Supporting Information

Chemical synthesis of C6-tetrazole D-mannose building blocks and access to a bioisostere of mannuronic acid 1-phosphate

Eleni Dimitriou and Gavin J. Miller*
Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, U. K.
*Corresponding author Email: g.j.miller@keele.ac.uk

The following pages contain representative supporting information and data.

S1. General experimental

S2. Experimental procedures for compounds 2-21

S3. HMBC spectrum for N_{1}-protected tetrazole 11

S4. References

S5. Spectral Data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and HSQC NMR for compounds 2-5, 7-14, 16-18 and 20-21

S1. General Experimental

All reagents and solvents which were available commercially were purchased from Acros, Alfa Aesar, Fisher Scientific, Sigma Aldrich or TCI. All reactions in non-aqueous solvents were conducted in oven dried glassware with a magnetic stirring device under an inert atmosphere of nitrogen passed through a drying column using a vacuum manifold. Solvents were purified by passing through activated alumina columns and used directly from a Pure Solv-MD solvent purification system and were transferred under nitrogen. Reactions were followed by thin layer chromatography (TLC) using Merck silica gel 60F254 analytical plates (aluminium support) and were developed using short wave UV radiation (245 nm) and 5% sulfuric acid in methanol/ Δ. Purification via flash column chromatography was conducted manually using Sigma Aldrich silica gel 60 (0.043-0.063 mm) under a positive pressure of compressed air or via automation using a Büchi Reveleris X2 with pre-packed silica cartridges. Purification via strong ion exchange (SAX) chromatography was conducted on a Bio-Rad Biologic LP system using a Bio-Scale Mini UNOsphere Q (strong anion exchange) cartridge (column volume $=5 \mathrm{~mL}$): flow rate (3.0 $\mathrm{mL} / \mathrm{min}$), $0 \rightarrow 100 \% 1.0 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ over 33 min . Optical activities were recorded on an automatic Rudolph Autopol I or Bellingham and Stanley ADP430 polarimeter (concentration in g/100mL). ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra at 100 MHz and ${ }^{31} \mathrm{P}$ NMR spectra at 161 MHz respectively using Bruker AV-III spectrometers. ${ }^{1} \mathrm{H}$ NMR resonances were assigned with the aid of gDQCOSY. ${ }^{13} \mathrm{C}$ NMR resonances were assigned with the aid of gHSQCAD. Coupling constants are reported in Hertz. Chemical shifts (δ, in ppm) are standardised against the deuterated solvent peak. NMR data were analysed using Mestrenova or iNMR software. ${ }^{1} \mathrm{H}$ NMR splitting patterns were assigned as follows: br. s (broad singlet), s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), app. t (apparent triplet), t (triplet), quartet (q) or m (multiplet and/or multiple resonances). HRMS (ESI) were obtained on Agilent 6530 Q-TOF, LQT Orbitrap XL1 or Waters (Xevo, G2-XS TOF or G2-S ASAP) Micromass LCT spectrometers using a methanol mobile phase in positive/negative ionisation modes, as appropriate.

S2. Experimental procedures for compounds 2-21

S2.1. 3-Propionitrile (phenyl 2,3-di-O-benzyl-1-thio- α-D-mannopyranoside) amide 2

To a stirred solution of $1(100 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv.), PyBOP ($280 \mathrm{mg}, 0.53$ mmol, 2.5 equiv.) and DIPEA ($75 \mu \mathrm{~L}, \mathrm{~d}=0.742,0.43 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, was added 3 -aminopropionitrile ($24 \mu \mathrm{~L}, \mathrm{~d}=0.952,0.32$ mmol, 1.5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was left stirring for 40 min . and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was washed 1.0 M aq. $\mathrm{HCl}(2 \times 10 \mathrm{~mL})$, sat. aq. NaHCO_{3} solution (2 x 10 mL) and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification using silica gel flash column chromatography, eluting with EtOAc/toluene ($0 / 100,5 / 95,10 / 90,20 / 80$) afforded 2 as a white solid ($51 \mathrm{mg}, 0.1 \mathrm{mmol}$, 47\%). $\mathrm{R}_{\mathrm{f}} 0.29$ (EtOAc/toluene, 3/7); $[\alpha]_{D}^{22}+56.4$ (c. $7.5, \mathrm{CHCl}_{3}$); mp: 102-105 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl_{3}) $\delta 7.40-7.29(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{N}(H) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 5.45\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.72\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.38(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{OH}), 4.26(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, J$ $=9.5 \mathrm{~Hz}, \mathrm{H}_{4}$), $3.94\left(1 \mathrm{H}, \mathrm{dd}, J=2.8,1.8 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,3.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.64$ ($\left.1 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.6,6.2 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 3.39(1 \mathrm{H}$, ddt, $J=13.8,7.8,5.9 \mathrm{~Hz}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, $2.66\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,5.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, 2.61 - 2.51 (1 H, m, C(O)N(H) $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$; ${ }^{13} \mathrm{C} \quad$ NMR (101 MHz; CDCl_{3}) $\delta 172.1$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$, $138.4\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.4,129.4,128.5,128.4$, 128.3, 128.0, 127.8, 127.7, 117.4 ($\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}$), 86.8 (C 1), 78.5 (C3), 77.2 (C2), $73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $70.9(\mathrm{C} 5), 69.8(\mathrm{C} 4), 35.1\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$, $18.3\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$; HRMS (ES^{+}) m/z [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 536.2217$ $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 536.2219\right]$; IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3401$ ($\mathrm{w}, \mathrm{N}-\mathrm{H}_{\text {amide }}$), 2249 (w , $\mathrm{C} \equiv \mathrm{N}$), 1655, 1530 ($\mathrm{s}, \mathrm{C}=\mathrm{O}_{\text {amide }}$), 1496, 1454 ($\mathrm{m}, \mathrm{C}=\mathrm{C}_{\text {aromatic }}$), 1102 (C-N).
S2.1.1. Elimination by-product 3
Elimination by-product 3 was isolated from the crude mixture containing 2 and as a colourless oil ($46 \mathrm{mg}, 90 \mu \mathrm{~mol}, 44 \%$). $\mathrm{R}_{\mathrm{f}} 0.32$ (EtOAc/toluene, 3/7); $[\alpha]_{D}^{22}+72.0$ (c. 7.5, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.49-7.28(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{N}(H) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 6.23\left(1 \mathrm{H}, \mathrm{dd}, J=3.5,0.9 \mathrm{~Hz}, \mathrm{H}_{4}\right), 5.59\left(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{H}_{1}\right)$, $4.70\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.29\left(1 \mathrm{H}\right.$, app. $\left.\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.85$ (1 H, ddd, $\left.J=5.1,4.1,0.9 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.62-3.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 2.69-$ $2.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) ~ \delta 161.5$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 143.6(\mathrm{C} 5), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.9,129.4$, 128.6, 128.5, 128.5, 128.1, 128.0, 127.9, 127.8, 117.9 (C(O)N(H) $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 106.1$ (C4), $85.1(\mathrm{C} 1), 72.81(\mathrm{C} 2), 72.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.3(\mathrm{C} 3), 35.6$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$, $18.2\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$; HRMS (ES^{+}) m/z [Found:
$\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 518.2115 \mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 518.2114$]$; $\mathrm{R} \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3354(\mathrm{w}$, N-Hamide), 2248 (w, C=N), 1655, 1517 (s, C=Oamide), 1454 ($\mathrm{m}, \mathrm{C}=\mathrm{C}_{\text {aromatic }}$), 1057 (C-N).

S2.2. 3-propionitrile (phenyl 4-O-tert-butyl dimethylsilyl 2,3-di-O-benzyl-1-thio- α-Dmannopyranoside) amide 4

To a mixture of 2 ($50 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.), imidazole ($20 \mathrm{mg}, 0.29 \mathrm{mmol}, 3.0$ equiv.) and DMAP ($5.9 \mathrm{mg}, 50 \mu \mathrm{~mol}$, 0.5 equiv.) in DMF (1 mL) was added TBDMSOTf ($66 \mu \mathrm{~L}, \mathrm{~d}=1.151,0.29 \mathrm{mmol}, 3.0$ equiv.) dropwise. The reaction mixture was left stirring overnight at room temperature and was quenched with $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$. The mixture was concentrated under reduced pressure, and the remaining crude was reconstituted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was washed, separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to furnish a colourless oil. Purification by silica gel flash column chromatography, eluting with EtOAc/hexane (0/100, 10/90, 20/80) afforded 4 as a white solid ($50 \mathrm{mg}, 79 \mu \mathrm{~mol}, 80 \%$). $\mathrm{R}_{\mathrm{f}} 0.46$ (EtOAc/hexane, $1 / 2$); $[\alpha]_{D}^{26}+14.0$ (c. 1.0, CHCl_{3}); mp: 119-122 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ; CDCl_{3}) $\delta 7.67-$ $7.23(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.29\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{N}(H) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 5.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50(1$ H , app. t, $\left.J=3.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.19\left(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,2.6 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.56(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=5.2,2.6 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.28\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=13.1,6.6 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$, $3.19(1 \mathrm{H}, \mathrm{td}$, $\left.J=13.2,6.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$, $2.31(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=16.6,6.6 \mathrm{~Hz}$, $\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}$), $2.25-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 0.80(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $169.3\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right), 137.9\left(\mathrm{C}_{q}\right)$, $137.8\left(\mathrm{C}_{q}\right)$, $133.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.0,129.2,128.4$, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 117.6 (C(O)N(H)CH2CH2 $\mathrm{C}_{2} \mathrm{~N}$), 84.1 (C1), 77.5 (C5), 74.2 (C2), $72.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $68.7(\mathrm{C} 4), 35.3\left(\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$,
 $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 650.3082 \mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SSi}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 650.3078$]$; $\mathbf{I R} \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3217(\mathrm{w}$, N- $\mathrm{H}_{\text {amide }}$), 2255 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{N}$), 1678, 1659 ($\mathrm{s}, \mathrm{C}=\mathrm{O}_{\text {amide }}$), 1496, 1455 ($\mathrm{m}, \mathrm{C}=\mathrm{C}_{\text {aromatic }}$), 1243 (s , Si-C), 1096 (s, C-N), 1068 (s, Si-O).

