Supplementary Information of Non-peptide compounds from Kromopolites svenhedini (Verhoeff) and their anti-tumor and iNOS inhibitory activities

Yuan-Nan Yuan\textsuperscript{1,2}, Jin-Qiang Li\textsuperscript{2,3}, Hong-Bin Fang\textsuperscript{2}, Shao-Jun Xing\textsuperscript{3}, Yong-Ming Yan\textsuperscript{2*}, and Yong-Xian Cheng\textsuperscript{1,2**}

Address: \textsuperscript{1} School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. \textsuperscript{2} Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China. \textsuperscript{3} Department of Pathogen Biology, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.

Email: Yong-Ming Yan - yanym@szu.edu.cn; Yong-Xian Cheng - yxcheng@szu.edu.cn

* Corresponding author
Contents

Figure S1. $^1$H NMR spectrum of 1 in methanol-d$_4$
Figure S2. $^{13}$C NMR and DEPT spectrum of 1 in methanol-d$_4$
Figure S3. $^1$H–$^1$H COSY spectrum of 1 in methanol-d$_4$
Figure S4. HSQC spectrum of 1 in methanol-d$_4$
Figure S5. HMBC spectrum of 1 in methanol-d$_4$
Figure S6. HRESIMS spectrum of 1
Figure S7. CD spectrum of 1 in MeOH
Figure S8. $^1$H NMR spectrum of 2 in methanol-d$_4$
Figure S9. $^{13}$C NMR and DEPT spectrum of 2 in methanol-d$_4$
Figure S10. $^1$H–$^1$H COSY spectrum of 2 in methanol-d$_4$
Figure S10. HSQC spectrum of 2 in methanol-d$_4$
Figure S12. HMBC spectrum of 2 in methanol-d$_4$
Figure S13. HRESIMS spectrum of 2
Figure S14. $^1$H NMR spectrum of 3 in methanol-d$_4$
Figure S15. $^{13}$C NMR and DEPT spectrum of 3 in methanol-d$_4$
Figure S16. $^1$H–$^1$H COSY spectrum of 3 in methanol-d$_4$
Figure S17. HSQC spectrum of 3 in methanol-d$_4$
Figure S18. HMBC spectrum of 3 in methanol-d$_4$
Figure S19. HRESIMS spectrum of 3
Figure S20. $^1$H NMR spectrum of 4 in methanol-d$_4$
Figure S21. $^{13}$C NMR and DEPT spectrum of 4 in methanol-d$_4$
Figure S22. $^1$H–$^1$H COSY spectrum of 4 in methanol-d$_4$
Figure S23. HSQC spectrum of 4 in methanol-d$_4$
Figure S24. HMBC spectrum of 4 in methanol-d$_4$
Figure S25. HRESIMS spectrum of 4
Figure S26. CD spectrum of 4 in MeOH
Figure S27. $^1$H NMR spectrum of 7 in methanol-d$_4$
Figure S28. $^{13}$C NMR and DEPT spectrum of 7 in methanol-d$_4$
Figure S29. $^1$H–$^1$H COSY spectrum of 7 in methanol-d$_4$
Figure S30. HSQC spectrum of 7 in methanol-d$_4$
Figure S31. HMBC spectrum of 7 in methanol-d$_4$
Figure S32. ROESY spectrum of 7 in methanol-d$_4$
Figure S33. HRESIMS spectrum of 7
Figure S34. $^1$H NMR spectrum of 8 in methanol-d$_4$
Figure S35. $^{13}$C NMR and DEPT spectrum of 8 in methanol-d$_4$
Figure S36. $^1$H–$^1$H COSY spectrum of 8 in methanol-d$_4$
Figure S37. HSQC spectrum of 8 in methanol-d$_4$
Figure S38. HMBC spectrum of 8 in methanol-d$_4$
Figure S39. ROESY spectrum of 8 in methanol-d$_4$
Figure S40. HRESIMS spectrum of 8
Figure S41. Purification of CD8+T cells in vitro.
Figure S42. Compounds affected the anti-tumor activity of CD8+ T cells in vitro.
Figure S1. $^1$H NMR spectrum of 1 in methanol-$d_4$

Figure S2. $^{13}$C NMR and DEPT spectrum of 1 in methanol-$d_4$
Figure S3. $^1$H–$^1$H COSY spectrum of 1 in methanol-$d_4$

Figure S4. HSQC spectrum of 1 in methanol-$d_4$
Figure S5. HMBC spectrum of 1 in methanol-\textit{d}_4

Figure S6. HRESIMS spectrum of 1
Figure S7. CD spectrum of 1 in MeOH

Figure S8. $^1$H NMR spectrum of 2 in methanol-$d_4$
Figure S9. $^{13}$C NMR and DEPT spectrum of 2 in methanol-$d_4$

Figure S10. $^1$H–$^1$H COSY spectrum of 2 in methanol-$d_4$
Figure S11. HSQC spectrum of 2 in methanol-\textit{d}_4

Figure S12. HMBC spectrum of 2 in methanol-\textit{d}_4
Figure S13. HRESIMS spectrum of 2

Figure S14. $^1$H NMR spectrum of 3 in methanol-$d_4$
Figure S15. $^{13}$C NMR and DEPT spectrum of 3 in methanol-$d_4$

Figure S16. $^1$H–$^1$H COSY spectrum of 3 in methanol-$d_4$
Figure S17. HSQC spectrum of 3 in methanol-$d_4$

Figure S18. HMBC spectrum of 3 in methanol-$d_4$
Figure S19. HRESIMS spectrum of 3

Figure S20. $^1$H NMR spectrum of 4 in methanol-$d_4$
Figure S21. $^{13}$C NMR and DEPT spectrum of 4 in methanol-$d_4$

Figure S22. $^1$H–$^1$H COSY spectrum of 4 in methanol-$d_4$
Figure S23. HSQC spectrum of 4 in methanol-d4

Figure S24. HMBC spectrum of 4 in methanol-d4
Figure S25. HRESIMS spectrum of 4

Figure S26. CD spectrum of 4 in MeOH
Figure S27. $^1$H NMR spectrum of 7 in methanol-$d_4$.

Figure S28. $^{13}$C NMR and DEPT spectrum of 7 in methanol-$d_4$. 
Figure S29. $^1$H–$^1$H COSY spectrum of 7 in methanol-$d_4$

Figure S30. HSQC spectrum of 7 in methanol-$d_4$
Figure S31. HMBC spectrum of 7 in methanol-$d_4$

Figure S32. ROESY spectrum of 7 in methanol-$d_4$
Figure S33. HRESIMS spectrum of 7

Figure S34. $^1$H NMR spectrum of 8 in methanol-$d_4$
Figure S35. $^{13}$C NMR and DEPT spectrum of 8 in methanol-$d_4$

Figure S36. $^1$H–$^1$H COSY spectrum of 8 in methanol-$d_4$
Figure S37. HSQC spectrum of 8 in methanol-d₄

Figure S38. HMBC spectrum of 8 in methanol-d₄
Figure S39. ROESY spectrum of 8 in methanol-\textit{d}_4

Figure S40. HRESIMS spectrum of 8
Figure S41. Purification of CD8+ T cells in vitro.

Figure S42. Compounds affected the anti-tumor activity of CD8\(^+\) T cells in vitro. Cells were incubated in the corresponding concentration of compounds or DMSO for 18 h and the fluorescence intensity was detected by a microplate reader (emission light 476nm, excitation light 514nm).