Supporting Information

Synthesis of C6-modified mannose 1-phosphates and evaluation of derived sugar nucleotides against GDP-mannose dehydrogenase

Sanaz Ahmadipour,^{c\$} Alice J. C. Wahart,^{a,b\$} Jonathan P. Dolan,^{a,b} Laura Beswick,^{a,b} Chris S. Hawes,^a Robert A. Field^c and Gavin J. Miller ^{a,b*} ^aLennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK ^bCentre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK ^cDepartment of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK ^s These authors contributed equally *Corresponding author Email: q.j.miller@keele.ac.uk

The following pages contain representative supporting information and data.

S1. General experimental

S2. Experimental procedures for compounds 9-12 and 13-16

- S3. Enzymatic synthesis of sugar nucleotides
- S4. Evaluation of sugar nucleotide probes with GMD

S5. X-Ray data

S7. References

S8. Spectral Data: ¹H, ¹³C and ³¹P NMR for compounds 9-12, 13-16 and 18

S1. General Experimental

All reagents and solvents which were available commercially were purchased from Acros, Alfa Aesar, Fisher Scientific, Sigma Aldrich or TCI. All reactions in non-aqueous solvents were conducted using oven-dried glassware with a magnetic stirring device under an inert atmosphere of nitrogen passed through a drying column using a vacuum manifold. Solvents were purified by passing through activated alumina columns and used directly from a Pure Solv-MD solvent purification system and were transferred under nitrogen unless otherwise stated. Reactions were followed by thin layer chromatography (TLC) using Merck silica gel 60 F₂₅₄ analytical plates (aluminium support) and were developed using short wave UV radiation (245 nm) and/or 10% sulfuric acid in methanol/Δ. Purification via flash column chromatography was conducted manually using Sigma Aldrich silica gel 60 (0.040-0.063 mm) under a positive pressure of compressed air or via automation using a Büchi Reveleris X2 or a Büchi Pure C-815 Flash with pre-packed silica cartridges. Purification via strong ion exchange (SAX) chromatography was conducted using a Thermo Scientific[™] HyperSep[™] SAX 500 mg cartridge (column volume = 5 mL) with deionised water followed by aqueous NH₄HCO₃ (1.0 M). Purification via reverse phase separation was conducted using a Thermo Scientific™ HyperSep[™] C18 cartridge (column volume = 5 ml) with deionised water followed by EtOAc and MeCN. Optical activities were recorded on an automatic Rudolph Autopol I or Bellingham and Stanley ADP430 polarimeter (concentration in g/100mL). ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra at 100 MHz and ³¹P NMR spectra at 161 MHz respectively using Bruker Magnet system 400'54 Ascend. ¹H NMR resonances were assigned with the aid of gDQCOSY. ¹³C NMR resonances were assigned with the aid of gHSQCAD. Coupling constants are reported in Hertz. Chemical shifts (δ , in ppm) are standardised against the deuterated solvent peak. NMR data were analysed using Mestrenova. ¹H NMR splitting patterns were assigned as follows: br. s (broad singlet), s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublets), app. t (apparent triplet), t (triplet), quartet (q) or m (multiplet and/or multiple resonances). HRMS (ESI) were obtained on Agilent 6530 Q-TOF, LQT Orbitrap XL1 or Waters (Xevo, G2-XS TOF or G2-S ASAP) Micromass LCT spectrometers using a methanol mobile phase in positive/negative ionisation modes, as appropriate.

S2. Experimental procedures for compounds 9-12 and 13-16

Synthesis of 6-amino-6-deoxy- α -D-mannose 1-phosphate 12

2,3,4-Tri-O-benzyl-6-bromo-6-deoxy-1-thio- α -D-mannopyranoside

To a solution of phenyl 2,3,4-tri-O-benzyl-1-thio- α -D-mannopyranoside **9**¹ (500 mg, 0.92 mmol, 1.0 equiv.) in DCM (9 mL) at 0 °C was added successively Ph₃P (410 mg, 1.56 mmol, 1.7 equiv.) and CBr₄ (520 mg, 1.56 mmol, 1.7 equiv.), before warming to RT. After stirring for 16 h, the reaction mixture was poured onto H₂O (30 mL) and diluted with DCM (30 mL). The organic layer was washed with H₂O (2 × 30 mL), brine (30 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel column chromatography, eluting with pet. ether/EtOAc (6:1) afforded the title compound as a yellow oil (420 mg, 0.69 mmol, 75 %). Rf (Pet. Ether:EtOAc, 3:1) = 0.90; $[\alpha]^{26}_{D}$ +51.4 (*c* = 0.70 M, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.45 (m, 2H, Ar-*H*), 7.40-7.27 (m, 18H, Ar-*H*), 5.59 (d, ³J_{H1-H2} = 1.5 Hz, 1H, H-1), 5.01 (d, ²*J*_{CH-CH} = 10.9 Hz, 1H, CH₂Ph), 4.76-4.60 (m, 5H, CH₂Ph), 4.31-4.25 (m, 1H, H-5), 4.06-4.00 (m, 2H, H-2, H-4), 3.87 (dd, ³*J*_{H3-H4} = 9.3 Hz, ³*J*_{H3-H2} = 3.0 Hz, 1H, H-3), 3.69-3.66 (m, 2H, H-6a, H-6b); ¹³C NMR (100 MHz, CDCl₃) δ 138.3 (Ar-C), 138.1 (Ar-C), 137.9 (Ar-C), 134.2 (Ar-C), 131.8 (Ar-C), 129.2 (Ar-C), 128.6 (2C, Ar-C), 128.5 (Ar-C), 128.2 (Ar-C), 128.0 (3C, Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 86.0 (C-1), 80.1 (C-3), 76.9 (C-4), 76.3 (C-2), 75.6 (CH₂Ph), 72.3 (C-5), 72.2 (CH₂Ph), 72.1 (CH₂Ph), 33.4 (C-6); **HRMS** *m*/*z* (ESI+) found: (M+Na)⁺ 628.1184, C₃₃H₃₃BrO₄S requires 628.1180.