S2.3. Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-C-(1H-tetrazol-5-yl)-1-thio-α-D-mannopyranoside 5

Propionitrile 4 ($60 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene (10 mL) and TMSN 3 ($84 \mu \mathrm{~L}, \mathrm{~d}=0.872,0.64 \mathrm{mmol}, 6.0$ equiv.) and $\mathrm{Bu}_{2} \mathrm{SnO}(11 \mathrm{mg}, 43 \mu \mathrm{~mol}, 0.4$ equiv.) were added. The mixture was heated to $120{ }^{\circ} \mathrm{C}$ and stirred for 16 h . Upon completion, the mixture was cooled down to room temperature, diluted with EtOAc (50 mL) and washed with 0.1 M aq. HCl solution (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of this crude material by silica gel flash column chromatography, eluting with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(0 / 100$,
$1 / 99,2 / 98$) afforded 5 as a brown oil ($34 \mathrm{mg}, 56 \mu \mathrm{~mol}, 51 \%$). $\mathrm{R}_{\mathrm{f}} 0.71$ ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 2$); $[\alpha]_{D}^{22}+88.7$ (c. 1.75, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.47-7.26(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $5.64\left(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.54\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.74(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65(1 \mathrm{H}$, d, $\left.J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.41\left(1 \mathrm{H}\right.$, app. $\left.\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.09(1 \mathrm{H}$, app. t, $J=2.6 \mathrm{~Hz}$, H_{2}), $3.84\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,2.8 \mathrm{~Hz}, \mathrm{H}_{3}\right), 0.78\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, -0.41 (3 H, s, Si($\left.\mathrm{CH}_{3}\right)_{2}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) ~ \delta 155.8\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole), $137.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $132.8\left(\mathrm{C}_{\mathrm{q}}\right)$, 132.2, 129.2, 128.6, 128.5, 128.3, 128.1, 128.0, 86.8 (C1), 79.7 (C3), $76.5(\mathrm{C} 2), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.0(\mathrm{C} 4), 68.5(\mathrm{C} 5), 25.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-5.9\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 605.2628$ $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SSi}$ requires $\left.(\mathrm{M}+\mathrm{H})^{+}, 605.2618\right]$.

S2.4. Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-1-thio- α-D-mannopyranoside 7
S2.4.1. Phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio- α-D-mannopyranoside
To a stirred solution of $\mathbf{6}^{1}(1.0 \mathrm{~g}, 2.21 \mathrm{mmol}, 1.0$ equiv.), pyridine ($357 \mu \mathrm{~L}, \mathrm{~d}=0.978$, $4.42 \mathrm{mmol}, 2.0$ equiv.), DMAP ($81 \mathrm{mg}, 0.7 \mathrm{mmol}, 0.3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) was added BzCl dropwise ($269 \mu \mathrm{~L}, \mathrm{~d}=1.211,2.32 \mathrm{mmol}, 1.05$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction was left stirring overnight at room temperature, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was washed with 1.0 M aq. $\mathrm{HCl}(10 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude product. Purification by Reveleris ${ }^{\circledR}$ automated silica gel flash column chromatography (liquid injection onto column), eluting with EtOAc/hexane (0/100, 5/95 and 10/90) afforded phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio-a-D-mannopyranoside as a colourless oil ($1.1 \mathrm{~g}, 2.0 \mathrm{mmol}, 90 \%$). $\mathrm{R}_{\mathrm{f}} 0.37$ (EtOAc/hexane, 1/2); $[\alpha]_{D}^{22}+48.2$ (c. 7.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.03$ - 7.19 ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $5.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.3$ $\mathrm{Hz}, \mathrm{H}_{1}$), $4.69\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 2$)$, $4.65-4.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6 \mathrm{a}, \mathrm{b}}\right)$, 4.61 (1 H, d, J = $12.7 \mathrm{~Hz}, \mathrm{CH}_{2}$ Ph-attached to C2), 4.55 (1 H, d, J = 10.5 Hz , CH_{2} Ph-attached to C3), $4.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ Ph-attached to C3), $4.43(1 \mathrm{H}$, dt, $\left.J=9.6,3.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.04\left(1 \mathrm{H}, \mathrm{dd}, J=3.0,1.6 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.73$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,3.0 \mathrm{~Hz}, \mathrm{H}_{3}\right)$, $2.64\left(1 \mathrm{H}\right.$, br. s, C4-OH); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ $166.7(C(O) P h), 137.8\left(C_{q}\right), 137.7\left(C_{q}\right), 134.1\left(C_{q}\right), 133.0\left(C_{q}\right), 131.5,130.1,129.8,129.1$, 128.6, 128.4, 128.3, 128.1, 128.0, 127.8, 127.5, 85.7 (C1), 79.6 (C3), 75.7 (C2), 72.1 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.7$ (C5), 66.9 (C4), 64.1 (C6); HRMS (ES ${ }^{+}$) m/z [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 574.2257 \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SNH}_{4}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 574.2258$]; IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3477$ (br. $\mathrm{s}, \mathrm{C} 4-\mathrm{OH}$), 1718 (s, C=O ${ }_{\text {ester }}$), 1273 (s, C-Oester), 1070 (s, C-Oether), 1025 (s, C-OH).

S2.4.2. Phenyl 2,3-di-O-benzyl-4-O-tert-butyldimethylsilyl-6-O-benzoyl-1-thio- α-Dmannopyranoside

To a mixture of phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio-a-D-mannopyranoside $(900 \mathrm{mg}, 1.62 \mathrm{mmol}, 1.0$ equiv.), imidazole ($330 \mathrm{mg}, 4.85 \mathrm{mmol}, 3.0$ equiv.) and DMAP
($99 \mathrm{mg}, 0.81 \mathrm{mmol}, 0.5$ equiv.) in DMF (10 mL) was added TBDMSOTf ($1.1 \mathrm{~mL}, \mathrm{~d}=1.151$, $4.85 \mathrm{mmol}, 3.0$ equiv.) dropwise. The reaction mixture was left stirring overnight at room temperature and was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The mixture was concentrated under reduced pressure, and the remaining crude was reconstituted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$. The organic layer was washed, separated, dried over MgSO_{4}, filtered and concentrated under reduced pressure to furnish a colourless oil. Purification by silica gel flash column chromatography, eluting with EtOAc/hexane (0/100, 5/95, 10/90) afforded phenyl 2,3-di-O-benzyl-4-O-tert-butyldimethylsilyl-6-O-benzoyl-1-thio-a-Dmannopyranoside, as a colourless oil ($846 \mathrm{mg}, 1.27 \mathrm{mmol}, 78 \%$). $\mathrm{R}_{\mathrm{f}} 0.75$ (EtOAc/hexane, $1 / 2) ;[\alpha]_{D}^{26}+57.8\left(c .1 .37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.96-7.10(20 \mathrm{H}, \mathrm{m}$, Ar-H), $5.54\left(1 \mathrm{H}, \mathrm{d}, J=1.7, \mathrm{H}_{1}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J=11.6,1.8 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{~b}}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J=$ $\left.12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{s}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.50\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.39\left(1 \mathrm{H}, \mathrm{dd}, J=11.6,5.8 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}\right), 4.35-4.29(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{5}\right), 4.19\left(1 \mathrm{H}, \mathrm{t}, J=9.1 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,2.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J=$ 8.9, $2.9 \mathrm{~Hz}, \mathrm{H}_{3}$), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(6 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 166.4(\mathrm{C}(\mathrm{O}) \mathrm{Ph}), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.3\left(\mathrm{C}_{\mathrm{q}}\right)$, 130.1, 129.7, 129.0, 128.3, 128.3, 127.9, 127.6, 127.6, 127.5, 127.3, 85.7 (C1), 80.3 (C3), 76.2 (C2), 72.6 (C5), $72.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.2(\mathrm{C} 4), 64.2(\mathrm{C} 6), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.8\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-5.0\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}\left[\right.$ Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 688.3127$ $\mathrm{C}_{39} \mathrm{H}_{5} \mathrm{NO}_{6} \mathrm{SSi}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 688.3123]; IR $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1} 1713$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}_{\text {ester }}$), 1276 (m, C-O ${ }_{\text {ester }}$), 1253 (m, Si-C), 1096 (s, Si-O), 1024 (m, C-Oether).

