), ZnF_2 (10 mol%) and MeOH (2-3 mL). The vial was closed with a plastic cap and the reaction mixture was left stirring for 2 hours at room temperature. The solvent was evaporated under reduced pressure and the crude reaction mixture purified in a short chromatographic glass column with SiO₂ flash using CH₂Cl₂:AcOEt (5:1), (1:1) as eluents.

N-Benzyl-2-(*N*-(1-benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)acetamido)-3-hydroxy-2-methylpropanamide **5aa**: **1** (90.1 mg, 0.3 mmol), **2a** (30 μL, 0.45 mmol, 1.5 equivalents), **3a** (40 μL, 0.45 mmol, 1.5 equivalents), **4** (55 μL, 0.45 mmol, 1.5 equivalents), ZnF₂ (3.1 mg, 0.03 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5aa** as a pale yellow oil (70 mg, 42% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.45 (s, 3H, CH₃), 1.99 (s, 3H, CH₃), 3.55 (s, 3H, OCH₃), 3.56 (s, 3H, OCH₃), 4.32-4.40 (m, 3H, CH₂), 4.48-4.54 (dd, *J*= 8 Hz, 1H, CH₂), 4.80 (s, 2H, CH₂), 6.38-6.41 (m, 1H, Ar), 6.45-6.47 (d, *J*= 8 Hz, 1H, Ar), 6.76 (m, 1H, Ar), 7.19-7.36 (m, 10H, Ar).¹³C NMR (CDCl₃, 100 MHz) δ: 20.4, 20.8, 43.6, 43.7, 51.0, 51.0, 61.6, 67.5, 97.3, 110.3, 115.1, 118.2, 126.2, 127.4, 127.7, 127.8, 127.9, 128.8, 129.0, 135.5, 135.6, 138.0, 139.8, 170.5, 171.0, 172.6.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-*1*-*oxopropan*-2-*yl*)*propiolamide* **5bb**: **1** (115.1 mg, 0.39 mmol), **2b** (36 μL, 0.58 mmol, 1.5 equivalents), **3b** (33 μL, 0.58 mmol, 1.5 equivalents), **4** (71 μL, 0.58 mmol, 1.5 equivalents), ZnF₂ (4.0 mg, 0.039 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5bb** as a pale yellow foam type solid (92.8 mg, 47% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.11-1.13 (*d*, *J*= 8 Hz, 3H, CH₃), 2.91 (s, 1H, CH), 3.52 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 4.36-4.47 (m, 2H, CH₂), 4.83 (s, 2H, CH₂), 5.05-5.10 (q, *J*= 12 Hz, 1H, CH), 6.67-6.69 (d, *J*= 8 Hz, 1H, Ar), 6.91-6.94 (m, 1H, NH), 7.09-7.12 (m, 1H, Ar), 7.23-7.34 (m, 11H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ: 14.9, 43.6, 43.7, 50.8, 50.9, 54.2, 76.0, 81.8, 96.6, 109.8, 125.5, 126.9, 127.4, 127.4, 127.6, 128.0, 128.7, 129.0, 132.2, 132.4, 134.9, 138.1, 142.9, 154.2, 170.4, 171.0.

N-Benzyl-2-(N-(1-benzyl-3,3-dimethoxy-2-oxoindolin-5-

yl)formamido)propenamide **5cb**: **1** (75.9 mg, 0.25 mmol), **2c** (14 µL, 0.38 mmol, 1.5 equivalents), **3b** (21 µL, 0.38 mmol, 1.5 equivalents), **4** (46 µL, 0.38 mmol, 1.5 equivalents), ZnF₂ (2.6 mg, 0.025 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5cb** as a pale yellow foam type solid (36 mg, 30% yield). ¹H NMR (CDCl₃, 400 MHz) δ : 1.19-1.21 (d, *J*= 8 Hz, 3H, CH₃), 3.57 (s, 3H, OCH₃), 3.60 (s, 3H, OCH₃), 4.38-4.50 (m, 2H, CH₂), 4.85 (s, 2H, CH₂), 5.05-5.10 (q, *J*= 12 Hz, 1H, CH), 6.66-6.68 (d, *J*= 8 Hz, 1H, Ar), 6.89-6.92 (s br, 1H, NH), 7.02-7.05 (m, 1H, Ar), 7.23-7.35 (m, 11H, Ar), 8.22 (s, 1H, CHO).¹³C APT NMR (CDCl₃, 100 MHz) δ : 14.3, 43.7, 43.7, 50.9, 51.0, 52.4, 96.6, 110.3, 124.7, 126.2, 127.4, 127.6, 127.7, 128.1, 128.8, 129.1, 130.2, 132.4, 134.9, 138.1, 142.4, 163.6, 170.7.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-1-*oxopropan*-2-*yl*)-2-*bromobenzamide* **5db**: **1** (102.9 mg, 0.35 mmol), **2d** (105 mg, 0.52 mmol, 1.5 equivalents), **3b** (23 μL, 0.52 mmol, 1.5 equivalents), **4** (63 μL, 0.52 mmol, 1.5 equivalents), ZnF₂ (3.6 mg, 0.035 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5db** as a pale yellow foam type solid (75.9 mg, 34% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.19-1.20 (d, *J*= 4 Hz, 3H, CH₃), 3.31 (s br, 3H, OCH₃), 3.47 (s, 3H, OCH₃), 4.34-4.39 (dd, *J*= 4 Hz, 1H, CH₂), 4.58-4.63 (dd, *J*= 4 Hz, 1H, CH₂), 4.72 (s br, 2H, CH₂), 5.35-5.40 (q, *J*= 12 Hz, 1H, CH), 6.45-6.47 (d, *J*= 8 Hz, 1H, Ar), 6.97-7.01 (t, *J*= 8 Hz, 1H, Ar), 7.05-7.06 (m, 2H, Ar), 7.17-7.19 (m, 4H, Ar), 7.24-7.34 (m, 9H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ: 14.8, 43.6, 43.8, 50.9, 54.3, 96.8, 109.6, 119.2, 125.1, 126.9, 127.3, 127.6, 127.9, 128.2, 128.4, 128.8, 128.9, 130.2, 132.6, 134.9, 138.1, 138.2, 142.3, 170.0, 170.9.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-*1*-*oxobutan*-2*yl*)-5-*nitrofuran*-2-*carboxamide* **5ec**: **1** (83.8 mg, 0.28 mmol), **2e** (66 mg, 0.42 mmol, 1.5 equivalents), **3c** (30 μL, 0.42 mmol, 1.5 equivalents), **4** (51 μL, 0.42 mmol, 1.5 equivalents), ZnF_2 (2.9 mg, 0.028 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5ec** as a pale yellow foam type solid (83.9 mg, 49% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 0.92-0.96 (m, 3H, CH₃), 1.53 (s br, 1H, CH₂), 1.71-1.73 (s br, 1H, CH₂), 3.50 (s br, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 4.38-4.47 (m, 2H, CH₂), 4.85-4.89 (m, 2H, CH₂), 4.97-5.01 (q, *J*= 10 Hz, 1H, CH), 6.14 (s br, 1H, NH), 6.64-6.66 (d, *J*= 8 Hz, 1H, Ar), 7.02-7.03 (m, 2H, Ar), 7.22-7.33 (m, 12H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ: 10.9, 22.3, 43.6, 50.9, 50.9, 61.9, 96.6, 111.0, 118.5, 126.5, 127.2, 127.5, 127.7, 128.0, 128.7, 129.0, 132.1, 132.3, 134.7, 138.1, 143.3, 147.1, 151.5, 158.1, 169.5, 170.9.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-*1*-*oxopropan*-2-*yl*)-2-*iodobenzamide* **5fb**: **1** (84.3 mg, 0.28 mmol), **2f** (104 mg, 0.42 mmol, 1.5 equivalents), **3b** (24 μL, 0.42 mmol, 1.5 equivalents), **4** (51 μL, 0.42 mmol, 1.5 equivalents), ZnF₂ (2.9 mg, 0.028 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5fb** as a pale yellow foam type solid (65.6 mg, 34% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.21-1.23 (d, *J*= 8 Hz, 3H, CH₃), 3.32 (s br, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 4.38-4.43 (dd, *J*= 8 Hz, 1H, CH₂), 4.58-4.63 (dd, *J*= 8 Hz, 1H, CH₂), 5.35-5.41 (q, *J*= 12 Hz, 1H, CH), 6.47-6.49 (d, *J*= 8 Hz, 1H, Ar), 6.82-6.86 (t, *J*= 8 Hz, 1H, Ar), 7.07-7.13 (m, 2H, Ar), 7.16-7.20 (m, 4H, Ar), 7.27-7.37 (m, 8H, Ar), 7.57-7.59 (d, *J*= 8 Hz, 1H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ: 14.9, 43.7, 43.9, 51.0, 54.4, 93.1, 96.8, 109.6, 125.2, 127.3, 127.6, 127.7, 128.0, 128.2, 128.9, 129.0, 130.1, 132.7, 134.9, 138.3, 139.1, 141.9, 142.4, 171.0. 171.4.