6-Azido-2,3,4-tri-*O*-benzyl-6-deoxy -1-thio-α-D-mannopyranoside 10

To a solution of 2,3,4-tri-*O*-benzyl-6-bromo-6-deoxy-1-thio- α -D-mannopyranoside (360 mg, 0.59 mmol, 1.0 equiv.) in DMF (4 mL) was added NaN₃ (77 mg, 1.18 mmol, 2.0 equiv.). The reaction mixture was heated to 75 °C and stirred for 18 h, before being cooled to RT, poured onto H₂O (15 mL) and extracted with EtOAc (30 mL). The organic layer was washed with saturated aqueous Na₂S₂O₃ solution (20 mL), H₂O (20 mL), brine (20 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel column chromatography, eluting with toluene/EtOAc (12:1, 9:1, 6:1) afforded **10** as a yellow oil (214 mg, 0.38 mmol, 64 %). **R**_f (Tol:EtOAc, 6:1) = 0.74; [α]²⁶_D +35.5 (*c* = 0.45 M, CHCl₃); ¹**H NMR (400 MHz, CDCl₃) \delta 7.46-7.28 (m, 20H, Ar-H), 5.58 (d, ³J_{H1-H2} = 1.6 Hz, 1H, H-1), 5.00 (d, ²J_{CH-CH} = 11.0 Hz, 1H, CH₂Ph), 4.77-4.68 (m, 2H, CH₂Ph), 4.69-4.62 (m, 3H, CH₂Ph), 4.29-4.23 (1H, m, H-5), 4.03 (dd, ³J_{H2-H3} = 2.9**

Hz, ${}^{3}J_{H2-H1} = 1.6$ Hz, 1H, H-2), 3.99 (app. t, ${}^{3}J_{H4-H3/H5} = 9.4$ Hz, 1H, H-4), 3.88 (dd, ${}^{3}J_{H3-H4} = 9.4$ Hz, ${}^{3}J_{H3-H2} = 2.9$ Hz, 1H, H-3), 3.48 (m, 2H, H-6a, H-6b); 13 **C NMR (100 MHz, CDCl₃)** δ 138.3 (Ar-*C*), 138.1 (Ar-*C*), 137.9 (Ar-*C*), 134.1 (Ar- *C*), 131.6 (Ar-*C*), 129.3 (Ar-*C*), 128.6 (2C, Ar-*C*), 128.2 (Ar-*C*), 128.1 (Ar-*C*), 128.0 (2C, Ar-*C*), 127.9 (Ar-*C*), 127.7 (Ar-*C*), 85.8 (C-1), 80.1 (C-3), 76.3 (C-2), 75.6 (*C*H₂Ph), 75.5 (C-4), 72.7 (C-5), 72.2 (2C, *C*H₂Ph), 51.6 (C-6); **HRMS** *m*/*z* (ESI+) found: (M+Na)⁺ 590.2113, C₃₃H₃₃N₃O₄S requires 590.2090.