S2.4.3. Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-1-thio- α-D-mannopyranoside 7

To a stirred solution of phenyl 2,3-di-O-benzyl-4-O-tert-butyldimethylsilyl-6-O-benzoyl-1-thio-a-D- mannopyranoside ($800 \mathrm{mg}, 1.19 \mathrm{mmol}, 1.0$ equiv.) in anhydrous MeOH and THF ($7 \mathrm{~mL}, 1 / 1 \mathrm{v} / \mathrm{v}$), $\mathrm{Na}(14 \mathrm{mg}, 0.60 \mathrm{mmol}, 0.5$ equiv.) dissolved in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ was added dropwise at room temperature. The mixture was stirred overnight, then neutralised with ion exchange Amberlite $120\left(\mathrm{H}^{+}\right)$resin (approximately 0.7 $\mathrm{g}, 10 \mathrm{~min}$), filtered, and concentrated under reduced pressure. Purification by silica gel flash column chromatography, eluting with $\mathrm{Et}_{2} \mathrm{O} /$ hexane ($0 / 100,5 / 95,10 / 90$) afforded 7 as a colourless oil ($596 \mathrm{mg}, 1.07 \mathrm{mmol}, 90 \%$). $\mathrm{R}_{\mathrm{f}} 0.69$ (EtOAc/hexane, 1/2); $[\alpha]_{D}^{26}+81.3$ (c. 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.35-7.13(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=1.8 \mathrm{~Hz}, \mathrm{H}_{1}$), $4.51\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.02-3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 3.96-3.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 3.82(1$ H , dd, $J=2.8,2.0 \mathrm{~Hz}, \mathrm{H}_{2}$), 3.72 (1 H, ddd, J 11.5, 6.6, 2.4 Hz, H6b), 3.64 (1 H, ddd, J = $11.6,6.5,5.2 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}$), $3.53\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 1.70(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{OH})$, 0.78 ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 132.0,129.1,128.4,128.3,127.9$, 127.7, 127.7, 127.6, 86.2 (C1), 80.4 (C3), 76.4 (C2), 74.8 (C5), 72.5 ($\mathrm{CH}_{2} \mathrm{Ph}$), 72.0 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.9(\mathrm{C} 4), 62.2(\mathrm{C} 6), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.8\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, -4.9
$\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 584.2875 \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{SSi}$ requires $\left.\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 584.2850\right]$; $\mathbf{R} \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 1454$ ($\mathrm{w}, \mathrm{C}=\mathrm{C}_{\text {aromatic }}$), 1248 (m, C-Si), 1084 (s, Si-O).

S2.5. C-6 oxime thioglycoside 8

S2.5.1. C6-aldehyde thioglycoside intermediate

To a stirred solution of $7(60 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) in DMSO (1 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(44 \mu \mathrm{~L}, \mathrm{~d}=0.726,0.32 \mathrm{mmol}, 3.0$ equiv.) and sulfur trioxide pyridine complex ($51 \mathrm{mg}, 0.32 \mathrm{mmol}, 3.0$ equiv.) at room temperature. The reaction mixture was left stirring for 1 h before it was diluted with EtOAc (30 mL) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The whole was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$) and the extracts were washed with $\mathrm{H}_{2} \mathrm{O}(6 \times 20 \mathrm{~mL})$ and brine (20 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude aldehyde was obtained as a colourless oil (60 mg , $0.11 \mathrm{mmol}, 98 \%$) and was used immediately in the next step, without further purification. Rf 0.684 (EtOAc/hexane, 1/2); $[\alpha]_{D}^{22}-14.4$ (c. $0.33, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 9.77 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), $7.56-7.25(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.56\left(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.57(1 \mathrm{H}$, d, $\left.J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.26-$ $4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}, \mathrm{H}_{5}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J=6.2,2.3 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J=5.8,2.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{3}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) б $198.0(\mathrm{CHO}), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.6$ (Cq), 133.5 (C C_{q}), 132.4, 131.8, 129.0, 128.5, 128.4, 128.0, 127.9, 127.8, 127.5, 83.8 (C1), 81.15 (C5), 77.2 (C3), 73.8 (C2), 72.5 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.9(\mathrm{C} 4), 25.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-4.6\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-5.0}\right.$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 582.2723 \mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{SSi}$ requires $\left.\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 582.2704\right]$.

S2.5.2. C-6 oxime thioglycoside 8

The crude C-6 aldehyde ($4.5 \mathrm{~g}, 7.97 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (790 mL) and a solution of $\mathrm{H}_{2} \mathrm{NOH} . \mathrm{HCl}\left(554 \mathrm{mg}, 7.97 \mathrm{mmol}, 1.0\right.$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(15$ mL) was added dropwise. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.0$ $\mathrm{g}, 9.56 \mathrm{mmol}, 1.2$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(9.5 \mathrm{~mL})$ was added dropwise. The solution was slowly warmed to room temperature and stirred for 24 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and then extracted with EtOAc $(4 \times 300 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The obtained crude oil was purified using silica gel flash column chromatography, eluting with $\mathrm{Et}_{2} \mathrm{O}$ /petroleum ether ($0 / 100,5 / 95,10 / 90,20 / 80$) to furnish 8 as a colourless oil. Cis and trans (1/6.7) were isolated separately (major isomer: $2.82 \mathrm{~g}, 4.86 \mathrm{mmol}, 71 \%$, minor isomer: $416 \mathrm{mg}, 0.72 \mathrm{mmol}, 9 \%$) and both were used in the next step; Major isomer R_{f} 0.78 ; minor isomer $R_{f} 0.68$; (EtOAc/petroleum ether, $1 / 2$); major: $[\alpha]_{D}^{22}+57.7$ (c. 0.46 , CHCl_{3}); minor: $[\alpha]_{D}^{22}+41.3$ (c. 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz ; CDCl_{3}) Major isomer δ 7.46 - 7.17 ($16 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, H \mathrm{C}=\mathrm{N}$), $5.40\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.58(1 \mathrm{H}, \mathrm{d}, J=10.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4$
$\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.06\left(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, J=9.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.89-$ $3.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 149.3(\mathrm{HC=N}), 138.1$ $\left(\mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.9,129.1,128.4,128.4,127.9,127.85,127.8,127.7$, 127.6, 86.3 (C1), 79.8 (C3), 76.3 (C2), $72.5(\mathrm{C} 5), 72.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.8(\mathrm{C} 4)$,
 $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 597.2815 \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 597.2813].

S2.6. C-6 nitrile thioglycoside 9

Oxime 8 ($120 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry acetonitrile (21 mL) and $\mathrm{POCl}_{3}(19 \mu \mathrm{~L}, \mathrm{~d}=1.645,0.21 \mathrm{mmol}, 1.0$ equiv.) was added at room temperature. The solution was stirred for 5 min . at room temperature, heated up to $65{ }^{\circ} \mathrm{C}$ and then stirred for 3 h . The reaction was quenched with sat. aq. NaHCO_{3} solution (20 mL) and extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether ($0 / 100,5 / 95$, 10/90, 20/80) to furnish 9 as a yellow oil ($47 \mathrm{mg}, 84 \mu \mathrm{~mol}, 40 \%$). $\mathrm{R}_{\mathrm{f}} 0.90$ (EtOAc/hexane, 1/2); $[\alpha]_{D}^{22}+39.4$ (c. $0.53, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.44-7.21(15 \mathrm{H}, \mathrm{m}$, Ar-H), $5.45\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.60(1 \mathrm{H}, \mathrm{d}, J=11.9$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.53$ ($1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.21\left(1 \mathrm{H}\right.$, app. t, $\left.J=8.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.84(1 \mathrm{H}$, app. t, $J=2.9$ $\left.\mathrm{Hz}, \mathrm{H}_{2}\right), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 132.9\left(\mathrm{C}_{\mathrm{q}}\right)$, 131.5, 129.4, 129.3, 129.1, 128.5, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.9, 127.6, 127.2, 124.4, $117.0(\mathrm{C} \equiv \mathrm{N}), 85.9(\mathrm{C} 1)$, $78.8(\mathrm{C} 3), 75.3(\mathrm{C} 2), 72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$,
 HRMS (ES ${ }^{+}$) m/z [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 579.2732 \quad \mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 579.2707].

