Supporting Information

A Switch-Based Biosensor for the Detection and Imaging of Hg(II) in vivo by Glutathione Functionalized Gold Nanoparticles

Gufeng Li,¹ Shaoqing Li,¹ Rui Wang,¹ Min Yang,¹ Lizhu Zhang,¹ Yanli Zhang,¹ Wenrong Yang^{*1,2} and Hongbin Wang^{*1}

Address:

¹Key Laboratory of Resource Clean Conversion in Ethnic Regions, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China, ²School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia

Email:

Hongbin Wang*1 : <u>wanghb2152@126.com</u>

Wenrong Yang*2 : <u>wenrong.yang@deakin.edu.au</u>

* Corresponding author

Captions of Supporting Figures

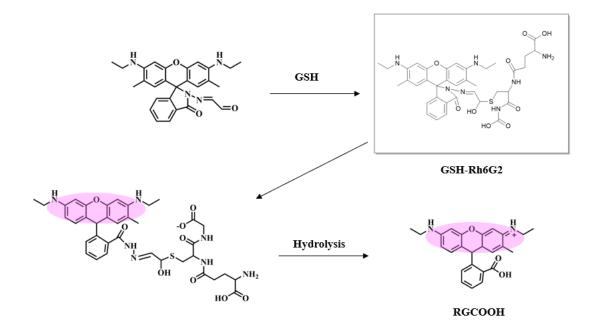
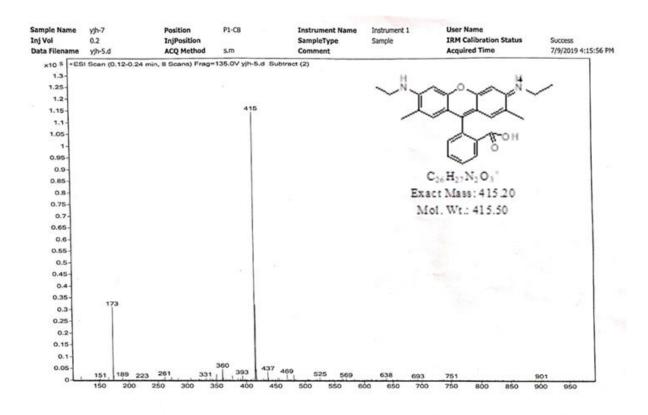
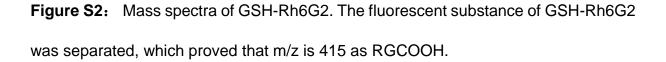
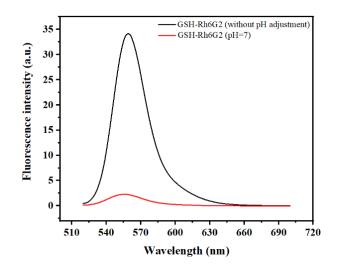
Figure S1: Speculation diagram of the reaction process between Rh6G2 and GSH.

Figure S2: Mass spectra of GSH-Rh6G2. The fluorescent substance of GSH-Rh6G2 was separated, which proved that m/z is 415 as RGCOOH.

Figure S3: Fluorescence spectra of GSH-RH6G2 in weakly acidic environment without pH adjustment (black curve) and in neutral environment with pH adjustment (red curve).

Figure S4: Fluorescence emission spectra of the GNPs-GSH-Rh6G2 under different excitation wavelengths.

Figure S5: Fluorescence spectra of molecular saturation test of GNPs-GSH-RH6G2.

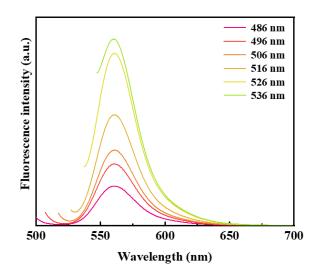

Figure S1: Speculation diagram of the reaction process between Rh6G2 and GSH.

Figure S3: Fluorescence spectra of GSH-RH6G2 in weakly acidic environment without pH adjustment (black curve) and in neutral environment with pH adjustment (red curve).

Figure S4: Fluorescence emission spectra of the GNPs-GSH-Rh6G2 under different excitation wavelengths.

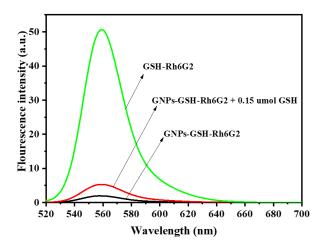


Figure S5: Fluorescence spectra of GNPs-GSH-RH6G2

References:

 Li, H.; Fan, J.; Wang, J.; Tian, M.; Du, J.; Sun, S.; Sun, P.; Peng, X. Chem. Commun. 2009, 39, 5904–5906. doi: 10.1039/b907511a