Dibenzyl 6-azido-2,3,4-tri-*O*-benzyl-6-deoxy-α-D-mannopyranosyl phosphate 11

Thioglycoside 10 (196 mg, 0.26 mmol, 1.0 equiv.) was dissolved in DCM (2.6 mL) and stirred with powdered 4 Å MS for 1 h. DBP (108 mg, 0.39 mmol, 1.5 equiv.) was added and the reaction mixture stirred for a further 30 min. before being cooled to -30 °C. NIS (88 mg, 0.39 mmol, 1.5 equiv.) and AgOTf (20 mg, 78 µmol, 0.3 equiv.) were added successively and the reaction was stirred until TLC analysis indicated the reaction was complete (45 min). The mixture was guenched with Et₃N, filtered over CeliteTM and diluted with DCM (20 mL). The organic layer was washed with saturated aqueous Na₂S₂O₃ solution (20 mL), saturated aqueous NaHCO₃ solution (20 mL), H₂O (20 mL), brine (20 mL), dried over MgSO₄, filtered and concentrated in vacuo. Purification by silica gel column chromatography, eluting with pet. ether/EtOAc (5:1, 3:1, 2:1) afforded **11** as a yellow oil (124 mg, 0.16 mmol, 65 %). **R**_f (Tol:EtOAc, 6:1) = 0.44; $[\alpha]^{26}_{D}$ +53.6 (c = 0.2 M, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.28 (m, 23H, Ar-H), 7.26-7.24 (m, 2H, Ar-*H*), 5.70 (dd, ${}^{3}J_{H1-P}$ = 6.1 Hz, ${}^{3}J_{H1-H2}$ = 1.9 Hz, 1H, H-1), 5.08-4.89 (m, 5H, CH₂Ph), 4.63 (s, 2H, CH₂Ph), 4.56 (d, ²J_{CH-CH} = 11.0 Hz, 1H, CH₂Ph), 4.48 (s, 2H, CH₂Ph), 3.95 (app. t, ³J_{H4-H3/5} = 9.5 Hz, 1H, H-4), 3.83 (ddd, ${}^{3}J_{H5-H4}$ = 9.5 Hz, ${}^{3}J_{H5-H6a}$ = 4.5 Hz, ${}^{3}J_{H5-H6b}$ = 2.7 Hz, 1H, H-5), 3.78 $(dd, {}^{3}J_{H3-H4} = 9.5 Hz, {}^{3}J_{H3-H2} = 3.0 Hz, 1H, H-3), 3.70-3.68 (m, 1H, H-2), 3.35-3.25 (m, 2H, H-6a, 1)$ H-6b); ¹³C{³¹P} NMR (100 MHz, CDCl₃) δ 138.1 (Ar-C), 138.0 (Ar-C), 137.7 (Ar-C), 135.6 (2C), 135.5 (2C, Ar-C), 128.7 (3C, Ar-C), 128.4 (3C, Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (2C, Ar-C), 127.8 (2C, Ar-C), 127.7 (Ar-C), 96.0 (C-1), 78.6 (C-3), 75.3 (CH₂Ph), 74.3 (C-4), 74.2 (C-2), 73.3 (C-5), 72.8 (CH₂Ph), 72.1 (CH₂Ph), 69.6 (CH₂Ph), 69.5 (CH₂Ph), 51.0 (C-6); ³¹P NMR (161 **MHz, CDCl₃)** δ –2.80 (d, ${}^{3}J_{H1-P}$ = 6.1 Hz, 1P); **HRMS** m/z (ESI⁺) found (M+Na)⁺ 758.2647 C₄₁H₄₂N₃O₈P requires 758.2608.

6-Amino-6-deoxy- α -D-mannopyranosyl phosphate (disodium salt) 12

A suspension of **11** (48 mg, 65 µmol, 1.0 equiv.), Pd/C (10% loading, 11 mg, 11 µmol, 0.03 equiv. per benzyl) and Pd(OH)₂/C (20% loading, 8 mg, 11 µmol, 0.03 equiv. per benzyl) in EtOH/THF (2:1, 0.9/0.4 mL) and 0.1 M HCl (0.76 mL, 76 µmol, 1.18 equiv.) were stirred vigorously under an atmosphere of H₂ for 18 h. The reaction mixture was filtered over CeliteTM and washed with MeOH/water (2:1 then 1:1, 20 mL total) then passed through Dowex[®] 50W-X8 resin (Na⁺ form) before being concentrated under reduced pressure. The resultant residue was re-suspended in D₂O and lyophilised to afford **12** as a white solid (15 mg, 58 µmol, 90 %). **R**_f (MeCN:H₂O (3:1 plus 3 drops AcOH) = 0.07; $[\alpha]^{26}_{D}$ +24.0 (*c* = 0.46 M, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.42 (d, ³*J*_{H1-P} = 5.6 Hz, 1H, H-1), 3.99 (brs, 2H, H-2, H-3), 3.89 (app. d, ³*J* = 8.3 Hz, 1H, H-5), 3.58 (app. t, ³*J*_{H4-H3/H5} = 9.5 Hz, 1H, H-4), 3.46 (d, ²*J*_{H6a-H6b} = 12.9 Hz, 1H, H-6a), 3.19-3.06 (m, 1H, H-6b); ¹³C{³¹P} NMR (100 MHz, D₂O) δ 95.8 (C-1), 70.3 (C-2 or C-3), 70.2 (C-2 or C-3), 69.2 (C-4), 68.1 (C-5), 40.5 (C-6)^{; 31}P NMR (161 MHz, D₂O) δ -2.00 (d, *J*_{H1-P} = 5.6 Hz, 1P); HRMS *m/z* (ESI-) found: (M-H)⁻ 258.0388 C₆H₁₃NO₈P requires 258.0378.