S2.6.1. 4-postion deprotected by-product 10

Alcohol 10 was also isolated as a yellow oil ($24 \mathrm{mg}, 54 \mu \mathrm{~mol}, 26 \%$) from the crude mixture containing 9. $\mathrm{R}_{\mathrm{f}} 0.82$ (EtOAc/hexane, 1/2); $[\alpha]_{D}^{22}+15.4$ (c. $0.95, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl ${ }_{3}$) $\delta 7.41-7.28(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.87(1 \mathrm{H}$, d, $J=9.8 \mathrm{~Hz}, \mathrm{H}_{5}$), $4.66\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.57\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.32(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, J$ $\left.=9.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.96\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,2.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.3,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 2.92$ (1 H, br. s, C4-OH); ${ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 137.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.2\left(\mathrm{C}_{\mathrm{q}}\right), 132.7\left(\mathrm{C}_{\mathrm{q}}\right)$, 131.5, 129.4, 128.7, 128.6, 128.3, 128.3, 128.1, 128.0, 128.0, 116.6 (C三N), 86.6 (C1), 78.4 (C3), $75.4(\mathrm{C} 2), 72.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.3(\mathrm{C} 4), 63.1(\mathrm{C} 3)$; HRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 465.1857 \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 465.1843].

S2.7. PMB-protected C-6 tetrazole thioglycosides 11 and 12
To a stirred solution of $5(130 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv.) in DMF (2 mL) was added successively, KI ($53 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{PMBCI}(58 \mu \mathrm{~L}, \mathrm{~d}=1.155,0.43 \mathrm{mmol}, 2.0$ equiv.). The reaction was left stirring for 4 h and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was washed with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (10 mL) and brine (10 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with acetone/toluene (1/250, 1/150, 1/100) to furnish isomers 11 and 12 ($80 \mathrm{mg}, 0.11 \mathrm{mmol}, 53 \%$) as oils.

S2.7.1. Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-C-(1-para-methoxybenzyl -tetrazol-5-yl)-1-thio- α-D-mannopyranoside 11
N_{1}-regioisomer 11 was isolated as a yellow oil ($42 \mathrm{mg}, 58 \mu \mathrm{~mol}, 28 \%$). $\mathrm{R}_{\mathrm{f}} 0.42$ (acetone/toluene, 1/50); $[\alpha]_{D}^{22}+25.4$ (c. $0.53, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.56$ -7.39 (16 H, m, Ar-H), $7.36(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, Ar-H PMB), $6.82(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, Ar-H PMB), $5.76\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.68\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.66(1 \mathrm{H}, \mathrm{d}, J=15.0$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}$), $5.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}\right), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ph}$-attached to C2), $4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ Ph-attached to C3), 4.78 (1 H, d, J $=11.1 \mathrm{~Hz}, \mathrm{CH}_{2}$ Ph-attached to C2), $4.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ Ph-attached to C3), 4.59 (1 H, app. t, J = $\left.9.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.22-4.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86-3.84(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 159.7\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole), $137.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.9,129.2,128.5,128.4,128.0,127.9,127.8,127.7,125.7$, 114.1, 86.5 (C1), 80.1 (C3), $76.4(\mathrm{C} 2), 72.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 2$), 72.1$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 3$)$, $70.0(\mathrm{C} 4), 67.7$ (C5), $55.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ PMB), $50.8\left(\mathrm{OCH}_{3}\right), 25.6$
 $86.5\left({ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=172 \mathrm{~Hz}, \mathrm{C} 1\right)$; HRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 725.3177 \mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SSi}$ requires $\left.(\mathrm{M}+\mathrm{H})^{+}, 725.3187\right]$.

S2.7.2. Phenyl2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-C-(2-para-methoxybenzyl-tetrazol-5-yl)-1-thio- α-D-mannopyranoside 12
N_{1}-regioisomer 12 was isolated as a yellow oil ($38 \mathrm{mg}, 52 \mu \mathrm{~mol}, 25 \%$). $\mathrm{R}_{\mathrm{f}} 0.48$ (acetone/toluene, 1/50); $[\alpha]_{D}^{22}+40.6$ (c. $0.86, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.43$ - 7.21 (18 H, m, Ar-H), 6.87 (2 H, d, J = $8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}$ PMB), 5.67 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}$, CH_{2} Ph-PMB), $5.62\left(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}\right), 5.56\left(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.40$ ($1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}_{5}$), $4.67\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 2$), 4.60(1 \mathrm{H}$, app. $\left.\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 2$), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.9$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$-attached to C3), 4.52 (1 H, d, J=12.0 Hz, CH2Ph-attached to C3), 4.01 - 3.99
($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}$), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 0.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 164.4\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole), $160.1\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.0$, 128.3, 128.3, 127.8, 127.7, 127.6, 127.5, 125.0, 114.3, 86.5 (C1), 80.2 (C3), 75.7 (C2), 72.1 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 2$)$, $71.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$-attached to C 3$)$, $70.4(\mathrm{C} 4), 69.1(\mathrm{C} 5), 56.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$
 ${ }^{13}$ C-GATED (101 MHz; CDCl3): 86.5 (${ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=168 \mathrm{~Hz}, \mathrm{C} 1$); HRMS (ES ${ }^{+}$) m/z [Found: $(\mathrm{M}+\mathrm{H})^{+} 725.3192 \mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SSi}$ requires $\left.(\mathrm{M}+\mathrm{H})^{+}, 725.3187\right]$.

S2.8. Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-C-(1H-tetrazol-5-yl)-
1-thio- α-D-mannopyranoside triethylammonium salt
To a stirred solution of $5\left(75 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(17 \mu \mathrm{~L}, \mathrm{~d}=0.726,0.12 \mathrm{mmol}, 1.0$ equiv.). The reaction was left stirring for 1 h and then was dried in vacuo, giving the title compound as a yellow oil ($80 \mathrm{mg}, 0.11$ mmol, 94\%). $[\alpha]_{D}^{22}-42.4$ (c. 0.46, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ~ \delta 7.51-7.26$ (15 H, m, Ar-H), $5.62\left(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.56\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J=$ $11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.67\left(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(1 \mathrm{H}\right.$, app. $\left.\mathrm{t}, J=9.1 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.13(1 \mathrm{H}$, app. $\mathrm{t}, J=$ 2.2 Hz), $3.86\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.05\left(6 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 3\right.$), 1.23 (9 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.75\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.43(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 159.6\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole), $138.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.9,128.9,128.4,128.3,128.1,127.9,127.8,127.6,127.4,86.9(\mathrm{C} 1), 81.0$ (C3), $77.2(\mathrm{C} 2), 73.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.7(\mathrm{C} 4), 69.8(\mathrm{C} 5), 45.2\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$,

S2.9. Bn-protected C-6 tetrazole thioglycosides 13 and 14
To a stirred solution of phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-C-(1H-tetrazol-5-yl)-1-thio- α-D-mannopyranoside triethylammonium salt ($80 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) in DMF (1.1 mL) was added $\operatorname{BnBr}(20 \mu \mathrm{~L}, \mathrm{~d}=1.438,0.17 \mathrm{mmol}, 1.5$ equiv.). The reaction was left stirring for 3 h and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with acetone/toluene (1/250, 1/150, 1/100) to furnish the inseparable isomers 13 and 14 as colourless oil in $1 / 1.2$ ratio ($24 \mathrm{mg}, 34 \mu \mathrm{~mol}, 31 \%$). R_{f} 0.80 (EtOAc/petroleum ether, 1/50); ${ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl_{3}) $\delta 7.41$ - 7.18 (40 H, m, Ar-H), $5.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ benzyl tetrazole, N_{2}-isomer), $5.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ benzyl tetrazole, N_{2}-isomer), 5.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}_{1} \mathrm{~N}_{1}$-isomer), 5.56 ($1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}_{1} \mathrm{~N}_{2}$-isomer), $5.54\left(2 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ benzyl tetrazole, N ${ }_{1}$-isomer), 5.50 ($1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}_{5} \mathrm{~N}_{1}$-isomer), 5.40 ($1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}_{5} \mathrm{~N}_{2}$-isomer), $4.67\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
12.2 Hz, CH 2 Ph), 4.61 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4} \mathrm{~N}_{2}$-isomer) 4.59 (1 $\left.\mathrm{H}, \mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43$ (1 H , app. t, $J=9.1 \mathrm{~Hz}, \mathrm{H}_{4} \mathrm{~N}_{1}$-isomer), $4.04\left(1 \mathrm{H}\right.$, app. t, $J=2.8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{~N}_{1}$-isomer), 4.00 (1 H , app. $\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{~N}_{2}$-isomer), $3.70\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{~N}_{1}\right.$ and N_{2}-isomers), $0.63\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.51\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.17$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ; CDCl_{3}) 164.5 (C_{q} tetrazole, N_{2}-isomer), 152.3 (C_{q} tetrazole, N_{1}-isomer), $138.0\left(\mathrm{C}_{\mathrm{q}}\right), 137.9$ $\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 132.8,131.8$, 131.0, 129.2, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.3, 128.3, 128.0, 127.9, 127.8, 127.7, 127.7, 127.6, 127.5, 86.5 (C1, N_{1} or N_{2}-isomer), 86.4 (C1, N_{1} or N_{2}-isomer), 80.2 (C3, N_{1} or N_{2}-isomer), 80.1 (C3, N_{1} or N_{2}-isomer), 76.3 (C2, N_{1}-isomer), 75.7 (C2, N_{2}-isomer), $72.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.1\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 71.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.4$ (C4, N_{2}-isomer), 69.9 (C4, N_{1}-isomer), 69.1 (C5, N_{2}-isomer), 67.8 (C5, N_{1}-isomer), 56.9 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ tetrazole, N_{2}-isomer), $51.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ tetrazole, N_{1}-isomer), $25.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 25.5\right.$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~-4.2}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-4.5\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-5.9\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)\right.$, -6.0 $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{GATED}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 86.5$ and 86.4 (${ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=168 \mathrm{~Hz}, \mathrm{C} 1$); HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 695.3084 \mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}$ SSi requires $(\mathrm{M}+\mathrm{H})^{+}$, 695.3082].

