1. Asymmetric *O*-Acylation Reactions:

General procedure for the screening of different acyl-transfer reagents 4:

Racemic 4-hydroxy[2.2]paracyclophane (**2**, 0.1 mmol) and catalyst **ITU 2** (10 mol%) were dissolved in dry toluene (1.5 mL) in a Schlenkflask under argon, before adding Hünig's base (diisopropylethylamine, DIPEA; 0.06 mmol) as a solution in toluene (0.15 mL). This solution was then cooled to -40°C and a solution of acylating agent **4** (0.6 mmol) in 0.15 mL toluene was added (resulting in a concentration of 0.055 M with respect to **2**) and the mixture stirred for 4 h. The reaction was quenched with MeOH in the cold and allowed to reach room temperature. The crude product was filtered over Na₂SO₄ and the solvents removed in vacuum, before the desired product was purified by column chromatography.

Analytical data for other O-acylated paracyclophanes 3

3b: Following the general procedure using anhydride **4d**, a conversion of 45% of *rac*-**2** was achieved.

Ester **3b** was obtained as a white solid after silica gel column chromatography using heptanes/ethyl acetate (10:1); *e.r.* = 68:32 (s = 2.5); TLC (heptanes/ethyl acetate = 10/1): $R_f = 0.21$ (UV). Analytical data are in accordance with those reported in literature¹. $[\alpha]_D^{22} = 14.1$ (c 0.62, CH₂Cl₂, *e.r.* = 68:32); **m.p.** = 125-130°C; ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 6.91 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.56 - 6.43 (m, 5H), 6.01 (d, *J* = 1.7 Hz, 1H), 3.20 - 2.96 (m, 7H), 2.76 - 2.67 (m, 1H), 2.34 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm

= 169.0 (1C, C=O), 149.0 (1C, C_{Ar}), 141.7 (1C, C_{Ar}), 139.6 (1C, C_{Ar}), 139.3 (1C, C_{Ar}), 135.4 (1C, C_{Ar}), 133.5 (1C, C_{Ar}) 133.0 (1C, C_{Ar}), 132.3 (1C, C_{Ar}), 131.2 (1C, C_{Ar}), 130.4 (1C, C_{Ar}), 129.6 (1C, C_{Ar}), 128.0 (1C, C_{Ar}), 35.4 (1C, -CH₂), 35.0 (1C, -CH₂), 34.4 (1C, -CH₂), 31.8 (1C, -CH₂), 21.3 (1C, -CH₃); **HRMS** (ESI) m/z: calculated for [C₁₈H₁₈O₂ + H] ⁺: 267.1380; found: 267.1389, **HPLC**: YMC Chiral ART Cellulose-SB, *n*-hexane/*i*-PrOH 3:1, 1 mL/min, 10 °C; t_{R} = 9.2 min [minor], 11.1 min [major].

3c: Following the general procedure using 4e, a conversion of 38% of rac-2 was achieved. Ester 3c was

obtained as a white solid after silica gel column chromatography using heptanes/ethyl acetate (10:1); *e.r.* = 77:23 (s = 4.5); TLC (heptanes/ethyl acetate = 10/1): R_f = 0.27 (UV). $[\alpha]_D^{22}$ = 12.5 (c 0.75, CH₂Cl₂, *e.r.* = 77:23); **m.p.** = 68-70°C; ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 6.91 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.55 - 6.42 (m, 5H), 6.01 (d, *J* = 1.7 Hz, 1H), 3.17 - 2.96 (m, 7H), 2.74 - 2.67 (m, 2H), 2.64 (q, 1H, *J* = 7.5 Hz) 1.35 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR

(75 MHz, CDCl₃, 298.0 K): δ / ppm = 172.3 (1C, C=O), 149.0 (1C, C_{Ar}), 141.7 (1C, C_{Ar}), 139.6 (1C, C_{Ar}), 139.3 (1C, C_{Ar}), 135.4 (1C, C_{Ar}), 133.5 (1C, C_{Ar}), 133.0 (1C, C_{Ar}), 132.4 (1C, C_{Ar}), 131.1 (1C, C_{Ar}), 130.2 (1C, C_{Ar}), 129.6 (1C, C_{Ar}), 128.1 (1C, C_{Ar}), 35.4 (1C, -CH₂), 35.0 (1C, -CH₂), 34.4 (1C, -CH₂), 31.8 (1C, -CH₂), 28.1 (1C, -CH₂), 9.5 (1C, -CH₂); **HRMS** (ESI) *m/z*: calculated for [C₁₉H₂₀O₂ + H] ⁺: 281.1536; found: 281.1541, **HPLC**: YMC Chiral ART Cellulose-SB, *n*-hexane/*i*-PrOH 3:1, 1 mL/min, 10 °C; *t*_R = 8.7 min [minor], 10.4 min [major].

¹ a) Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti, O.; Pizzo, F. *J. Org. Chem.* **1997**, *62*, 3744-3747; b) Rozenberg, V.; Danilova, T.; Sergeeva, E.; Vorontsov, E.; Starikova, Z.; Lysenko, K.; Belokon, Y. *Eur. J. Org. Chem.* **2000**, 3295–3303; c) Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti, O.; Scappini, A. M.; Ruzziconi, R. *Tetrahedron* **1997**, *53*, 11853–11858.

3d: Following the general procedure, a conversion of 30 % of rac-2 was achieved. Ester 3d was obtained

as a white solid after silica gel column chromatography using heptanes/ethyl acetate (10:1). *rac*; TLC (heptanes/ethyl acetate = 10/1): R_f = 0.30 (UV). **m.p.** = 135-139°C; ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.32-8.27 (m, 2H), 7.71-7.66 (m, 1H), 7.61-7.56(m, 2H), 7.04 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.58 - 6.45 (m, 5H), 6.16 (d, *J* = 1.7 Hz, 1H), 3.28 - 3.18 (m, 1H), 3.15 - 2.97 (m, 6H), 2.79 - 2.69 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 164.5 (1C, C=O), 149.2 (1C, C_{Ar}), 141.9 (1C, C_{Ar}), 139.7 (1C, C_{Ar}), 139.4 (1C, C_{Ar}),

135.5 (1C, C_{Ar}), 133.7 (1C, C_{Ar}), 133.6 (1C, C_{Ar}), 133.2 (1C, C_{Ar}), 132.4 (1C, C_{Ar}), 131.3 (1C, C_{Ar}), 130.3 (1C, C_{Ar}), 130.2 (2C, C_{Ar}), 130.0 (1C, C_{Ar}), 129.7 (1C, C_{Ar}), 128.9 (2C, C_{Ar}), 128.3 (1C, C_{Ar}), 35.4 (1C, $-CH_2$), 35.0 (1C, $-CH_2$), 34.7 (1C, $-CH_2$), 32.0 (1C, $-CH_2$); **MS** (ESI) *m/z*: calculated for [C₂₃H₂₀O₂ + H]⁺: 329.1536; found: 329.1531, **HPLC**: YMC Chiral ART Cellulose-SB, *n*-hexane/*i*-PrOH 3:1, 1 mL/min, 10 °C; *t*_R = 9.0, 9.7 min;

2. NMR spectra of products 3

NMR-spectra of 3a

3. HPLC Chromatograms

HPLC chromatogram of (rac)-2:

HPLC chromatogram of enantioenriched 2:

HPLC chromatogram of (*rac*)-**3a**:

HPLC chromatogram of enantioenriched 3a:

HPLC chromatogram of (rac)-3b:

HPLC chromatogram of enantioenriched **3b**:

HPLC chromatogram of (rac)-3c:

HPLC chromatogram of enantioenriched **3c**:

HPLC chromatogram of (rac)-3d:

