Supporting Information for

Chemical and Biosynthetic Potential of Penicillium shentong

XL-F41

Ran Zou^{1,3}, Xin Li¹, Xiaochen Chen¹, Yue-Wei Guo^{1,2}, Baofu Xu^{*1,2}

¹Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China. ²State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China. ³School of Life Sciences, Ludong University, Yantai 264025, China. E-mail: Baofu Xu* <u>bfxu@simm.ac.cn</u> *Corresponding author

Table of Contents

Figure S1. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 1	1
Figure S2. ¹³ C NMR spectrum (600 MHz, Chloroform-d) of 1	1
Figure S3. HSQC spectrum (600 MHz, Chloroform-d) of 1	2
Figure S4. ¹ H- ¹ H COSY spectrum (600 MHz, Chloroform-d) of 1	2
Figure S5. HMBC spectrum (600 MHz, Chloroform-d) of 1	3
Figure S6. NOESY spectrum (600 MHz, Chloroform-d) of 1	3
Figure S7. HRESIMS spectrum of 1	4
Figure S8. Chemical structure of compound 1	4
Figure S9. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 2	5
Figure S10. ¹³ C NMR spectrum (600 MHz, Chloroform-d) of 2	5
Figure S11. HSQC spectrum (600 MHz, Chloroform-d) of 2	6
Figure S12. ¹ H- ¹ H COSY spectrum (600 MHz, Chloroform-d) of 2	6
Figure S13. HMBC spectrum (600 MHz, Chloroform-d) of 2	7
Figure S14. NOESY spectrum (600 MHz, Chloroform-d) of 2	7
Figure S15. HRESIMS spectrum of 2	8
Figure S16. Chemcial structure of compound 2	8
Figure S17. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 3	9
Figure S18. ¹³ C NMR spectrum (600 MHz, Chloroform-d) of 3	9
Figure S19. HSQC spectrum (600 MHz, Chloroform-d) of 3	10
Figure S20. ¹ H- ¹ H COSY spectrum (600 MHz, Chloroform-d) of 3	10
Figure S121. HMBC spectrum (600 MHz, Chloroform-d) of 3	11
Figure S22. NOESY spectrum (600 MHz, Chloroform-d) of 3	11
Figure S23. LC-MS spectrum of 3	

Figure S24. Chemcial structure of compounds 3	. 12
Figure S25. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 4	.13
Figure S26. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 5	. 14
Figure S27. ¹ H NMR spectrum (600 MHz, Acetone-d6) of 6	.15
Figure S28. ¹ H NMR spectrum (600 MHz, Acetone-d6) of 7	. 16
Figure S29. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 8	. 17
Figure S30. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 9	. 18
Figure S31. ¹ H NMR spectrum (600 MHz, Chloroform-d) of 10	. 19
Figure S32. ¹ H NMR spectrum (600 MHz, Acetone-d) of 11	20
Figure S33. ¹ H NMR spectrum (600 MHz, Methanol-d4) of 12	.21
Supplementary References	. 22