S2.10. C-6 nitrile thioglycoside 16

S2.10.1. C-6 aldehyde thioglycoside intermediate
To a stirred solution of $15^{2}(420 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.0$ equiv.) in dimethyl sulfoxide (7.7 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(323 \mu \mathrm{~L}, \mathrm{~d}=0.726,2.32 \mathrm{mmol}, 3.0$ equiv.) and sulfur trioxide pyridine complex ($369 \mathrm{mg}, 2.32 \mathrm{mmol}, 3.0$ equiv.) at room temperature. The reaction mixture was left stirring for 1 h before it was diluted with $\mathrm{EtOAc}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The whole was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ ($5 \times 30 \mathrm{~mL}$) and brine ($2 \times 30 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude aldehyde was obtained as a yellow oil ($400 \mathrm{mg}, 0.74 \mathrm{mmol}, 96 \%$) and was carried on the next step without further purification. $\mathrm{R}_{\mathrm{f}} 0.83$ (EtOAc/hexane, 1/2); [$\left.\alpha\right]_{D}^{22}+40.5$ (c. 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 9.73 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), $7.49-7.27(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.59\left(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.69(1 \mathrm{H}$, d, $\left.J=12.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59(2 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.49(1 \mathrm{H}$, d, $J=7.7 \mathrm{~Hz}, \mathrm{H}_{5}$), $4.08\left(1 \mathrm{H}\right.$, app. t, $\left.J=7.7 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.94-3.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 3.87(1 \mathrm{H}$, dd, $J=7.6,2.8 \mathrm{~Hz}, \mathrm{H}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 197.6$ (CHO), 137.6 (Cq), 137.6 $\left(\mathrm{C}_{q}\right), 137.6\left(\mathrm{C}_{q}\right), 133.5\left(\mathrm{C}_{q}\right), 131.6,129.1,128.5,128.4,128.0,128.0,128.0,127.9,127.9$, 127.9, 127.6, 84.9 (C1), 77.4 (C3), 77.2 (C5), 75.0 (C2), 74.7 (C4), 74.3 ($\mathrm{CH}_{2} \mathrm{Ph}$), 72.3 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$. These data were consistent with literature values. ${ }^{2}$

S2.10.2. C-6 oxime thioglycoside intermediate
The crude aldehyde from the previous step ($4.72 \mathrm{~g}, 8.73 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (873 mL) and a solution of $\mathrm{H}_{2} \mathrm{NOH} . \mathrm{HCl}(606 \mathrm{mg}, 8.73 \mathrm{mmol}, 1.0$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(17.5 \mathrm{~mL})$ was added dropwise. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(1.1 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.2\right.$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(10.5 \mathrm{~mL})$ was added dropwise. The solution was slowly warmed to room temperature and stirred for 24 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and then extracted with EtOAc ($4 \times 400 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The obtained crude oil was purified using silica gel flash column chromatography, eluting with $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether ($0 / 100,5 / 95,10 / 90,20 / 80$) to furnish the title compound as a colourless oil. Cis and trans (1/7) isomers were isolated separately (major isomer: $3.8 \mathrm{~g}, 6.54 \mathrm{mmol}, 78 \%$, minor isomer: $550 \mathrm{mg}, 0.99 \mathrm{mmol}, 11 \%$) and both were used for the next step. Major isomer $R_{f} 0.70$; minor isomer $R_{f} 0.62$ (EtOAc/petroleum ether, 1/2); major: $[\alpha]_{D}^{22}+87.7$ (c. 3.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl_{3}) major isomer $\delta 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N}), 7.47-7.25(20 \mathrm{H}, \mathrm{m}$, Ar-H$), 5.49$ $\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.73(1 \mathrm{H}, \mathrm{dd}, J=10.5,5.6$ $\left.\mathrm{Hz}, \mathrm{H}_{5}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65(1 \mathrm{H}$, $\left.\mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.01\left(1 \mathrm{H}\right.$, app. t, $\left.J=9.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.01-3.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 3.87(1 \mathrm{H}, \mathrm{dd}, J=9.2$, $2.9 \mathrm{~Hz}, \mathrm{H}_{3}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz; CDCl_{3}) $\delta 148.7(\mathrm{HC=N}), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.9$ $\left(\mathrm{C}_{\mathrm{q}}\right)$, $131.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.1,128.4,128.4,128.3,128.5,128.0,127.8,127.8,127.8,127.6$, 86.1 (C 1), 79.5 (C 3), 76.4 ($1 \mathrm{C}, \mathrm{C} 2$ or C 4), 76.3 ($1 \mathrm{C}, \mathrm{C} 2$ or C 4), 75.1 ($\mathrm{CH}_{2} \mathrm{Ph}$), 72.4 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.6$ (C5); HRMS (ES ${ }^{+}$) m/z [Found: $(\mathrm{M}+\mathrm{Na})^{+} 578.1993$ $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SNa}$ requires $\left.(\mathrm{M}+\mathrm{Na})^{+}, 578.1977\right]$.

S2.10.3 C-6 nitrile thioglycoside 16

The previously synthesised oxime ($4.35 \mathrm{~g}, 7.83 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry $\mathrm{MeCN}(783 \mathrm{~mL})$ and $\mathrm{POCl}_{3}(729 \mu \mathrm{~L}, \mathrm{~d}=1.645,7.83 \mathrm{mmol}, 1.0$ equiv.) was added at room temperature. The solution was stirred for 5 min . at room temperature, heated up to $65{ }^{\circ} \mathrm{C}$ and then stirred for 3 h . The reaction was quenched with sat. aq. NaHCO_{3} solution (20 mL) and extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with EtOAc/petroleum ether (0/100, 5/95, 10/90, 20/80) to furnish 16 as a yellow oil (2.5 g , $4.65 \mathrm{mmol}, 59 \%$). $\mathrm{R}_{\mathrm{f}} 0.76$ (EtOAc/hexane, 1/2); $\left.\alpha\right]_{D}^{22}+71.0$ (c. $0.93, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.38-7.28(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.48\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.88(1 \mathrm{H}$, $\left.\mathrm{d}, J=12.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.66\left(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60(1 \mathrm{H}, \mathrm{d}, J=$ $\left.11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.19\left(1 \mathrm{H}\right.$, app.t, $\left.J=9.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.93\left(1 \mathrm{H}\right.$, app. t, $\left.J=2.6 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.71$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.9,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 137.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.2$
$\left(C_{q}\right), 132.7\left(C_{q}\right), 131.5\left(C_{q}\right), 129.3,128.5,128.5,128.5,128.4,128.2,128.1,128.0,128.0$, 127.9, 117.1 ($\mathrm{C} \equiv \mathrm{N}$), 86.2 (C 1), 78.4 (C3), 76.1 (C4), 75.8 (C 2 or $\mathrm{CH}_{2} \mathrm{Ph}$), 75.7 (C2 or $\mathrm{CH}_{2} \mathrm{Ph}$), $72.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 62.2 (C5); HRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$ $538.2068 \mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 358.2052].

S2.11. Phenyl 2,3,4-tri-O-benzyl-6-C-(1H-tetrazol-5-yl)-1-thio- α-D-mannopyranoside 17

C6-nitrile thioglycoside 16 ($2.5 \mathrm{~g}, 4.65 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene $(465 \mathrm{~mL})$ and $\mathrm{TMSN}_{3}\left(3.7 \mathrm{~mL}, \mathrm{~d}=0.872,27.9 \mathrm{mmol}, 6.0\right.$ equiv.) and $\mathrm{Bu}_{2} \mathrm{SnO}(463 \mathrm{mg}$, $1.86 \mathrm{mmol}, 0.4$ equiv.) were added. The mixture was heated to $120^{\circ} \mathrm{C}$ and stirred for 16 h. Upon completion, the mixture was cooled down to room temperature, diluted with EtOAc (400 mL) and washed with 0.1 M aq. $\mathrm{HCl}(250 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the crude product. Purification of the crude material by silica gel flash column chromatography, eluting with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(0 / 100,2 / 98,5 / 95)$ afforded 17 as a brown oil $(1.5 \mathrm{~g}, 2.58$ $\mathrm{mmol}, 55 \%$). $\mathrm{R}_{\mathrm{f}} 0.65\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 9\right) ;[\alpha]_{D}^{22}+95.0$ (c. $1.96, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.37-7.08(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.54(1 \mathrm{H}, \mathrm{d}, J$ $\left.=1.7 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.71\left(2 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65$ $\left(2 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.19(1 \mathrm{H}$, app. t, $J=9.4$ $\mathrm{Hz}, \mathrm{H}_{4}$), $4.08\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,2.1 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.99\left(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 155.0\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole $), 137.6\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.0\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right)$, 132.0, 129.3, 128.7, 128.6, 128.6, 128.4, 128.4, 128.4, 128.1, 128.1, 128.0, 127.9, 86.8 (C1), $79.4(\mathrm{C} 3), 76.6(\mathrm{C} 2$ and C 4$), 75.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.5(\mathrm{C} 5)$; HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 581.2251 \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 581.2223].