N-Benzyl-2-(N-(1-benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)acetamido)-2-(2-

chlorophenyl)acetamide **5ad**: **1** (122.7 mg, 0.41 mmol), **2a** (35 μ L, 0.62 mmol, 1.5 equivalents), **3d** (70 μ L, 0.62 mmol, 1.5 equivalents), **4** (75 μ L, 0.62 mmol, 1.5 equivalents), ZnF₂ (4.2 mg, 0.041 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5ad** as a pale brown foam type solid (88.3 mg, 36% yield). ¹H NMR (CDCl₃, 400 MHz) δ : 1.86 (s, 3H, CH₃), 3.11 (s br, 3H, OCH₃), 3.54 (s, 3H, OCH₃), 4.48-4.50 (d, *J*= 8 Hz, 2H, CH₂), 4.79-4.82 (s br, 2H, CH₂), 6.16-6.19 (m, 1H, CH), 6.48 (s, 1H, Ar), 6.90-6.94 (t, *J*= 8 Hz, 1H, Ar), 7.05-7.12 (m, 2H, Ar), 7.18-7.32 (m, 13H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ : 23.3,

43.6, 43.9, 50.9, 51.0, 61.2, 96.8, 109.8, 125.4, 127.0, 127.3, 127.6, 127.7, 127.9, 128.8, 129.0, 129.6, 130.1, 131.8, 132.4, 134.9, 135.0, 135.4, 137.8, 142.2, 169.7, 171.0, 171.5.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-*1*-*oxopropan*-2-*yl*)*picolinamide* **5gb**: **1** (200 mg, 0.67 mmol), **2g** (123.1 mg, 1.0 mmol, 1.5 equivalents), **3b** (56 μL, 1.0 mmol, 1.5 equivalents), **4** (122 μL, 1.0 mmol, 1.5 equivalents), ZnF₂ (7.0 mg, 0.067 mmol, 10 mol%) and MeOH (3 mL) were used to obtain the corresponding **5gb** as a white foam type solid (191.3 mg, 51% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.23-1.25 (d, *J*= 8 Hz, 3H, CH₃), 3.35 (s br, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 4.48-4.56 (m, 2H, CH₂), 4.76 (s br, 2H, CH₂), 5.31 (s br, 1H, CH), 6.48-6-50 (d, *J*= 8 Hz, 1H, Ar), 6.92-6.95 (m, 1H, Ar), 7.14 (s br, 2H, Ar), 7.20-7.34 (m, 12H, Ar), 7.60 (s br, 1H, NH), 8.28 (s br, 1H, Ar).¹³C NMR (CDCl₃, 100 MHz) δ: 15.0, 43.6, 43.7, 50.9, 72.0, 96.8, 109.7, 125.0, 127.1, 127.3, 127.5, 127.7, 127.8, 127.9, 128.8, 129.0, 131.9, 135.0, 136.8, 138.4, 141.9, 148.4, 154.0, 171.0.

tert-Butyl 4-(2-((1-benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)(1-(benzylamino)-1oxopropan-2-yl)amino)-2-oxoethyl)piperazine-1-carboxylate **5hb**: **1** (108.6 mg, 0.36 mmol), **2h** (135 mg, 0.55 mmol, 1.5 equivalents), **3b** (31 μL, 0.55 mmol, 1.5 equivalents), **4** (67 μL, 0.55 mmol, 1.5 equivalents), ZnF_2 (3.8 mg, 0.036 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5hb** as a pale yellow foam type solid (110.4 mg, 45% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.42 (s, 9H, CH₃), 2.24-2.26 (m, 4H, CH₂), 3.32 (s br, 4H, CH₂), 3.45-3.62 (s br, 6H, OCH₃), 4.31-4.36 (m, 1H, CH₂), 4.46-4.48 (m, 1H, CH₂), 4.85 (s br, 2H, CH₂), 5.14-5.19 (q, *J*= 10 Hz, 1H, CH), 6.65 (s br, 1H, Ar), 6.96 (s br, 2H, Ar + NH), 7.15 (m, 1H, Ar), 7.27-7.36 (m, 10H, Ar).¹³C NMR (CDCl₃, 100 MHz) δ: 14.8, 28.5, 43.6, 43.7, 50.9, 53.0, 53.7, 60.4, 79.8, 96.6, 109.7, 110.5, 126.4, 126.8, 127.4, 127.5, 127.9, 128.1, 128.8, 129.1, 132.2, 134.9, 138.4, 142.7, 154.7, 170.7, 171.1.

tert-Butyl 3-((1-benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)(1-(benzylamino)-1oxopropan-2-yl)carbamoyl)azetidine-1-carboxylate **5ib**: **1** (125.1 mg, 0.42 mmol), **2i** (135 mg, 0.63 mmol, 1.5 equivalents), **3b** (35 μL, 0.63 mmol, 1.5 equivalents), **4** (77 μL, 0.63 mmol, 1.5 equivalents), ZnF_2 (4.3 mg, 0.042 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5ib** as a pale yellow foam type solid (146.5 mg, 54% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.04-1.10 (m, 3H, CH₃), 1.39 (s, 9H, CH₃), 3.06-3.10 (m, 1H, CH), 3.47-3.68 (m, 8H, OCH₃ + CH₂), 3.85-3.91 (m, 1H, CH₂), 4.06-4.08 (m, 1H, CH₂), 4.35-4.51 (m, 2H, CH₂), 4.81-4.87 (m, 2H, CH₂), 5.12-5.13 (m,1H, CH), 6.62-6.70 (m, 1H, Ar), 6.85-6.89 (m, 2H, Ar), 7.05 (s br, 1H, NH), 7.28-7.35 (m, 10H, Ar).¹³C NMR (CDCl₃, 100 MHz) δ: 15.0, 28.4, 32.3, 43.6, 43.8, 50.9, 51.0, 54.2, 79.9, 96.4, 109.9, 110.6, 126.6, 127.5, 127.6, 127.7, 127.9, 128.1, 128.8, 129.5, 132.0, 132.2, 134.9, 138.3, 143.0, 156.1, 170.9, 171.1, 172.8.

N-(1-Benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-yl)acrylamide **5jb**: **1** (122.5 mg, 0.41 mmol), **2j** (43 μ L, 0.62 mmol, 1.5 equivalents), **3b** (35 μ L, 0.62 mmol, 1.5 equivalents), **4** (75 μ L, 0.62 mmol, 1.5 equivalents), ZnF₂ (4.2 mg, 0.041 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5jb** as a pale yellow foam type solid (71 mg, 34%)

yield). ¹H NMR (CDCl₃, 400 MHz) δ : 1.10-1.12 (d, *J*= 8 Hz, 3H, CH₃), 3.51-3.58 (m br, 6H, OCH₃), 4.41-4.45 (m, 2H, CH₂), 4.84 (s, 2H, CH₂), 5.26-5.31 (q, *J*= 12 Hz, 1H, CH), 5.53-5.56 (d, *J*= 20 Hz, 1H, CH₂), 5.89-5.95 (m, 1H, CH), 6.33-6.38 (d, *J*= 20 Hz, 1H, CH), 6.66-6.68 (d, *J*= 8 Hz, 1H, Ar), 6.91-6.93 (m, 1H, NH), 7.12-7.14 (m, 2H, Ar), 7.24-7.36 (m, 10H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ : 14.8, 43.5, 43.7, 50.8, 50.9, 53.7, 96.5, 127.4, 127.5, 127.7, 128.0, 128.1, 128.4, 128.7, 128.8, 129.0, 129.1, 131.2, 132.4, 134.9, 135.0, 138.4, 142.6, 166.9, 170.9, 171.2, 171.4.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-1-*oxopropan*-2-*yl*)*isonicotinamide* **5kb**: **1** (109.2 mg, 0.37 mmol), **2k** (68 mg, 0.55 mmol, 1.5 equivalents), **3b** (31 μL, 0.55 mmol, 1.5 equivalents), **4** (67 μL, 0.55 mmol, 1.5 equivalents), ZnF₂ (3.8 mg, 0.037 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5kb** as a white foam type solid (99.5 mg, 48% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.21-1.22 (d, *J*= 4 Hz, 3H, CH₃), 3.24 (s br, 3H, OCH₃), 3.48 (s br, 3H, OCH₃), 4.37-4.42 (dd, *J*= 8 Hz, 1H, CH₂), 4.54-4.59 (dd, *J*= 8 Hz, 1H, CH₂), 4.78 (s br, 2H, CH₂), 5.26-5.31 (q, *J*= 12 Hz, 1H, CH), 6.48-6.51 (m, 1H, Ar), 6.90-7.02 (m,1H, CH), 6.66-6.68 (d, *J*= 8 Hz, 1H, Ar), 6.91-6.93 (m, 1H, NH), 7.12-7.14 (m, 2H, Ar), 7.24-7.36 (m, 10H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ: 14.8, 43.5, 43.7, 50.8, 50.9, 53.7, 96.5, 127.4, 127.5, 127.7, 128.0, 128.1, 128.4, 128.7, 128.8, 129.0, 129.1, 131.2, 132.4, 134.9, 135.0, 138.4, 142.6, 166.9, 170.9, 171.2, 171.4.

N-Benzyl-2-(N-(1-benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)-2-oxo-2-

phenylacetamido)*propanamide* **5lb**: **1** (165.3 mg, 0.55 mmol), **2l** (125 mg, 0.83 mmol, 1.5 equivalents), **3b** (47 μL, 0.83 mmol, 1.5 equivalents), **4** (101 μL, 0.83 mmol, 1.5 equivalents), ZnF₂ (5.7 mg, 0.055 mmol, 10 mol%) and MeOH (3 mL) were used to obtain the corresponding **5lb** as a pale yellow foam type solid (156.4 mg, 48% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.22-1.23 (d, *J*= 4 Hz, 3H, CH₃), 3.29-3.34 (m br, 6H, OCH₃), 4.41-4.46 (dd, *J*= 16 Hz, 1H, CH₂), 4.60-4.65 (dd, *J*= 8 Hz, 1H, CH₂), 4.74 (s br, 2H, CH₂), 5.13-5.18 (q, *J*= 10 Hz, 1H, CH), 6.50-6.52 (d, *J*= 8 Hz, 1H, Ar), 6.85-6.88 (m br,1H, NH), 7.11-7.13 (d, *J*= 8 Hz, 1H, Ar), 7.18-7.20 (m, 2H, Ar), 7.27-7.40 (m, 11H, Ar), 7.50-7.54 (t, *J*= 8 Hz, 1H, Ar), 7.76 (d, *J*= 8 Hz, 2H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ: 15.0, 43.6, 43.8, 50.7, 50.8, 54.7, 96.5, 109.9, 125.4, 127.2, 127.4, 127.6, 127.6, 127.8, 128.0, 128.8, 128.9, 129.0, 129.0, 129.5, 129.7, 130.4, 133.1, 133.2, 134.6, 134.8, 138.1, 143.0, 146.8, 168.4, 170.8, 170.9, 190.5.