Synthesis of 6-chloro-6-deoxy- α -D-mannose 1-phosphate 16

2,3,4-Tri-O-acetyl-6-chloro-6-deoxy- α/β -D-mannopyranose 14

NH₄OAc (1.01 g, 13.1 mmol, 4.0 equiv.) was added to a solution of 1,2,3,4-tetra-*O*-acetyl-6chloro-6-deoxy-β-D-mannopyranose **13**² (1.20 g, 3.28 mmol, 1.0 equiv.) in DMF (3 mL). The mixture was stirred for 42 h at RT. When the reaction was complete, as indicated by TLC (lower R_f spot), the remaining NH₄OAc was filtered off and the filtrate concentrated to dryness *in vacuo*. To remove residual DMF, the crude material was suspended in LiCl solution for 18 h and then extracted with EtOAc (5 x 20 mL). The combined organic layers were washed again with LiCl solution (5 x 20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure to afford **14** (960 mg, 2.66 mmol, 81%) which was used without further purification. **R**_f (Hexane:EtOAc, 1:1) = 0.55; ¹**H NMR (400 MHz, DMSO)** δ 7.40 (br.s 1H, OH), 5.20 (dd, ³*J*_{H3}-H4 = 10.1 Hz, ³*J*_{H3-H2} = 3.3 Hz, 1H, H-3), 5.11 (t, ³*J*_{H4-H3/5} = 9.8 Hz, 1H, H-4), 5.08 (m, 1H, H-1), 5.01 (dd, ³*J*_{H2-H3} = 3.3 Hz, ³*J*_{H2-H1} = 1.8 Hz, 1H, H-2), 4.16-4.11 (m, 1H, H-5), 3.77 (dd, ²*J*_{H6a-H6b} = 12.1 Hz, ³*J*_{H6a-H5} = 2.5 Hz, 1H, H-6a), 3.67 (dd, ²*J*_{H6b-H6a} = 12.1 Hz, ³*J*_{H6b-H5} = 5.6 Hz, 1H, H-6b), 2.09 (s, 3H, CH₃COO), 2.04 (s, 3H, CH₃COO), 1.93 (s, 3H, CH₃COO); ¹³C NMR (100 MHz, DMSO) δ 169.8 (*C*=O), 169.4 (*C*=O), 91.0 (C-1), 70.1 (C-2), 68.8 (C-5), 68.6 (C-3), 66.5 (C- 4), 44.2 (C-6), 20.7 (CH₃), 20.5 (CH₃), 20.4 (CH₃); **HRMS m/z** (NSI⁺) found: (M+NH₄)⁺ 342.0950, C₁₂H₂₁CINO₈ requires 342.0950.

Diphenyl 2,3,4-tri-*O*-acetyl-6-chloro-6-deoxy-α-D-mannopyranosyl phosphate 15

ⁿBuLi (0.61 mL, 0.95 mmol, 1.59 M, 1.2 equiv.) was added dropwise to a solution of **14** (261 mg, 0.80 mmol, 1.0 equiv.) in THF (5 mL) at -78 °C. After stirring for 15 minutes, diphenyl phosphoryl chloride (0.20 ml, 0.95 mmol, 1.2 equiv.) was added dropwise and the reaction mixture stirred for another 35 min at the same temperature. When TLC analysis indicated the complete consumption of the starting material (to a lower R_f spot), the reaction was gradually warmed to RT, quenched with saturated aqueous NH₄Cl solution (2 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with saturated aqueous NaCl solution (20 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified using silica gel via flash chromatography, eluting with DCM/Et₂O (1:0, 99:1, 98:2, 97:3) to afford 15 as a solid. This material was crystallised using a minimum amount of hot EtOH to further afford 15 as white crystals (260 mg, 0.47 mmol, 58%). R_f (DCM:Et₂O, 95:5) = 0.75; [α]²⁵_D+53.7 (c = 0.50, DCM); ¹H NMR (400 MHz, DMSO) δ 7.47-7.43 (m, 4H, Ar), 7.31-7.27 (m, 6H, Ar), 6.01 (dd, ${}^{3}J_{H1-P}$ = 6.7 Hz, ${}^{3}J_{H1-H2}$ = 1.8 Hz, 1H, H-1), 5.27-5.25 (m, 1H, H-2), 5.23-5.17 (m, 2H, H-3, H-4), 4.11-4.07 (m, 1H, H-5), 3.72 (dd, 1H, ²J_{H6a-H6b} = 12.5 Hz, ³J_{H6a-H5} = 4.8 Hz, H-6a), 3.63 (dd, 1H, ${}^{2}J_{H6b-H6a}$ = 12.5 Hz, ${}^{3}J_{H6b-H5}$ = 2.6 Hz, H-6b), 2.10 (s, 3H, CH₃COO), 2.05 (s, 3H, CH₃COO), 1.96 (s, 3H, CH₃COO); ¹³C NMR (100 MHz, DMSO) δ 170.1 (C=O), 169.8 (C=O), 169.6 (*C*=O), 150.2 (C^{IV}), 150.1 (C^{IV}), 130.7 (C_{Ar}), 126.4 (C_{Ar}), 126.4 (C_{Ar}), 126.3 (C_{Ar}), 120.5 (C_{Ar}), 120.4 (C_{Ar}), 120.4 (C_{Ar}), 120.3 (C_{Ar}), 96.1 (d, ${}^{3}J_{H1-P}$ = 5.9 Hz, C-1), 71.8 (C-5), 68.3 (d, ${}^{3}J_{H1-P}$ = 10.7 Hz, C-2), 68.1 (C-3), 65.5 (C-4), 43.6 (C-6), 21.0 (CH₃), 20.9 (CH₃), 20.8 (CH₃); ³¹P NMR (162 MHz, **DMSO)** δ -14.34 (d, ${}^{3}J_{P-H1}$ = 6.6 Hz); **HRMS m/z** (NSI⁺) found: (M+NH₄)⁺ 574.1240, C₂₄H₂₆ClO₉NH₄ requires 574.1240.