S2.12. PMB-protected C-6 tetrazole thioglycosides 18 and 19

To a stirred solution of 17 ($920 \mathrm{mg}, 1.37 \mathrm{mmol}, 1.0$ equiv.) in DMF (10 mL) was added successively, $\mathrm{KI}\left(341 \mathrm{mg}, 2.06 \mathrm{mmol}, 1.5\right.$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($227 \mathrm{mg}, 1.65 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{PMBCI}(279 \mu \mathrm{~L}, \mathrm{~d}=1.155,2.06 \mathrm{mmol}, 1.5$ equiv.). The reaction was left stirring for 16 h and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was washed with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (30 mL) and brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with EtOAc/petroleum ether (5/95, 10/90, 15/85) to furnish isomers 18 and 19 ($732 \mathrm{mg}, 1.04 \mathrm{mmol}, 76 \%$) as colourless oils.

S2.12.1. Phenyl 2,3,4-tri-O-benzyl-6-C-(1-para-methoxybenzyl-tetrazol-5-yl)-1-thio- α-Dmannopyranoside 18
N_{1}-regioisomer 18 was isolated as a yellow oil ($374 \mathrm{mg}, 0.53 \mathrm{mmol}, 39 \%$). $\mathrm{R}_{\mathrm{f}} 0.72$ (EtOAc/petroleum ether, 1/2); $[\alpha]_{D}^{22}+48.5\left(c .2 .75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $7.39-6.95(21 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, Ar-H PMB), $6.65(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, Ar-H PMB), $5.61\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.45\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.28(1 \mathrm{H}, \mathrm{d}, J=$
$15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}$), $5.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}\right), 4.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65(1 \mathrm{H}$, d, $\left.J=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45\left(1 \mathrm{H}, \operatorname{app} . \mathrm{t}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.33(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,2.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.70(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 159.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right), 152.2\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole), $137.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.5\left(\mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{C}_{\mathrm{q}}\right), 130.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.3,129.3,128.5,128.3,128.2,128.1$, 128.0, 127.9, 127.8, 127.8, 127.7, 125.6, 114.1, 86.3 (C1), 79.7 (C3), 76.4 (C2), 76.0 (C4), $75.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 65.6(\mathrm{C} 5), 55.2\left(\mathrm{OCH}_{3}\right), 50.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ PMB); ${ }^{13}$ C-GATED (101 MHz; CDCl ${ }_{3}$): 86.3 (${ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=172 \mathrm{~Hz}, \mathrm{C} 1$); HRMS (ES ${ }^{+}$) m/z [Found: $(\mathrm{M}+\mathrm{H})^{+} 701.2829 \mathrm{C}_{41} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 701.2798$].

S2.12.2. Phenyl 2,3,4-tri-O-benzyl-6-C-(2-para-methoxybenzyl-tetrazol-5-yl)-1-thio- α-Dmannopyranoside 19
N_{2}-regioisomer 19 was isolated as a yellow oil ($355 \mathrm{mg}, 0.51 \mathrm{mmol}, 37 \%$). $\mathrm{R}_{\mathrm{f}} 0.73$ (EtOAc/petroleum ether, 1/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.38-7.13(21 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $6.84(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$ PMB), $6.76(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$ PMB), 5.57 (1 H, d, J $\left.=1.3 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 5.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}\right), 5.18$ ($1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}-\mathrm{PMB}$), $4.63\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63(1 \mathrm{H}, \mathrm{d}, J=$ $11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.59\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, J=9.9 \mathrm{~Hz}, \mathrm{H}_{4}\right)$, $4.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.08-4.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, J=9.3,1.2 \mathrm{~Hz}$, H_{3}), $4.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.67(1 \mathrm{H}, \mathrm{s}$, OCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 164.3$ (C_{q} tetrazole), $160.0\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $138.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.4,129.3,128.6,128.5,128.3,128.1$, 128.1, 127.9, 127.8, 127.7, 125.3, 114.3, 86.6 (C1), 79.8 (C3), 76.3 (C2), 76.0 (C4), 75.1 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.1(\mathrm{C} 5), 56.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ PMB), $55.3\left(\mathrm{OCH}_{3}\right)$; ${ }^{13}$ C-GATED ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $86.6\left({ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=168 \mathrm{~Hz}, \mathrm{C} 1\right)$; HRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 701.2829 \mathrm{C}_{41} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 701.2798].

S2.13. 3-aminopropyl (6-C-tetrazol-5-yl)- α / β-D-mannopyranoside 20

S2.13.1. 3-(benzyloxycarbonylamino) propyl (2,3,4-tri-O-benzyl-6-C-(2-para-methoxybenzyl-tetrazol-5-yl)- α / β-D-mannopyranoside

A solution of 18 and $19(290 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0$ equiv.) and 3-(benzyloxycarbonylamino)-1-propanol ($259 \mathrm{mg}, 1.24 \mathrm{mmol}, 3.0$ equiv.) in in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.1$ mL) was stirred over activated MS4Å for 1 h before NIS ($139 \mathrm{mg}, 0.62 \mathrm{mmol}, 1.5$ equiv.) was added. The mixture was cooled to $-40{ }^{\circ} \mathrm{C}$ before $\mathrm{AgOTf}(53 \mathrm{mg}, 0.21 \mathrm{mmol}, 0.5$ equiv.) was added. The reaction was warmed up to $0{ }^{\circ} \mathrm{C}$ and stirred for 3 h . Upon completion, $\mathrm{Et}_{3} \mathrm{~N}$ was added until $\mathrm{pH}=7$, and subsequently diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic layer was washed with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (20 mL), brine (20 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Flash column chromatography, eluting with EtOAc/petroleum (30/70, 40/60 and 50/50) afforded the title
compound as a colourless oil in an anomeric mixture of $\alpha / \beta=1 / 1$ ratio ($110 \mathrm{mg}, 0.14$ $\mathrm{mmol}, 34 \%)$. $\mathrm{Rf}_{\mathrm{f}} 0.66$ (EtOAc/toluene, 3/7); ${ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl_{3}) $7.40-7.22(23 \mathrm{H}$, m, Ar-H), 7.19 - 7.09 ($6 \mathrm{H}, \mathrm{m}$, Ar-H PMB), 6.83 - 6.73 ($4 \mathrm{H}, \mathrm{m}$, Ar-H PMB), 5.65 ($1 \mathrm{H}, \mathrm{d}$, $J=14.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ PMB), $5.60\left(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ PMB), $5.60(1 \mathrm{H}, \mathrm{d}, J=14.6$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ PMB), $5.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph} \mathrm{PMB}\right.$), $5.09(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.92(1 \mathrm{H}$, $\mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}_{5}$ a-anomer), $4.85\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}_{1} \alpha\right.$-anomer), $4.83(1 \mathrm{H}, \mathrm{d}, J=12.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.63\left(2 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.62(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}$, $\mathrm{H}_{5} \beta$-anomer), $4.59\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{1} \beta\right.$-anomer), $4.53\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.49\left(2 \mathrm{H}\right.$, app. $\mathrm{t}, J=9.7 \mathrm{~Hz}, \mathrm{H}_{4} \alpha$ and β-anomer), 4.47 $\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.28\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}_{2} \beta\right.$-anomer), $3.95\left(1 \mathrm{H}, \mathrm{dd}, J=9.4,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right.$ a-anomer), $3.93-3.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz}^{2}\right.$ a-anomer), $3.90-3.79$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}$ a-anomer, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \beta$-anomer), $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \alpha\right.$-anomer), $3.70(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{3} \beta$-anomer), $3.59\left(1 \mathrm{H}\right.$, dd, $J=9.4,2.7 \mathrm{~Hz}, \mathrm{H}_{3} \beta$-anomer), $3.56-3.50(1 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \alpha$-anomer), $3.47-3.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \beta\right.$-anomer), $3.28\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \alpha\right.$ and β-anomer), $1.78(4 \mathrm{H}, \mathrm{dt}, J=12.9,6.9 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \alpha$ and β-anomer); ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 164.5\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole α-anomer), 164.0 (C_{q} tetrazole β-anomer), $160.0\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right.$), 156.4 ($\mathrm{C}=\mathrm{OCBz}$), 138.6 (C_{q}), $138.4\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{q}}\right), 138.2\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.0\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.1, 128.5, 128.5, 128.4, 128.4, 128.1, 128.1, 128.0, 127.7, 127.7, 127.7, 127.6, 127.6, 127.4, 114.3, 102.2 (C1 β-anomer), 98.9 (C1 α-anomer), 81.8 ($\mathrm{C} 3 \beta$-anomer), 79.9 (C3 α-anomer), 77.2 (2 C, C4, α and β-anomer), 75.0 ($\mathrm{C} 2 \alpha$-anomer), $74.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.2$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.2$ ($\mathrm{C} 2 \beta$-anomer), $74.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.5\left(2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 71.7$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $69.8\left(\mathrm{C} 5 \beta\right.$-anomer), $67.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \alpha\right.$-anomer), $66.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.4$ (C 5 a-anomer), $65.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \beta\right.$-anomer), 56.4 (2 C, $\mathrm{CH}_{2} \mathrm{Ph}$ PMB), 55.2 (2 $\left.\mathrm{C}, \mathrm{OCH}_{3}\right)$, $38.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \alpha\right.$-anomer), $38.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \beta\right.$-anomer $)$, $29.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \quad \beta\right.$-anomer $)$, $29.5 \quad\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz} \quad \alpha\right.$-anomer $)$; ${ }^{13}$ C-GATED ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): 102.2 (${ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=156 \mathrm{~Hz}, \mathrm{C} 1 \beta$-anomer); HRMS (ES ${ }^{+}$) m/z [Found: $(\mathrm{M}+\mathrm{H})^{+} 800.3693 \mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 800.3659$].