Figure S1. ¹H NMR spectrum (600 MHz, Chloroform-d) of 1

Figure S2. ¹³C NMR spectrum (600 MHz, Chloroform-d) of 1

Figure S3. HSQC spectrum (600 MHz, Chloroform-d) of 1

Figure S4. ¹H-¹H COSY spectrum (600 MHz, Chloroform-d) of 1

Figure S5. HMBC spectrum (600 MHz, Chloroform-d) of 1

Figure S6. NOESY spectrum (600 MHz, Chloroform-d) of 1

Figure S7. HRESIMS spectrum of 1

Figure S8. Chemical structure of compound 1

Figure S9. ¹H NMR spectrum (600 MHz, Chloroform-d) of 2

Figure S10. ¹³C NMR spectrum (600 MHz, Chloroform-d) of 2

Figure S11. HSQC spectrum (600 MHz, Chloroform-d) of 2

Figure S12. ¹H-¹H COSY spectrum (600 MHz, Chloroform-d) of **2**

Figure S13. HMBC spectrum (600 MHz, Chloroform-d) of 2

Figure S14. NOESY spectrum (600 MHz, Chloroform-d) of 2

Figure S15. HRESIMS spectrum of 2

Figure S16. Chemcial structure of compound 2

Figure S17. ¹H NMR spectrum (600 MHz, Chloroform-d) of 3

Figure S18. ¹³C NMR spectrum (600 MHz, Chloroform-d) of 3

Figure S19. HSQC spectrum (600 MHz, Chloroform-d) of 3

Figure S20. ¹H-¹H COSY spectrum (600 MHz, Chloroform-d) of **3**

Figure S121. HMBC spectrum (600 MHz, Chloroform-d) of 3

Figure S22. NOESY spectrum (600 MHz, Chloroform-d) of 3

Figure S23. LC-MS spectrum of 3

Figure S24. Chemcial structure of compounds 3

Figure S25. ¹H NMR spectrum (600 MHz, Chloroform-d) of 4

¹H NMR (600 MHz, Chloroform-d) δ 8.11 (s, 1H), 8.02 (s, 1H), 7.69 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.63 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.22 – 7.15 (m, 3H), 7.12 – 7.05 (m, 2H), 4.76 (d, *J* = 7.2 Hz, 1H), 4.56 (tt, *J* = 7.1, 3.6 Hz, 1H), 3.78 (ddd, *J* = 10.9, 7.2, 3.5 Hz, 1H), 3.66 (ddd, *J* = 11.4, 6.7, 4.9 Hz, 1H), 2.26 (d, *J* = 3.9 Hz, 1H), 2.01 (dd, *J* = 7.3, 5.1 Hz, 1H).Compound **4** was determined by comparison of its spectroscopic data with fusarindole B in the literature [1].

¹H NMR (600 MHz, Chloroform-d) δ 6.64 (d, *J* = 1.5 Hz, 1H), 6.61 (dd, *J* = 8.6, 3.8 Hz, 1H), 6.35 (d, *J* = 2.5 Hz, 1H), 6.27 (d, *J* = 2.6 Hz, 1H), 4.92 – 4.84 (m, 1H), 4.02 (d, *J* = 17.7 Hz, 1H), 3.53 (d, *J* = 17.7 Hz, 1H), 2.47 (d, *J* = 8.5 Hz, 1H), 2.38 – 2.29 (m, 1H), 1.98 (q, *J* = 9.3, 7.6 Hz, 1H), 1.93 – 1.86 (m, 1H), 1.66 (d, *J* = 4.9 Hz, 1H), 1.65 – 1.63 (m, 1H), 1.25 (s, 3H). Compound **5** was determined by comparison of its spectroscopic data with dehydrocurvularin in the literature [2].

Figure S27. ¹H NMR spectrum (600 MHz, Acetone-d6) of 6

¹H NMR (600 MHz, Acetone-d6) δ 6.43 (d, J = 2.3 Hz, 1H), 6.34 (d, J = 2.3 Hz, 1H), 4.95 (td, J = 6.6, 3.5 Hz, 1H), 3.99 (ddt, J = 10.4, 7.0, 3.6 Hz, 1H), 3.82 (d, J = 15.4 Hz, 1H), 3.68 (d, J = 15.4 Hz, 1H), 3.31 (d, J = 3.2 Hz, 1H), 3.08 (dd, J = 13.9, 10.0 Hz, 1H), 1.81 - 1.33 (m, 6H), 1.12 (d, J = 6.4 Hz, 3H). Compound **6** was determined by comparison of its spectroscopic data with hydroxycurvularin in the literature [3].

Figure S28. ¹H NMR spectrum (600 MHz, Acetone-d6) of 7

¹H NMR (600 MHz, Acetone-d6) δ 6.39 (d, *J* = 2.3 Hz, 1H), 6.34 (d, *J* = 2.3 Hz, 1H), 4.91 (dqd, *J* = 9.0, 6.3, 2.8 Hz, 1H), 3.77 (d, *J* = 15.7 Hz, 1H), 3.70 (d, *J* = 15.6 Hz, 1H), 3.11 (ddd, *J* = 15.5, 8.6, 3.0 Hz, 1H), 2.77 (ddd, *J* = 15.5, 9.8, 3.0 Hz, 1H), 1.80 – 1.68 (m, 1H), 1.60 (ddt, *J* = 14.3, 7.9, 3.2 Hz, 1H), 1.56 – 1.49 (m, 1H), 1.49 – 1.37 (m, 3H), 1.35 – 1.21 (m, 2H), 1.11 (d, *J* = 6.3 Hz, 3H). Compound **7** was determined by comparison of its spectroscopic data with curvularin in the literature [4].

Figure S29. ¹H NMR spectrum (600 MHz, Chloroform-d) of 8

¹H NMR (600 MHz, Chloroform-d) δ 6.32 (d, J = 2.3 Hz, 1H), 6.28 – 6.24 (m, 1H), 5.12 (s, 1H), 4.85 (q, J = 6.1, 5.6 Hz, 1H), 4.56 (d, J = 17.4 Hz, 1H), 3.42 (d, J = 17.4 Hz, 1H), 3.20 (dd, J = 17.7, 7.6 Hz, 1H), 2.62 (d, J = 17.7 Hz, 1H), 2.23 (s, 1H), 1.66 – 1.49 (m, 2H), 1.44 – 1.31 (m, 3H), 1.30 – 1.22 (m, 1H), 1.01 (d, J = 6.6 Hz, 3H). Compound **8** was determined by comparison of its spectroscopic data with curvulopyran in the literature [5].

Figure S30. ¹H NMR spectrum (600 MHz, Chloroform-d) of 9

¹H NMR (600 MHz, Chloroform-d) δ 7.18 (s, 1H), 2.65 (dd, *J* = 7.1, 1.9 Hz, 2H), 2.55 (h, *J* = 7.1 Hz, 1H), 2.21 (dh, *J* = 13.5, 6.7 Hz, 1H), 1.75 (dt, *J* = 13.7, 7.5 Hz, 1H), 1.65 (dp, *J* = 14.4, 7.3 Hz, 2H), 1.32 (d, *J* = 7.0 Hz, 3H), 0.97 (d, *J* = 6.7 Hz, 6H), 0.91 (t, *J* = 7.4 Hz, 3H). Compound **9** was determined by comparison of its spectroscopic data with (S)-6-(sec-butyl)-3-isobutylpyrazin-2(1H)-one in the literature [6].

Figure S31. ¹H NMR spectrum (600 MHz, Chloroform-d) of **10**

¹H NMR (600 MHz, Chloroform-d) δ 7.19 (s, 1H), 3.23 (h, *J* = 6.9 Hz, 1H), 2.53 (h, *J* = 7.1 Hz, 1H), 1.87 – 1.77 (m, 1H), 1.71 (dt, *J* = 13.8, 7.5 Hz, 1H), 1.64 (dt, *J* = 14.1, 7.2 Hz, 1H), 1.54 (dt, *J* = 13.4, 7.3 Hz, 1H), 1.30 (d, *J* = 7.0 Hz, 3H), 1.21 (d, *J* = 6.9 Hz, 3H), 0.90 (td, *J* = 7.4, 2.9 Hz, 6H). Compound **10** was determined by comparison of its spectroscopic data with 3,6-di-sec-butyl-2(1H)-pyrazinone in the literature [6].

Figure S32. ¹H NMR spectrum (600 MHz, Acetone-d) of **11**

¹H NMR (600 MHz, Acetone-d6) δ 8.13 (s, 1H), 8.05 (d, *J* = 8.7 Hz, 1H), 7.47 (d, *J* = 8.5 Hz, 2H), 6.98 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.88 (d, *J* = 2.6 Hz, 2H), 6.87 (d, *J* = 2.3 Hz, 1H). Compound **11** was determined by comparison of its spectroscopic data with daidzein in the literature [7].

Figure S33.1H NMR spectrum (600 MHz, Methanol-d4) of 12

¹H NMR (600 MHz, Methanol-d4) δ 8.02 (s, 1H), 7.36 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 8.3 Hz, 2H), 6.31 (d, *J* = 2.1 Hz, 1H), 6.20 (d, *J* = 2.1 Hz, 1H). Compound **12** was determined by comparison of its spectroscopic data with genistein in the literature [8].

Supplementary References

 Dai XM; Pan HL; Lan WJ; Chen LP; Feng GK; Deng R; Zhu XF; Li HJ. *Phytochemistry.* 2022, 204, 113456. doi: 10.1016/j.phytochem.2022.113456
K. Arai; B. Rawlings; Y. Yoshizawa; J. Vederas. J. Am. Chem. Soc. 1989, 111, 3391-3399. doi: 10.1021/JA00191A042

Yaoquan Liu LZ, Vederas JC. *Tetrahedron* **1998**, *54*, 15937-15958. doi:
10.1016/S0040-4020(98)01003-5

4. E. Ghisalberti; D. Hockless; C. Rowland; Allan H. White. *Australian Aust. J. Chem.* **1993**, *46*, 571-575. doi: 10.1002/CHIN.199330293

5. Jutatip Choochuay; Xinrui Xu; V. Rukachaisirikul; Piyada Guedduaythong; S. Phongpaichit; J. Sakayaroj; J. Chen; Xu Shen. *Phytochem. Lett.* **2017**, 22, 122-

127. doi: 10.1016/J.PHYTOL.2017.09.011

L. Shaala; D. Youssef; J. Badr; S. Harakeh. *Molecules* 2016, *21*, 1116. doi: 10.3390/molecules21091116.

7. S. Lee; H. Baek; Chang Hee Lee; Hyun Pyo Kim. *Arch. Pharm. Res.* **1994**, *17*, 31-35. doi: 10.1007/BF02978244.

M. A. Selepe; S. Drewes; F. V. van Heerden. van Heerden, et al. *J. Nat. Prod.* **2010**, 73, 1680–1685. doi: 10.1021/np100407n.