6-Chloro-6-deoxy- α -D-mannopyranose 1-phosphate sodium triethylamine salt 16

PtO₂ (16 mg, 0.07 mmol, 30 mol %) was added to a solution of **15** (130 mg, 0.23 mmol, 1.0 equiv.) in EtOH (3 mL) and sodium bicarbonate (39 mg, 0.47 mmol, 2.0 equiv.). The resulting mixture was stirred overnight at RT under an atmosphere of H₂ (1 atm, balloon). The reaction was monitored by TLC (Hexane:EtOAc, 1:1, R_f = 0.00 and MeCN:H₂O:NH₄OH, 9:1:0.1, R_f = 0.55) and upon completion was filtered through Celite[®] and concentred *in vacuo*. The crude

product was subject to NMR to protecting group removal. ¹H NMR (400 MHz, MeOD) δ 5.50 (dd, ³*J*_{H1-P} = 7.6 Hz, ³*J*_{H1-H2} = 1.3 Hz, 1H, H-1), 5.42-5.41 (m, 2H, H-3, H-4), 5.33 (app. s, 1H, H-2), 4.39 (dt, ³J_{H5-H4} = 8.8 Hz, ³J_{H5-H6} = 3.1 Hz, 1H, H-5), 3.81 (dd, ²J_{H6a-H6b} = 12.3 Hz, ³J_{H6a-H5} = 2.8 Hz, 1H, H-6a), 3.79 (dd, ²J_{H6b-H6a} = 12.3 Hz, ³J_{H6b-H5} = 3.2 Hz, 1H, H-6b), 2.14 (s, 3H, CH₃COO), 2.05 (s, 3H, CH₃COO), 1.95 (s, 3H, CH₃COO); ¹³C NMR (100 MHz, MeOD) δ 171.7 (C=O), 171.6 (C=O), 171.4 (C=O), 94.7 (d, ³J_{H1-P} = 4.6 Hz, C-1), 71.4, 70.8, 68.0, 58.3, 44.6 (C-6), 20.6 (CH₃), 20.6 (*C*H₃), 18.4 (*C*H₃); ³¹**P NMR (162 MHz, MeOD)** δ -0.50 (d, ³*J*_{P-H1} = 7.1 Hz). Et₃N (1 mL) was added to the above crude in MeOH (2 mL), and the solvent removed in vacuo. The residue was dissolved in Et₃N:H₂O:MeOH (1:3:7 v/v/v, 5 mL) and stirred for 26 h at RT. TLC analysis (MeCN:H₂O:NH₄OH, 9:1:0.1, R_f = 0.00) showed complete conversion of starting material and the mixture was concentrated in vacuo. The crude was dissolved in water (2 ml), stirred for 1 h at RT with ion exchange resin (Amberlite[®] IR120 Na⁺ form), filtered and the filtrate freeze dried to afford crude 16 as a white powder. This material was purified using a RP-C18 column, eluting with H₂O (2CV), EtOAc (2CV) and MeCN (2CV). The product containing fractions were collected and freeze dried to afford **16** as a white powder (91 mg, 0.23 mmol, 99 %). $[\alpha]^{24.6}$ +20.7 (c = 0.45, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.28 (d, ³ $J_{H1-P} = 7.3$ Hz, 1H, H-1), 4.00 (dt, ³ J_{H5-} $_{H4}$ = 9.6 Hz, $^{3}J_{H5-H6}$ = 2.9 Hz, 1H, H-5), 3.91 (br.s, 1H, H-2), 3.88-3.85 (m, 3H, H-3, H-6a, H-6b), 3.76 (t, ³*J*_{H4-H3/H5} = 9.5 Hz, 1H, H-4), 3.13 (q, 6H, ³*J*_{CH2-CH3} = 6.5 Hz, C*H*₂-NEt₃), 1.21 (t, ³*J*_{CH3-CH2} = 6.9 Hz, 9 H, CH₃-NEt₃); ¹³C NMR (100 MHz, D₂O) δ 95.3 (d, ²J_{C-P} = 4.7 Hz, C-1), 71.5 (C-5), 70.8 (d, ${}^{3}J_{C-P}$ = 7.4 Hz, C-2), 68.8 (C-3), 67.1 (C-4), 46.6 (CH₂-NEt₃), 44.6 (C-6), 8.2 (CH₃-NEt₃); ${}^{13}C$ -GATED (101 MHz; D₂O): δ 98.5 (¹J_{C1-H1} = 170.0 Hz, C-1α); ³¹P NMR (162 MHz, D₂O) δ 0.79 (br.s). **HRMS m/z** (NSI⁻) found (M-H)⁻ 276.9887, C₆H₁₁ClO₈P requires 276.9886.