N-(*1*-*Benzyl*-3,3-*dimethoxy*-2-*oxoindolin*-5-*yl*)-*N*-(*1*-(*benzylamino*)-*1*-*oxopropan*-2-*yl*)*tetradecanamide* **5mb**: **1** (128.1 mg, 0.43 mmol), **2m** (146 mg, 0.64 mmol, 1.5 equivalents), **3b** (36 μL, 0.64 mmol, 1.5 equivalents), **4** (78 μL, 0.64 mmol, 1.5 equivalents), ZnF₂ (4.4 mg, 0.043 mmol, 10 mol%) and MeOH (3 mL) were used to obtain the corresponding **5mb** as an orange oil (75.2 mg, 26% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 0.85-0.89 (t, *J*= 8 Hz, 3H, CH₃), 1.04-1.29 (m, 22H, CH₂), 1.48-1.50 (d, *J*= 8 Hz, 3H, CH₃), 1.87-2.05 (m, 2H, CH₂), 3.44-3.58 (m br, 6H, OCH₃), 4.31-4.37 (m, 1H, CH₂), 4.45-4.52 (m, 1H, CH₂), 4.79-4.87 (m, 2H, CH₂), 5.18-5.25 (m, 1H, CH), 6.67 (s br, 1H, NH), 6.89-6.92 (m br,1H, Ar), 7.10 (m, 2H, Ar), 7.25-7.36 (m, 10H, Ar). ¹³C APT NMR (CDCl₃, 100 MHz) δ: 14.2, 14.9, 22.7, 25.4, 29.3, 29.4, 29.4, 29.5, 29.7, 29.7, 32.0, 35.0, 43.2, 43.4, 43.7, 50.9, 53.4, 70.7, 96.6, 110.5, 113.8, 117.5, 127.4, 127.4, 127.7, 127.7, 128.0, 128.7, 128.8, 128.9, 129.0, 133.2, 135.0, 138.5, 142.5, 170.9, 171.5, 174.7.

N-(1-Benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-yl)-1H-pyrrole-3-carboxamide **5nb**: **1** (107.8 mg, 0.36 mmol), **2n** (60 mg, 0.54 mmol, 1.5 equivalents), **3b** (30 μL, 0.54 mmol, 1.5 equivalents), **4** (66 μL, 0.54 mmol, 1.5 equivalents), ZnF₂ (3.7 mg, 0.036 mmol, 10 mol%) and MeOH (2 mL) were used to obtain the corresponding **5nb** as pale yellow foam type solid (125.5 mg, 63% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.20 (d, *J*= 8 Hz, 3H, CH₃), 3.50 (s, 3H, OCH₃), 3.55 (s br, 3H, OCH₃), 4.40-4.48 (m, 2H, CH₂), 4.82-4.84 (m, 1H, CH₂), 4.94-4.98 (m, 1H, CH₂), 5.36-5.38 (m, 1H, CH), 5.92-5.95 (m, 1H, CH), 6.70-6.72 (d, *J*= 8 Hz, 1H, Ar), 6.82-6.83 (m, 1H, CH), 7.07-7.09 (m, 1H, CH), 7.22-7.38 (m, 12H, Ar), 9.72 (s br, 1H, NH). ¹³C APT NMR (CDCl₃, 100 MHz) δ: 15.0, 43.6, 43.8, 50.9, 51.0, 54.5, 96.8, 110.4, 114.6, 121.9, 124.5, 127.4, 127.5, 127.7, 128.1, 128.7, 129.1, 133.2, 135.0, 138.4, 143.1, 162.4, 171.1, 171.4.

N-(*1*-*Benzyl-3*, 3-*dimethoxy-2-oxoindolin-5-yl*)-*N*-(*1*-(*benzylamino*)-*1*-oxopropan-2-yl)furan-2-carboxamide **5ob**: **1** (144.1 mg, 0.48 mmol), **2o** (81 mg, 0.72 mmol, 1.5 equivalents), **3b** (40 µL, 0.72 mmol, 1.5 equivalents), **4** (88 µL, 0.72 mmol, 1.5 equivalents), ZnF₂ (5.0 mg, 0.048 mmol, 10 mol%) and MeOH (3 mL) were used to obtain the corresponding **5ob** as pale brown foam type solid (136.1 mg, 51% yield). ¹H NMR (CDCl₃, 400 MHz) δ : 1.17-1.19 (d, *J*= 8 Hz, 3H, CH₃), 3.47 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 4.42-4.43 (d, *J*= 4 Hz, 2H, CH₂), 4.81-4.86 (m br, 2H, CH₂), 5.32-5.37 (q, *J*= 12 Hz, 1H, CH₂), 5.64-5.65 (d, *J*= 4 Hz, 1H, CH), 6.19-6.20 (m, 1H, CH), 6.66-6.68 (d, *J*= 8 Hz, 1H, Ar), 7.01-7.04 (m, 1H, CH), 7.17-7.35 (m, 12H, Ar).¹³C APT NMR (CDCl₃, 100 MHz) δ : 14.9, 43.5, 43.7, 50.8, 50.8, 54.5, 96.6, 110.1, 111.4, 117.4, 127.2, 127.3, 127.3, 127.7, 128.0, 128.6, 129.0, 132.6, 132.9, 134.9, 138.3, 142.9, 145.1, 146.4, 160.1, 171.0, 171.0.

1.4. CuAAC reaction

In a microwave vial was added **5bb** (328.8 mg, 0.64 mmol), benzyl azide **6** (128 mg, 0.96 mmol, 1.5 equivalents), $Cu(OAc)_2$ (23 mg, 0.13 mmol, 20 mol%), ascorbic acid (25 mg, 0.14 mmol, 22 mol%) and DMF (2 mL). The vial was heated in the microwave oven at 120°C for 30 minutes. The solvent was evaporated under reduced pressure and the crude reaction mixture purified in a short chromatographic glass column with SiO₂ flash using Hex:AcOEt (1:1), (1/2) and AcOEt as eluents.