S2.13.2. 3-aminopropyl (6-C-tetrazol-5-yl)- α / β-D-mannopyranoside 20

3-(benzyloxycarbonylamino) propyl (2,3,4-tri-O-benzyl-6-C-(2-para-methoxybenzyl-tetrazol-5-yl)- α / β-D-mannopyranoside ($30 \mathrm{mg}, 38 \mu \mathrm{~mol}, 1.0$ equiv.) was dissolved in a mixture of EtOH/THF ($0.6 \mathrm{~mL}, 1.5 / 1 \mathrm{v} / \mathrm{v}$), after which Pd/C (10\%) (20 mg , $19 \mu \mathrm{~mol}, 0.5$ equiv.), $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%)(13 \mathrm{mg}, 19 \mu \mathrm{~mol}, 0.5$ equiv.) and $0.1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ ($380 \mu \mathrm{~L}, 38 \mu \mathrm{~mol}, 1.0$ equiv.) were added. The mixture was stirred for 56 h under an atmosphere of hydrogen (1 atm, balloon) at room temperature. TLC analysis (hexane/EtOAc, 1/2) showed complete conversion of starting material to a lower R_{f} spot.

The reaction mixture was filtered through Celite ${ }^{\circledR}$, followed by solvent removal in vacuo to give white powder 20 in an anomeric mixture of $\alpha / \beta=3 / 1(11 \mathrm{mg}, 36 \mu \mathrm{~mol}, 96 \%)$. R_{f} $0.27\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}, 1 / 2\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) \delta 4.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1} \alpha\right.$-anomer), $4.82(1 \mathrm{H}$, $\mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}_{5}$), $4.74\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1} \beta\right.$-anomer), $4.61\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}_{5} \beta\right.$-anomer), 4.15 (1 H, app. t, J = $9.9 \mathrm{~Hz}, \mathrm{H}_{4} \alpha$-anomer), 4.08 (app. t, $J=9.9 \mathrm{~Hz}, \mathrm{H}_{4} \beta$-anomer), 4.03 ($1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{H}_{2} \beta$-anomer), $4.01-3.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \alpha\right.$-anomer), $3.87(1 \mathrm{H}, \mathrm{dd}, J=$ $9.8,3.4 \mathrm{~Hz}, \mathrm{H}_{3} \alpha$-anomer), $3.84-3.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \alpha\right.$ and β-anomer), $3.73\left(1 \mathrm{H}, \mathrm{dd}, J=9.8,3.2 \mathrm{~Hz}, \mathrm{H}_{3} \beta\right.$-anomer), $3.56(2 \mathrm{H}$, ddd, $J=17.3,9.7,4.5 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl} \alpha$ and β-anomer), $3.17-3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl}\right.$ α-anomer), 3.02 (2 H , td, $J=12.6,7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \beta$-anomer), 1.99 (2 H , dq, $J=13.6,6.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \alpha$-anomer), $1.91-1.82(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \beta$-anomer); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $\delta 160.1$ (2 C, C_{q} tetrazole), 100.6 (C1 β-anomer), 100.5 (C1 α-anomer), 72.7 (C3 β-anomer), 70.5 (C3 α-anomer), 70.5 ($\mathrm{C} 2 \beta$-anomer), 70.2 ($\mathrm{C} 5 \beta$-anomer), 70.0 ($\mathrm{C} 2 \alpha$-anomer), 69.6 ($\mathrm{C} 4 \beta$-anomer), 69.5 (C4 a-anomer), $67.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \beta\right.$-anomer), 66.6 ($\mathrm{C} 5 \alpha$-anomer), 65.3 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \quad \alpha\right.$-anomer), $37.6 \quad\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \quad \beta\right.$-anomer $), \quad 37.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \quad \alpha\right.$-anomer), $26.7 \quad\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} . \mathrm{Cl} \quad \alpha\right.$-anomer $)$, 26.6 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right.$. $\mathrm{Cl} \beta$-anomer); ${ }^{13} \mathrm{C}$-GATED ($101 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$): $100.5\left({ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}=172 \mathrm{~Hz}\right.$, C 1 a-anomer); HRMS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 276.1309 \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 276.1308].

S2.14. (6-C-tetrazol-5-yl)- α-D-mannopyranoside 1-phosphate (bis-ammonium salt) 21

S2.14.1. Fully protected C-6 tetrazole 1-phosphates

A mixture of 18 and 19 ($730 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.0$ equiv.) was stirred with activated MS4 \AA for 1 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). Dibenzyl phosphate ($580 \mathrm{mg}, 2.08 \mathrm{mmol}, 2.0$ equiv.) was added, and the solution was stirred for further 30 min . before being cooled down to -30 ${ }^{\circ} \mathrm{C}$. NIS ($350 \mathrm{mg}, 1.56 \mathrm{mmol}, 1.5$ equiv.) and AgOTf ($133 \mathrm{mg}, 0.52 \mathrm{mmol}, 0.5$ equiv.) were added successively and the reaction mixture was stirred for further 3.5 h , allowing the temperature to reach $0{ }^{\circ} \mathrm{C}$. When TLC analysis indicated conversion to a lower R_{f} value, the reaction was quenched by the addition of $E t_{3} \mathrm{~N}(1.4 \mathrm{~mL}, \mathrm{~d}=0.726,10.4 \mathrm{mmol}, 10.0$ equiv.) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic layer was washed with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (30 mL), brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Flash column chromatography, eluting with EtOAc/toluene ($5 / 95,10 / 90$ and $30 / 70$) afforded the protected 1-phosphate regiosiomeric mixture as a colourless oil in a $50 / 50$ ratio ($650 \mathrm{mg}, 0.75 \mathrm{mmol}, 72 \%$). $\mathrm{R}_{\mathrm{f}} 0.66$ (EtOAc/toluene, $3 / 7$); ${ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl_{3}) $\delta 7.38-7.27(35 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$ PMB), 7.07 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, Ar-H PMB), 6.93 ($2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, Ar-H), 6.82 (2 H, d, $J=6.5 \mathrm{~Hz}$, Ar-H), $6.75(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$ PMB), $6.65(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$ PMB), 5.76 (1 H , dd, $J=6.3,1.8 \mathrm{~Hz}, \mathrm{H}_{1} \mathrm{~N}_{2}$-isomer), 5.69 ($1 \mathrm{H}, \mathrm{dd}, J=6.3,2.1 \mathrm{~Hz}, \mathrm{H}_{1}$ N ${ }_{1}$-isomer), $5.65\left(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph} \mathrm{PMB}\right), 5.61\left(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$