S3 Enzymatic synthesis of sugar nucleotides

Expression & Purification of GDP-mannose-pyrophosphorylase (GDP-Man-PP)

The transformant was grown according to the literature.³ Briefly, 1 L of transformant in LB medium containing appropriate antibiotic (kanamycin, 25 µg/mL) was incubated at 37 °C with gentle shaking until an OD₆₀₀ of about 0.6. Heterologous protein expression was induced by adding isopropyl β-D-1-thiogalactopyranoside (IPTG) at 0.5 mM final concentration, followed by incubation at 18 °C overnight at 180 rpm. Afterwards, cells were harvested by centrifugation (4000 × g, 4 °C, 20 min) and stored at –80 °C until use. Frozen cells were thawed in 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole supplemented with DNase (10 µg/mL, Sigma) and proteinase inhibitor cocktail (Roche), then lysed by sonication in ice. After centrifugation (20,000 x g, 4 °C, 20 min) to remove the cell debris, the crude protein solution was purified at 4 °C using an ÄKTA pure FPLC system (GE Healthcare). The supernatant was passed through a HisTrapTM HP column (5 mL, GE healthcare), pre-equilibrated with buffer A (50 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole). Unbound proteins were washed with five column volumes of buffer A, followed by elution with buffer B (50 mM Tris-HCl pH 8, 500 mM NaCl, 500 mM imidazole). GDP-man-PP comprising fractions were pooled together and concentrated to ~7 mg/mL (concentration determined by Pierce[™] BCA assay, ThermoFisher or Bradford assay, Sigma). Concentrated GDP-man-PP was then divided into aliquots and stored at -80°C until required.

Evaluation of C6-modified glycosyl 1-phosphates

Figure 1: TLC of GDP-man-PP catalysed guanylyltransfer of GMP from GTP to 6Cl-Man-1P **16**, 6SH-Man-1P **17** and 6NH₂-Man-1P **12** after 16 h at 37 °C. No reaction is observed for 6-thio **17** or 6-amino **12**. Lane 1: GDP-Man (authentic); Lane 2: GTP; Lane 3: Man-1P; Lane 4: Man-1P guanylyltransfer reference reaction; Lane 5: 6Cl-Man-1P **16**; Lane 6: 6Cl-Man-1P guanylyltransfer reaction; Lane 7: 6NH₂-Man-1P **12**; Lane 8: 6NH₂-Man-1P guanylyltransfer reaction; Lane 9: 6SH-Man-1P **17**; Lane 10: 6SH-Man-1P guanylyltransfer reaction.

No reaction was observed for 6-thio Man-1P **17** or 6-amino Man-1P **12**. The 6-thio substrate was found to form a disulfide in solution; increasing the concentration of reducing agent within the reaction from 1 mM to 20 mM had no effect on reaction progression. The addition of solid supported PPh₃ to stabilise the reduced form or the addition of 20 mM DTT also had no effect on reaction progression.

Guanosine diphosphate-6-chloro-6-deoxy-α-D-mannose 18

The enzymatic synthesis of sugar-nucleotides by GDP-Man-PP was completed as follows: The buffer was Tris-HCl (pH 8.0, 40 mM) containing MgCl₂ (8 mM) and DTT (1 mM). The final concentrations were as follows: glycosyl 1-phosphate **16** (7.5 mg, 18.7 μ mol, 1.0 equiv., 6.0 mM) and GTP (10.59 mg, 20.2 μ mol, 1.68 equiv.). The enzyme concentrations were as follows: GDP-Man-PP (0.6 mg/mL) and inorganic pyrophosphatase (iPPase, Sigma, 2.70 U/mL). The reaction was incubated with shaking at 37 °C until formation of an NDP-sugar was observed by TLC (IPA/NH₄OH/H₂O, 6:3:1). MeOH (213 μ L) was added and the mixture was centrifuged

(9300 rpm) for 2 min to remove insoluble protein, passed through a syringe filter (0.4 μ M, PTFE) and purified by SAX chromatography ThermoFisher Dionex UltiMate 3000 HPLC system using a Poros HQ 50 SAX column (5 mL), flow rate (7.0 mL/min), 5 \rightarrow 250 mM NH₄HCO₃ over 15 min. with in-line UV detector to monitor at 265 nm, to afford **18** as a white solid (6.9 mg, 11.0 μ mol, 59 %).