1-Benzyl-N-(1-benzyl-3,3-dimethoxy-2-oxoindolin-5-yl)-N-(1-(benzylamino)-1oxopropan-2-yl)-1H-1,2,3-triazole-4-carboxamide **7** was obtained as pale brown foam type solid (251.8 mg, 61% yield). ¹H NMR (CDCl₃, 400 MHz) δ: 1.17-1.19 (d, *J*= 8 Hz, 3H, CH₃), 3.42 (s, 3H, OCH₃), 3.49 (s br, 3H, OCH₃), 4.41-4.42 (d, *J*= 4 Hz, 2H, CH₂), 4.71-5.00 (m NH), 6.96-6.99 (m,1H, Ar), 7.09-7.35 (m, 17H, CH + Ar).¹³C NMR (CDCl₃, 100 MHz) δ: 15.0, 43.5, 43.7, 50.8, 50.9, 54.2, 96.6, 109.8, 125.5, 126.2, 127.4, 127.4, 127.7, 128.0, 128.4, 128.7, 129.1, 129.2, 132.9, 133.5, 134.9, 138.3, 142.6, 162.0, 162.6, 170.9, 171.0.

1.5. Deprotection of methoxyl group

In a round-bottom flask with a magnetic stirrer was added the corresponding α acetoamide carboxamide oxindole hybrids **5** and **7**, CH₂Cl₂ (5 mL) and trifluoroacetic acid (1 mL). The mixture was stirred overnight at room temperature. The reaction was quenched with saturated NaHCO₃ aqueous solution, carefully, to neutralize the acid. The resulting crude mixture was extracted with CH₂Cl₂. The combined organic layers were dried with MgSO₄, filtered and the solvent evaporated under reduced pressure. The crude reaction mixture was purified in a short chromatographic glass column with SiO₂ flash using Hex:AcOEt (5:1), (1:1), (1:2).

N-Benzyl-2-(N-(1-benzyl-2,3-dioxoindolin-5-yl)acetamido)-3-hydroxy-2-

methylpropanamide **8a**: **5aa** (70 mg, 0.13 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8a** as pale purple foam type solid (32.7 mg, 51% yield).¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.38 (s, 3H, CH₃), 1.95 (s, 3H, CH₃), 4.16-4.34 (m, 4H, CH₂), 4.77-4.86 (m, 2H, CH₂), 6.04 (s br, 1H, NH), 6.68-6.73 (m, 2H, Ar), 6.76 (s, 1H, Ar), 7.13 (m, 4H, Ar), 7.30-7.41 (m, 5H, Ar), 8.62-8.65 (m, 1H, Ar). ¹³C APT NMR (DMSO-*d*₆, 100 MHz) δ : 20.7, 21.9, 42.4, 42.9, 59.3, 64.9, 110.4, 111.5, 117.7, 123.5, 126.6, 127.2, 127.5, 127.6, 128.1, 128.7, 135.9, 139.4, 141.4, 142.3, 158.1, 170.2, 172.9, 183.9. HRMS (ESI) m/z: calculated for C₂₈H₂₇O₅N₃²³Na [M]⁺ 508.18429, found 508.1837.

N-Benzyl-2-(N-(1-benzyl-2,3-dioxoindolin-5-yl)formamido)propenamide **8b**: **5cb** (268.5 mg, 0.55 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8b** as an orange foam type solid (177.8 mg, 73% yield).¹H NMR (CDCl₃, 400 MHz) δ : 1.21-1.22 (d, *J*= 8 Hz, 3H, CH₃), 4.38-4.49 (m, 2H, CH₂), 4.89-4.97 (m, 2H, CH₂), 5.04-5.09 (q, *J*= 8 Hz, 1H, CH), 6.77-6.79 (m, 2H, Ar + NH), 7.24-7.38 (m, 11H, Ar), 7.43 (s, 1H, Ar), 8.19 (s, 1H, CH). ¹³C NMR (CDCl₃, 100 MHz) δ : 14.5, 43.8, 44.4, 52.4, 111.9, 118.0, 124.6, 127.7, 127.7, 127.8, 128.6, 128.9, 129.3, 133.8, 134.10, 137.7, 150.3, 158.1, 163.1, 170.4, 182.4. HRMS (ESI) m/z: calculated for C₂₆H₂₄O₄N₃ [M]⁺ 442.17613, found 442.1755.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-yl)-2-

bromobenzamide **8c**: **5db** (62.2 mg, 0.097 mmol), CH₂Cl₂ (5 mL) and TFA (1 mL) were used to obtain the corresponding **8c** as an orange foam type solid (47.9 mg, 83% yield).¹H NMR (CDCl₃, 400 MHz) δ: 1.19-1.21 (d, *J*= 8 Hz, 3H, CH₃), 4.33-4.38 (dd, *J*= 16 Hz, 1H, CH₂), 4.58-4.63 (dd, *J*= 16 Hz, 1H, CH₂), 4.78-4.82 (m, 2H, CH₂), 5.37-5.39 (m, 1H, CH), 6.52-6.54 (d, *J*= 8 Hz, 1H, Ar), 7.01-7.05 (m, 1H, Ar), 7.09-7.11 (m, 2H, Ar + NH), 7.23-7.34 (m, 14H, Ar). ¹³C APT NMR (CDCl₃, 100 MHz) δ: 14.9, 43.9, 44.3, 54.4, 111.1, 117.4, 119.1, 126.6, 127.2, 127.5, 127.7, 128.4, 128.4, 128.9, 129.2, 130.5, 132.8, 134.1, 137.5, 138.1, 139.5, 150.1, 158.1, 169.8, 182.2. HRMS (ESI) m/z: calculated for $C_{32}H_{26}O_4N_3^{79}Br^{23}Na$ [M]⁺ 618.09989, found 618.0992.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxobutan-2-yl)-5-

nitrofuran-2-carboxamide **8d**: **5ec** (62.4 mg, 0.10 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8d** as an orange foam type solid (41.6 mg, 72% yield).¹H NMR (CDCl₃, 400 MHz) δ : 0.94-0.97 (m, 3H, CH₃), 1.53-1.59 (m, 1H, CH₂), 1.73-1.74 (m, 1H, CH₂), 4.39-4.50 (m, 2H, CH₂), 4.91-4.95 (m,