PMB), 5.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ PMB), 5.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ PMB), $5.15\left(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}_{5} \mathrm{~N}_{1}\right.$-isomer or N_{2}-isomer), $5.12\left(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}_{5}\right.$ $\mathrm{N}_{1 \text {-isomer or }} \mathrm{N}_{2}$-isomer), 5.04 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}$), 4.96 (2 H, d, J = 8.3 $\left.\mathrm{Hz}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.95\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$, $\left.\mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.69\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64(1 \mathrm{H}, \mathrm{d}, J=$ $\left.10.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.54\left(2 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(1 \mathrm{H}\right.$, app. $\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}_{4} \mathrm{~N}_{2}$-isomer), $4.49(1 \mathrm{H}$, d, $J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.39\left(1 \mathrm{H}\right.$, app. t, $J=9.8 \mathrm{~Hz}, \mathrm{H}_{4} \mathrm{~N}_{1 \text {-isomer }}$), $4.29(1 \mathrm{H}, \mathrm{d}, J=10.6$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), $3.89\left(1 \mathrm{H}\right.$, dd, $J=9.6,3.2 \mathrm{~Hz}, \mathrm{H}_{3}$ N_{2}-isomer), 3.86 (1 H, dd, $J=9.6,3.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{~N}_{1 \text {-isomer), }} .78(1 \mathrm{H}, \mathrm{dd}, J=4.8,2.2 \mathrm{~Hz}$, $\mathrm{H}_{2} \mathrm{~N}_{2}$-isomer), $3.74-3.72$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{~N}_{1}$-isomer), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.70(3 \mathrm{H}, \mathrm{s}$, OCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 163.8\left(\mathrm{C}_{\mathrm{q}}\right.$ tetrazole N_{2}-isomer), $160.0\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right.$), $159.7\left(\mathrm{C}_{\mathrm{q}} \mathrm{PMB}\right)$, 151.5 (C_{q} tetrazole N_{1}-isomer), $138.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{C}_{\mathrm{q}}\right), 137.7$ $\left(\mathrm{C}_{\mathrm{q}}\right), 137.4\left(\mathrm{C}_{\mathrm{q}}\right), 137.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.6\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{OP}(\mathrm{O}) \mathrm{OBn}\right), 135.5\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ OP(O)OBn), 135.2 (d, $\left.J=6.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \mathrm{OP}(\mathrm{O}) \mathrm{OBn}\right), 135.1$ (d, J=6.4 Hz, Cq OP(O)OBn), $130.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.6\left(\mathrm{C}_{\mathrm{q}}\right), 128.9,128.7,128.7,128.6,128.6,128.6,128.5,128.4,128.4$, 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.0, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.7, 127.6, 127.6, 127.4, 125.8, 125.2, 114.3, 114.2, 96.2 (d, J=6.1 Hz, C1 N ${ }_{2}$-isomer), 96.1 (d, J = 6.1 Hz, C1 N 1 -isomer), 78.6 (C3 N N_{1}-isomer or N_{2}-isomer), 78.4 (C3 N_{1}-isomer or N_{2}-isomer), 76.4 ($\mathrm{C} 4 \mathrm{~N}_{2}$-isomer), 75.1 (2 C, $\mathrm{CH}_{2} \mathrm{Ph}$), 76.0 ($\mathrm{C} 4 \mathrm{~N}_{1}$-isomer), 74.5 (d, $\mathrm{J}=$ $9.6 \mathrm{~Hz}, \mathrm{C} 2 \mathrm{~N}_{1 \text {-isomer), }} 74.3\left(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, \mathrm{C} 2 \mathrm{~N}_{2}\right.$-isomer), $73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $72.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.1\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}, 70.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}\right.$, $\mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}$), $69.7\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right)$, $69.6(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $\mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}$), 67.9 ($\mathrm{C} 5 \mathrm{~N}_{2}$-isomer), 66.5 ($\mathrm{C} 5 \mathrm{~N}_{1 \text {-isomer), }} 56.5$ ($\mathrm{CH}_{2} \mathrm{Ph}$ PMB), 55.2 (2 $\left.\mathrm{C}, \mathrm{OCH}_{3}\right), 50.4\left(\mathrm{CH}_{2} \mathrm{Ph} \mathrm{PMB}\right) ;{ }^{31} \mathrm{P}$ NMR $\delta_{\mathrm{p}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-2.88$ (s), -2.79 (s); HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ [Found: $(\mathrm{M}+\mathrm{H})^{+} 869.3370 \mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 869.3315].

S2.14.2. (6-C-tetrazol-5-yl)- α-D-mannopyranoside 1-phosphate (bis-ammonium salt) 21

A suspension of the protected 1-phosphate regiosiomeric mixture ($190 \mathrm{mg}, 0.22$ $\mathrm{mmol}, 1.0$ equiv.), $10 \% \mathrm{Pd} / \mathrm{C}\left(140 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.6\right.$ equiv.), $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(92 \mathrm{mg}$, $0.13 \mathrm{mmol}, 0.6$ equiv.) and 5% aq. $\mathrm{NaHCO}_{3}(739 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 2.0$ equiv.) in a mixture of EtOH/THF ($4.4 \mathrm{~mL}, 1.5 / 1 \mathrm{v} / \mathrm{v}$) was stirred under an atmosphere of hydrogen (1 atm , balloon) at room temperature for 24 h . TLC analysis (hexane/EtOAc, 1/2) showed complete conversion of starting material to a lower R_{f} spot. The reaction mixture was filtered through Celite ${ }^{\circledR}$, followed by solvent removal in vacuo. Purification via strong anion exchange chromatography was conducted manually using a Bio-Scale ${ }^{\text {TM }}$ Mini UNOsphere ${ }^{T M}$ Q (strong anion exchange) cartridge) and lyophilisation afforded 21 as a white powder ($53 \mathrm{mg}, 0.16 \mathrm{mmol}, 72 \%$). $\mathrm{R}_{\mathrm{f}} 0.42\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}, 1 / 2\right) ;[\alpha]_{D}^{22}-3.0\left(c .1 .0, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) \delta 5.41\left(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.08(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}$,
$\left.\mathrm{H}_{5}\right), 4.05\left(1 \mathrm{H}\right.$, app. t, $\left.\mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.02-3.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $\delta 160.8$ (Cqutrazole), 96.1 (C1), 70.5 (C2), 69.7 (C3), 69.4 (C4), 67.1 (C5); ${ }^{31}$ P NMR δ p ($162 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) -2.15 (s); HRMS (ES-) m/z [Found: (M-H)- 297.0236 $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}$ requires (M-H)-, 297.0233].

S3. HMBC spectrum for N_{1}-protected tetrazole 11

S4. References

(1) Dimitriou, E.; Miller, G. J. Org. Biomol. Chem. 2019, 17, 9321-9335.
(2) Ahmadipour, S.; Pergolizzi, G.; Rejzek, M.; Field, R. A.; Miller, G. J. Org. Lett. 2019, 21, 4415-4419.

S5. Spectral Data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and HSQC NMR for compounds 2-5, 7-14, 16-18 and 20-21

3-propionitrile (phenyl 2,3-di-O-benzyl-1-thio- $\alpha-$ D-mannopyranoside) amide 2

Elimination by-product 3

3-propionitrile (phenyl 4-O-tert-butyl dimethylsilyl 2,3-di-O-benzyl-1-thio- $\alpha-D-$ mannopyranoside) amide 4

Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethyIsilyl-6-C-(1H-tetrazol-5-yl)-1-thio- α -D-mannopyranoside 5

Phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio-a-D-mannopyranoside

Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-O-benzoyl-1-thio- $\alpha-D-$ mannopyranoside

Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-1-thio- α-D-mannopyranoside 7

C6 aldehyde thioglycoside intermediate

C6 oxime thioglycoside 8

C6 nitrile thioglycoside 9

4-Position deprotected by-product 10

Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethyIsilyl-6-C-(1-para-methoxybenzyl -tetrazol-5-yl)-1-thio- α-D-mannopyranoside 11

Coupled HSQC

HMBC

Phenyl 2,3-di-O-benzyl-4-O-tert-butyI dimethylsilyl-6-C-(2-para-methoxybenzyl-tetrazol-5-yl)-1-thio- α-D-mannopyranoside 12

Coupled HSQC

HMBC

Phenyl 2,3-di-O-benzyl-4-O-tert-butyl dimethylsilyl-6-C-(1H-tetrazol-5-yl)-1-thio- α -D-mannopyranoside triethylammonium salt

Bn protected C6-tetrazole thioglycosides 13 and 14

Coupled HSQC

HMBC

C-6 Aldehyde thioglycoside intermediate

C-6 Oxime thioglycoside intermediate

C-6 nitrile thioglycoside 16

Phenyl 2,3,4-tri-O-benzyl-6-C-(1H-tetrazol-5-yl)-1-thio- α-d-mannopyranoside 17

Phenyl 2,3,4-tri-O-benzyl-6-C-(1-para-methoxybenzyl -tetrazol-5-yl)-1-thio- α-dmannopyranoside 18

Coupled HSQC of \mathbf{N}_{1}-isomer

Coupled HSQC of \mathbf{N}_{2}-isomer

HMBC of both isomers

3-(benzyloxycarbonylamino) propyl (2,3,4-tri-O-benzyl-6-C-(2-para-methoxybenzyl -tetrazol-5-yl)- α / β-D-mannopyranoside

Coupled HSQC (showing only β-anomer ${ }^{1} \mathrm{~J}_{\mathrm{C} 1-\mathrm{H} 1}$ coupling)

3-aminopropyl (6-C-tetrazol-5-yl)- α / β-D-mannopyranoside 20

Coupled HSQC

Fully protected C6-tetrazole 1-phosphates

${ }^{31} \mathrm{P}$ NMR

(6-C-tetrazol-5-yl)-1-phosphate- α-D-mannopyranoside 21

${ }^{31} \mathrm{P}$ NMR