¹H NMR (500 MHz, D_2O) δ 8.12 (s, 1H, H-8"), 5.93 (d, ³J_{H1'-H2'} = 6.1 Hz, 1H, H-1'), 5.49 (dd, ³J_{H1-P} = 7.6 Hz, ³J_{H1-H2} = 1.2 Hz, 1H, H-1), 4.77 (s, hidden, H-2'), 4.51 (dd, ³J_{H3'-H2'} = 5.1 Hz, ³J_{H3'-H4'} = 3.5 Hz, 1H, H-3'), 4.35 (dd, ³J_{H4'-H3'} = 3.1 Hz, ³J_{H4'-H5'} = 1.8 Hz, 1H, H-4'), 4.21 (dd, J = 5.2 Hz, J = 3.8 Hz, 2H, H-5'), 4.08 – 4.04 (m, 2H, H-4, H-2), 3.94 (dd, ³J_{H3-H4} = 9.9 Hz, ³J_{H3-H2} = 3.4 Hz, 1H, H-3), 3.91-3.85 (m, 2H, H-5, H-6a), 3.84-3.80 (m, 1H, H-6b); ¹³C NMR (125 MHz, D₂O) δ 96.5 (C-1), 86.8 (C-1'), 83.7 (C-4'), 73.5 (C-2'), 72.1 (C-4), 70.3 (C-3'), 70.1 (C-2), 69.5 (C-3), 66.6 (C-5), 62.6 (C-5'), 44.2 (C-6); ³¹P{¹H} NMR (200 MHz, D₂O) δ -11.50 (d, ²J_{C-P} = 24.0 Hz), -14.01 (d, ²J_{C-P} = 25.1 Hz); HRMS *m/z* (NSI-) found (M-H)⁻ 622.0335, C₁₆H₂₃ClN₅O₁₅P₂ requires 622.0360.

Figure 2: HPLC Purification of 6-Cl GDP-Man **18** after 16 hours using ThermoFisher Dionex UltiMate 3000 HPLC system using a Poros HQ 50 SAX column (5 mL), flow rate (7.0 mL/min), $5 \rightarrow 250 \text{ mM NH}_4\text{HCO}_3$ over 15 min. HPLC after 16 hours reaction indicated presence of GTP (9.377 min), presence of GDP (7.800 min) and presence of the desired nucleotide **18** (6.124 mins).

S4. Evaluation of sugar nucleotide probes with GMD

Expression & Purification of GMD from P. aeruginosa

The recombinant plasmid (pET-3a) containing the *algD* gene encoding for GDP-mannose dehydrogenase (GMD) from *P. aeruginosa* was kindly donated by P. Tipton. The plasmid was transformed into E. coli soluBL21(DE3) chemically competent cells and the transformant grown according to the literature.^{2,4} Briefly, 1 L of the transformant in LB medium containing the appropriate antibiotic (carbenicillin, 100 μg/mL) was incubated at 37 °C with gentle shaking in baffled flasks until an OD₆₀₀ of 0.6–0.8 was reached. Heterologous protein expression was induced by adding isopropyl β -D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.4 mM, followed by incubation at 37 °C for 4 hours at 180 rpm. Afterwards the cells were harvested by centrifugation (4000 x g, 4 °C, 20 mins) and stored at -80 °C until use. Frozen cells were thawed in 20 mM HEPES (pH 7.5), 150 mM NaCl supplemented with DNase A (10 µg/mL, Sigma) and proteinase inhibitor cocktail (Roche), then lysed by sonication on ice. The supernatant was recovered by centrifugation (20,000 x g, 4 °C, 20 min) and nucleic acid precipitated through the addition of protamine sulfate (5 mg per gram wet cell pellet) and incubated on ice for 30 mins. Precipitated nucleic acid removed by centrifugation (20,000 x g, 4 °C, 20 min), the crude protein solution was fractionated with ammonium sulfate, with GMD precipitating between 45 and 60% saturation. Protein pellets were redissolved in 20 mM HEPES (pH 7.5), 150 mM NaCl and purified using an ÄKTA pure FPLC system (GE Healthcare) by gel filtration chromatography using a Superdex S200 16/600 column (GE Healthcare). Proteins were eluted with 20 mM HEPES (pH 7.5) and 150 mM NaCl at the flow rate of 1 mL/min. GMD containing fractions were combined and concentrated to ~4.5 mg/mL (concentration determined by Pierce[™] BCA assay, ThermoFisher or Bradfords Assay, Sigma). Concentrated GMD was then divided into aliquots and stored at -80°C until required in 10% glycerol.

GMD Inhibition Assay

Assay Protocol

The assay was performed in 96-well flat bottomed, non-binding, polystyrene microtiter plates (Grenier 655906). NAD⁺ (200 μ M), **18** (50 μ M) and GMD (25 or 50 μ g/mL) were prepared in 50 mM sodium phosphate (pH 7.4) containing 0.5 mM MgCl₂ and 1 mM DTT. A solution of

GDP-Man (final: 10 μ M) was added to the plate and the fluorescence was measured at 25 °C for 65 minutes using a BMG labtech FLUOStar Omega microplate reader (excitation 355 nm; emission 460 nm). The limits of detection were analysed by control samples as followed: positive control contained no inhibitor; negative control contained no inhibitor or GMD.

Figure 3: GMD function with probe **18** (50 μ M) over 65 minutes. GMD (50 μ g/mL, unless stated), GDP-Man **1** (50 μ M), NAD⁺ (200 μ M). Negative control experiment was run with no GMD.

Figure 4: Deconvoluted protein LC-MS of GMD following overnight incubation with iodoacetamide (10 equivalents) showing multiple surface-exposed alkylation sites.