3H, CH + CH₂), 6.75-6.79 (m, 2H, Ar), 6.86 (s br, 1H, NH), 7.08-7.09 (d, *J*= 4 Hz, 1H, CH), 7.24-7.39 (m, 11H, Ar + CH), 7.43 (s br, 1H, Ar). ¹³C APT NMR (CDCl₃, 100 MHz) δ : 10.8, 22.5, 43.8, 44.4, 61.8, 111.1, 119.6, 126.6, 127.4, 127.7, 127.9, 128.4, 128.8, 129.3, 134.0, 138.0, 139.7, 147.0, 151.2, 151.5, 157.9, 158.2, 169.2, 182.4. HRMS (ESI) m/z: calculated for C₃₁H₂₇O₇N₄ [M]⁺ 567.18743, found 567.1866.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-yl)-2-iodobenzamide **8e**: **5fb** (86.1 mg, 0.125 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8e** as an orange foam type solid (59 mg, 74% yield).¹H NMR (CDCl₃, 400 MHz) δ : 1.20-1.22 (d, *J*= 8 Hz, 3H, CH₃), 4.36-4.41 (dd, *J*= 14 Hz, 1H, CH₂), 4.58-4.63 (dd, *J*= 14 Hz, 1H, CH₂), 4.76-4.83 (m, 2H, CH₂), 5.35-5.41 (q, *J*= 8 Hz, 1H, CH), 6.53-6.56 (m, 1H, Ar), 6.84-6.88 (t, *J*= 8 Hz, 1H, Ar), 7.12-7.14 (m br, 2H, Ar + NH), 7.23-7.35 (m, 13H, Ar), 7.56-7.58 (d, *J*= 8 Hz, 1H, Ar). ¹³C APT NMR (CDCl₃, 100 MHz) δ : 14.9, 43.9, 44.3, 54.1, 92.9, 111.1, 117.4, 126.9, 127.6, 127.8, 127.8, 128.2, 128.5, 129.0, 129.2, 130.4, 134.1, 138.2, 139.3, 139.7, 141.4, 150.1, 158.2, 171.2, 182.2. HRMS (ESI) m/z: calculated for C₃₂H₂₆O₄N₃¹²⁷l²³Na [M]⁺ 666.08602, found 666.0850.

N-Benzyl-2-(N-(1-benzyl-2,3-dioxoindolin-5-yl)acetamido)-2-(2-

chlorophenyl)acetamide **8f**: **5ad** (109.7 mg, 0.18 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8f** as a pale yellow foam type solid (47.1 mg, 46% yield).¹H NMR (CDCl₃, 400 MHz) δ : 1.86 (s, 3H, CH₃), 4.48-4.49 (m, 2H, CH₂), 4.85 (m br, 2H, CH₂), 6.16 (s br, 1H, CH), 6.47 (s, 1H, Ar), 6.59 (s br, 1H, Ar), 6.92-6.95 (m, 1H, Ar), 6.99-7.01 (m, 1H, Ar), 7.10-7.14 (t, *J*= 8 Hz, 1H, Ar), 7.21-7.36 (m, 12H, Ar), 7.98 (s br, 1H, NH). ¹³C APT NMR (CDCl₃, 100 MHz) δ : 23.2, 44.0, 44.3, 61.2, 111.2, 117.6, 127.1, 127.6, 127.7, 127.8, 128.4, 128.8, 129.2, 130.0, 130.4, 131.5, 132.0, 134.2, 135.3, 136.2, 137.7, 150.0, 158.3, 169.5, 170.9, 182.4. HRMS (ESI) m/z: calculated for C₃₂H₂₆O₄N₃³⁵Cl²³Na [M]⁺ 574.15041, found 574.1495.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-

yl)picolinamide **8g**: **5gb** (165.9 mg, 0.29 mmol), CH₂Cl₂ (5 mL) and TFA (1 mL) were used to obtain the corresponding **8g** as an orange foam type solid (84.6 mg, 56% yield).¹H NMR (CDCl₃, 400 MHz) δ : 1.23-1.24 (d, *J*= 4 Hz, 3H, CH₃), 4.49-4.53 (m, 2H, CH₂), 4.86 (s, 2H, CH₂), 5.24 (s br, 1H, CH), 6.60-6.62 (d, *J*= 8 Hz, 1H, Ar), 7.18-7.22 (m, 2H, Ar + NH), 7.27-7.38 (m, 12H, Ar), 7.55 (s br, 1H, Ar), 7.72 (s br, 1H, Ar), 8.24-8.25 (d, *J*= 4 Hz, 1H, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ : 15.2, 43.8, 44.3, 50.9, 111.3, 117.5, 124.6, 125.0, 126.9, 127.4, 127.6, 127.9, 128.0, 128.4, 128.9, 129.0, 129.2, 134.2, 137.6, 138.3, 139.7, 147.8, 149.9, 152.9, 158.3, 168.9, 170.4, 182.5. HRMS (ESI) m/z: calculated for C₃₁H₂₇O₄N₄ [M]⁺ 519.20268, found 519.2023.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-

yl)acrylamide **8h**: **5jb** (71.0 mg, 0.14 mmol), CH_2CI_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8h** as an orange foam type solid (43.0 mg, 66% yield).¹H NMR (CDCI₃, 400 MHz) δ : 1.12-1.13 (d, *J*= 4 Hz, 3H, CH₃), 4.34-4.48 (m, 3H, CH₂ + CH), 4.93 (s, 2H, CH₂), 5.23-5.28 (q, *J*= 12 Hz, 1H, CH), 5.56-5.59 (d, *J*= 12 Hz, 1H, CH₂), 5.79-5.89 (m, 1H, CH₂), 6.31-6.31 (m, 1H, Ar), 6.75-6.77 (d, *J*= 8 Hz, 1H, Ar), 6.84 (s br, 1H, NH), 6.97 (m br, 1H, Ar), 7.17-7.19 (d, *J*= 8

Hz, 1H, Ar), 7.23-7.41 (m, 10H, Ar). ¹³C APT NMR (CDCl₃, 100 MHz) δ : 15.0, 43.7, 44.5, 53.7, 111.9, 126.8, 126.9, 127.6, 127.8, 127.9, 128.0, 128.0, 128.6, 128.9, 129.3, 129.9, 131.6, 133.9, 134.1, 134.2, 138.2, 138.2, 139.8, 150.6, 150.7, 158.1, 166.7, 170.9, 171.1, 182.4. HRMS (ESI) m/z: calculated for C₂₈H₂₄O₄N₃ [M]⁻ 466.17723, found 466.1775.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-

yl)isonicotinamide **8i**: **5kb** (75.5 mg, 0.13 mmol), CH_2CI_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8i** as an orange foam type solid (24.2 mg, 36% yield).¹H NMR (CDCI₃, 400 MHz) δ : 1.22-1.24 (d, *J*= 8 Hz, 3H, CH₃), 4.36-4.41 (dd, *J*= 14 Hz, 1H, CH₂), 4.52-4.57 (dd, *J*= 14 Hz, 1H, CH₂), 4.85 (s br, 2H, CH₂), 5.24-5.29 (m br, 1H, CH), 6.57-6.59 (d, *J*= 8 Hz, 1H, Ar), 6.83 (s br, 1H, NH), 7.03 (s br, 2H, Ar), 7.18 (s br, 1H, Ar), 7.25-7.37 (m, 11H, Ar), 8.46 (s br, 2H, Ar). ¹³C NMR (CDCI₃, 100 MHz) δ : 15.5, 43.8, 44.5, 55.0, 111.7, 117.8, 122.2, 126.4, 127.6, 127.8, 128.0, 128.6, 129.0, 129.3, 134.0, 134.2, 138.1, 139.9, 144.0, 149.2, 150.3, 158.0, 169.0, 170.5, 182.3. HRMS (ESI) m/z: calculated for C₃₁H₂₇O₄N₄ [M]⁺ 519.20268, found 519.2024.

N-Benzyl-2-(N-(1-benzyl-2,3-dioxoindolin-5-yl)-2-oxo-2-

phenylacetamido)*propenamide* **8j**: **5lb** (156.0 mg, 0.26 mmol), CH₂Cl₂ (5 mL) and TFA (1 mL) were used to obtain the corresponding **8j** as a dark orange foam type solid (71.0 mg, 50% yield).¹H NMR (CDCl₃, 400 MHz) δ: 1.20-1.22 (d, *J*= 8 Hz, 3H, CH₃), 4.38-4.43 (dd, *J*= 14 Hz, 1H, CH₂), 4.56-4.61 (dd, *J*= 14 Hz, 1H, CH₂), 4.75-4.85 (q, *J*= 14 Hz, 2H, CH₂), 5.12-5.18 (q, *J*= 8 Hz, 1H, CH), 6.58-6.60 (d, *J*= 8 Hz, 1H, Ar), 6.87-6.90 (m, 1H, Ar), 7.23-7.42 (m, 13H, Ar), 7.47 (s br, 1H, NH), 7.53-7.56 (m, 1H, Ar), 7.72-7.74 (d, *J*= 8 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ: 15.3, 43.8, 44.3, 54.6, 111.4, 117.6, 127.5, 127.6, 127.7, 127.8, 128.4, 128.9, 129.1, 129.2, 129.5, 131.8, 132.9, 134.0, 135.0, 138.0, 140.7, 150.7, 158.1, 167.9, 170.6, 182.0, 190.2. HRMS (ESI) m/z: calculated for C₃₃H₂₈O₅N₃ [M]⁺ 546.20235, found 546.2017.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-

yl)tetradecanamide **8k**: **5mb** (63.7 mg, 0.095 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8k** as an orange oil (38.2 mg, 64% yield).¹H NMR (CDCl₃, 400 MHz) δ : 0.85-0.89 (t, *J*= 8 Hz, 3H, CH₃), 1.04-1.28 (m, 22H, CH₂), 1.42-1.51 (m, 3H, CH₃), 1.84-1.95 (m, 2H, CH₂), 4.32-4.37 (dd, *J*= 14 Hz, 1H, CH₂), 4.45-4.50 (m, 1H, CH₂), 4.92 (s br, 2H, CH₂), 5.15-5.21 (q, *J*= 8 Hz, 1H, CH), 6.75-6.77 (d, *J*= 8 Hz, 1H, Ar), 6.98 (s br, 1H, NH), 7.17-7.19 (d, *J*= 8 Hz, 1H, Ar), 7.25-7.40 (m, 11H, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ : 14.2, 15.1, 22.8, 25.3, 29.3, 29.4, 29.5, 29.7, 29.7, 29.8, 32.0, 35.1, 43.3, 43.6, 44.5, 70.8, 126.8, 127.6, 127.7, 127.8, 127.9, 128.5, 128.8, 128.9, 129.1, 129.3, 134.2, 134.6, 137.9, 138.3, 139.7, 150.4, 158.2, 169.6, 170.4, 171.3, 174.3. HRMS (ESI) m/z: calculated for C₃₉H₄₉O₄N₃²³Na [M]⁺ 646.36153, found 646.3605.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-yl)-1H-

pyrrole-3-carboxamide **8I**: **5nb** (91.8 mg, 0.17 mmol), CH_2Cl_2 (5 mL) and TFA (1 mL) were used to obtain the corresponding **8I** as an orange foam type solid (43.1 mg, 51% yield).¹H NMR (CDCl₃, 400 MHz) δ : 1.18-1.20 (d, *J*= 8 Hz, 3H, CH₃), 4.43-4.46 (m, 2H, CH₂), 4.91-4.98 (m, 3H, CH₂ + CH), 5.32-5.37 (q, *J*= 8 Hz, 1H, CH), 5.94-5.95 (m, 1H, CH), 6.78-6.81 (m, 1H, Ar), 6.85 (s br, 1H, CH), 6.97 (s

br, 1H, NH), 7.25-7.43 (m, 12H, Ar), 9.53 (s br, 1H, NH). 13 C APT NMR (CDCl₃, 100 MHz) δ : 15.1, 43.7, 44.6, 54.3, 110.6, 112.3, 114.7, 122.2, 124.3, 127.6, 127.7, 127.9, 128.6, 128.9, 129.4, 134.2, 134.7, 138.2, 140.7, 150.9, 158.3, 162.1, 171.0, 182.4. HRMS (ESI) m/z: calculated for C₃₀H₂₆O₄N₄²³Na [M]⁺ 529.18463, found 529.1840.

N-(1-Benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2-yl)furan-2-carboxamide **8m**: **5ob** (130.0 mg, 0.23 mmol), CH₂Cl₂ (5 mL) and TFA (1 mL) were used to obtain the corresponding **8m** as a dark orange oil (98.1 mg, 84% yield).¹H NMR (CDCl₃, 400 MHz) δ : 1.19-1.22 (m, 3H, CH₃), 4.42-4.44 (m, 2H, CH₂), 4.89-4.99 (m, 2H, CH₂), 5.28-5.34 (q, *J*= 8 Hz, 1H, CH), 6.11-6.12 (d, *J*= 4 Hz, 1H, CH), 6.25-6.26 (m, 1H, CH), 6.73-6.75 (d, *J*= 8 Hz, 1H, Ar), 7.00-7.03 (m, 1H, NH), 7.22-7.41 (m, 13H, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ : 15.1, 43.7, 44.5, 54.5, 111.6, 111.7, 117.9, 118.3, 127.2, 127.6, 127.7, 127.9, 128.6, 128.8, 129.3, 134.2, 134.5, 138.2, 140.1, 145.4, 146.4, 150.6, 158.3, 159.9, 170.7, 182.4. HRMS (ESI) m/z: calculated for C₃₀H₂₅O₅N₃²³Na [M]⁺ 530.16864, found 530.1679.