S5. X-Ray crystallography data

Crystal and refinement parameters are given in Table 1. All data were collected on a Bruker D8 Quest ECO diffractometer using graphite-monochromated Mo K α radiation (λ = 0.71073 Å) and a Photon II-C14 CPAD detector. Crystals were mounted on Mitegen micromounts in NVH immersion oil, and all collections were carried out at 150 K using an Oxford cryostream. Data collections were carried out using ϕ and ω scans, with collections and data reductions carried out in the Bruker APEX-3 suite of programs.⁵ Multi-scan absorption corrections were applied for all datasets using SADABS unless otherwise stated.⁶ The data were solved with the intrinsic phasing routine in SHELXT,⁷ and all data were refined on F² with full-matrix least squares procedures in SHELXL,⁸ operating within the OLEX-2 GUI.⁹ All non-hydrogen atoms were refined with anisotropic displacement parameters. Carbonbound hydrogen atoms were placed in riding positions and refined with isotropic displacement parameters equal to 1.2 or 1.5 times the isotropic equivalent of their carrier atom. Crystals of 15 exhibited unavoidable non-merohedral twinning related by a 180 degree rotation which could not be mechanically separated. The two domains were indexed and their contributions to each reflection were separated using TWINABS,¹⁰ and the final refinement was performed on the HKLF5 file with a batch scale factor of 0.45. A global RIGU restraint and localised ISOR restraints were necessary to avoid non-positive definite ADPs in the final refinement caused by the substantial overlap of the two lattices and resulting impact on the data quality. CCDC 2165925

Identification code	15
Empirical formula	C ₂₄ H ₂₆ ClO ₁₁ P
Formula weight	556.87
Temperature/K	150.0
Crystal system	monoclinic
Space group	P21
a/Å	11.9261(4)
b/Å	8.1862(3)
c/Å	14.2882(5)

Table 1 Cry	vstal data and	d structure	refinement	t for	15
	ystar aata arr	astractare	1 CHIICHICH		

α/°	90
β/°	109.912(2)
γ/°	90
Volume/Å ³	1311.55(8)
Z	2
ρ _{calc} g/cm ³	1.410
µ/mm ⁻¹	0.265
F(000)	580.0
Crystal size/mm ³	0.19 × 0.07 × 0.03
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.468 to 50.992
Index ranges	-14 ≤ h ≤ 14, -9 ≤ k ≤ 9, -17 ≤ l ≤ 17
Reflections collected	43101 [17377 with I>=2σ (I)]
Independent reflections	4867 [R _{int(HKLF4)} = 0.1235, R _{sigma} = 0.1014]
Data/restraints/parameters	4867/329/364
Goodness-of-fit on F ²	1.216
Final R indexes [I>=2σ (I)]	R ₁ = 0.0919, wR ₂ = 0.1285
Final R indexes [all data]	R ₁ = 0.1091, wR ₂ = 0.1342
Largest diff. peak/hole / e Å ⁻³	0.69/-0.76
Flack parameter	-0.04(5)
CCDC Number	2165925

S6. References

- 1. Ahmadipour, S. et al. Org. Lett., 2019, 21, 4415-4419.
- 2. Beswick, L. et al. Carbohydr. Res., 2020, 488, 107896.
- 3. Verseck et al, *Glycobiology*, 1996, **6**, 591–597.
- 4. Tipton et al, *Biochemistry*, 2002, **41**, 9637–9645.
- 3. Bruker APEX-3, Bruker-AXS Inc., Madison, WI, 2016.
- 4. SADABS, Bruker-AXS Inc., Madison, WI, 2016.
- 5. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, **71**, 3–8.
- 6. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl.
- *Crystallogr.*, 2009, **42**, 339–341.
- 8. TWINABS, Bruker-AXS Inc., Madison, WI, 2016.

S7. Spectral Data: ¹H, ¹³C and ³¹P NMR for compounds 9-12, 13-16 and 18

2,3,4-Tri-O-benzyl-6-bromo-6-deoxy-1-thio-α-D-mannopyranoside

6-Azido-6-deoxy-2,3,4-tri-O-benzyl-1-thio- α -D-mannopyranoside **10**

6-Amino-6-deoxy- α -D-mannopyranose 1-phosphate (disodium salt) 12

2,3,4-Tri-O-Acetyl 6-chloro-6-deoxy-D-mannopyranose 14

Diphenyl 6-chloro-6-deoxy-2,3,4-tri-*O*-acetyl-α-D-mannopyranosyl phosphate **15**

1,2,3-Tri-O-acetyl-6-chloro-6-deoxy- α -D-mannopyranose-1-phosphate

31P NMR MeOD {162 MHz}

 $<^{0.5051}_{-0.5488}$

	-			· · ·	, ,	, ,				, ,		1					, ,			
90	80	70	60	50	40	30	20	10	0	-1	.0	-20	-30	-40	-50	-60	-70	-80	-90	-100
									f1 (p	pm)										

6-Chloro-6-deoxy- α -D-mannopyranose 1-phosphate (sodium triethylamine salt) **16**

Guanosine diphosphate 6-chloro-6-deoxy- α -D-mannose **18**

HRMS (ESI negative mode) of 6-Cl GDP-Man **18**. $({}^{35}Cl: M-H)^- = 622.0335 [\Delta = -4.0 \text{ ppm}]; ({}^{37}Cl: M-H)^- = 624.0313 [\Delta = -2.8 \text{ ppm}].$