1-Benzyl-N-(1-benzyl-2,3-dioxoindolin-5-yl)-N-(1-(benzylamino)-1-oxopropan-2yl)-1H-1,2,3-triazole-4-carboxamide **8n**: **7** (214.7 mg, 0.33 mmol), CH₂Cl₂ (5 mL) and TFA (1 mL) were used to obtain the corresponding **8n** as an orange foam type solid (112.5 mg, 56% yield).¹H NMR (CDCl₃, 400 MHz) δ: 1.20-1.22 (d, *J*= 8 Hz, 3H, CH₃), 4.42-4.43 (d, *J*= 4 Hz, 2H, CH₂), 4.89 (s br, 2H, CH₂), 5.31-5.39 (m, 3H, CH₂ + CH), 6.69-6.71 (d, *J*= 8 Hz, 1H, Ar), 6.98 (s br, 1H, NH), 7.18-7.39 (m, 17H, Ar + CH), 7.55 (s br, 1H, Ar). ¹³C NMR (CDCl₃, 100 MHz) δ: 14.2, 43.7, 44.4, 54.4, 54.9, 111.3, 117.6, 127.3, 127.5, 127.7, 127.9, 128.5, 128.8, 129.3, 129.3, 129.4, 133.5, 134.3, 138.2, 140.2, 143.2, 150.4, 158.4, 161.8, 170.6, 182.5. HRMS (ESI) m/z: calculated for C₃₅H₃₁O₄N₆ [M]⁺ 599.24013, found 599.2390.

2. Biological Assays

2.1. Cell lines and culture

The human solid tumor cell lines used in this study were the non-small cell lung cancer A549 and SW1573, the cervix cancer HeLa, the breast cancer cell lines HBL-100 and T-47D, and the colon cancer WiDr. Cell lines were obtained from Prof. Godefridus J. Peters (VUmc, Amsterdam, NL). The maintenance of cell cultures was in 60 mm Petri dishes in a humidified air incubator (37 °C, 5% CO₂, 95% humidity). The cell culture medium used was RPMI 1640 supplemented with 5% heat inactivated FCS, 2 mM L-glutamine, 100 U/mL penicillin and 0.1 mg/mL streptomycin. Cell cultures were passaged biweekly using 0.05% trypsin and maintained at low passage. Single cell suspensions were counted using Moxi Z automated cell counter.

2.2. Antiproliferative tests

On day 0, cells were inoculated in a volume of 100 μ L per well at densities of 2500 (A549, HBL-100, HeLa and SW1573) or 5000 (T-47D and WiDr) cells per well, based on their doubling times. Stock solutions of isatins **8a**–**n** were prepared in DMSO at 40 mM. Each compound was tested in triplicate at different dilutions in the range 1–100 μ M. Cisplatin served as positive control. Control cells received an equivalent concentration of DMSO (0.25% v/v, negative control). The drug treatment was started on day 1 after plating and incubation times was 48 h. Then, the SRB colorimetric method of the NCI was performed [5]. The optical density (OD) of each well was measured at 530 nm, using BioTek's PowerWave XS Absorbance Microplate Reader. Values were corrected for background OD from wells only containing medium. Antiproliferative activity of the compounds expressed as Gl₅₀ was calculated according to NCI formulas [6].

		Cell line (origin)						
Compound	<u> </u>	A549 (lung)	HBL-100 (breast)	HeLa (cervix)	SW1573 (lung)	T-47D (breast)	WiDr (colon)	
8a		30±7.6	23±7.9	16±6.2	25±6.6	31±1.6	23±1.7	
8b		21±1.3	21±2.7	15±5.1	18±4.0	21±1.2	20±1.7	
8c		73±9.1	2.1±0.54	3.5±1.7	2.0±0.22	10±3.9	10±2.0	
8d		2.2±0.35	2.1±0.08	2.2±0.18	3.4±1.2	3.5±0.22	2.5±0.33	
8e		>100	2.3±0.41	2.8±0.89	2.8±0.13	12±3.6	15±6.1	
8f		57±11	2.1±0.06	2.2±0.64	2.7±0.54	14±2.2	7.3±2.9	
8g		20±0.77	19±2.0	17±6.6	18±4.1	20±2.1	16±3.2	
8h		2.8±0.52	2.0±0.33	1.7±0.49	1.8±0.19	2.8±0.16	2.5±0.54	
8i		27±13	18±5.0	18±8.4	20±2.8	26±8.9	26±7.3	
8j		9.7±0.94	5.5±1.2	4.1±1.8	5.0±1.8	19±1.4	12±4.1	
8k		3.6±0.76	1.9±0.19	1.4±0.18	1.7±0.8	3.8±0.31	3.3±0.57	
81		20±3.3	2.0±0.25	2.4±0.77	3.9±1.3	6.5±2.0	11±4.1	
8m		20±8.8	2.2±0.11	2.6±0.58	3.9±0.31	3.8±0.81	5.2±1.7	
8n		28±6.1	2.2±0.36	3.0±1.1	3.2±1.2	9.0±3.2	8.8±3.2	
CDDP		4.9±0.18	1.9±0.16	1.8±0.52	2.7±0.38	17±3.3	23±4.3	

Table S1. Antiproliferative activity (GI_{50} , μM) against human solid tumor cell lines.

Values represent mean ± standard deviation of three independent experiments.

3. References

[1] Marques, C. S.; Burke, A. J. *ChemCatChem* **2016**, 8, 3518-3526. Doi: 10.1002/cctc.201600901.

[2] Marques, C. S.; López, Ó.; Leitzbach, L.; Fernández-Bolanõs, J. G.; Stark, H.; Burke, A. J. *Synthesis* **2022**, 54, 4304. Doi: 10.1055/s-0041-1737343.
[3] Marques, C. S.; McArdle, P.; Erxleben, A.; Burke, A. J. *Eur. J. Org. Chem.* **2020**, 3622. Doi: 10.1002/ejoc.202000334.

[4] Marques, C. S.; González-Bakker, A.; Padrón, J. M.; Burke, A. J. *New J. Chem.* **2023**, 47, 743-750. Doi: 10.1039/d2nj03627d.

[5] Orellana, E. A.; Kasinski, A. L. *Bio-protocol.* **2016**, 6, e1984. Doi: 10.21769/BioProtoc.1984.

[6] Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-wolff, A.; *et al. J. Natl. Cancer Inst.* **1991**, 83, 757-766. Doi: 10.1093/jnci/83.11.757.

4. ¹H and ¹³C NMR spectra

