1. Asymmetric \mathbf{O}-Acylation Reactions:

General procedure for the screening of different acyl-transfer reagents 4:

Racemic 4-hydroxy[2.2]paracyclophane ($\mathbf{2}, \mathbf{0 . 1} \mathbf{~ m m o l}$) and catalyst ITU $\mathbf{2}$ ($10 \mathrm{~mol} \%$) were dissolved in dry toluene (1.5 mL) in a Schlenkflask under argon, before adding Hünig's base (diisopropylethylamine, DIPEA; 0.06 mmol) as a solution in toluene (0.15 mL). This solution was then cooled to $-40^{\circ} \mathrm{C}$ and a solution of acylating agent 4 (0.6 mmol) in 0.15 mL toluene was added (resulting in a concentration of 0.055 M with respect to 2) and the mixture stirred for 4 h . The reaction was quenched with MeOH in the cold and allowed to reach room temperature. The crude product was filtered over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents removed in vacuum, before the desired product was purified by column chromatography.

Analytical data for other O-acylated paracyclophanes 3

3b: Following the general procedure using anhydride 4d, a conversion of 45% of rac-2 was achieved.

3b Ester 3b was obtained as a white solid after silica gel column chromatography using heptanes/ethyl acetate (10:1); e.r. = 68:32 ($s=2.5$); TLC (heptanes/ethyl acetate $=10 / 1$): $\boldsymbol{R}_{f}=0.21$ (UV). Analytical data are in accordance with those reported in literature ${ }^{1}$. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{22}=$ 14.1 (c $0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, e.r. $=68: 32$); m.p. $=125-130^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298.0 \mathrm{~K}\right)$: $\delta / \mathrm{ppm}=6.91(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.43(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-$ $2.96(\mathrm{~m}, 7 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298.0 \mathrm{~K}\right): \delta / \mathrm{ppm}$
 $\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right) 133.0\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 131.2\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 130.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 128.0\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right)$, 35.4 (1C, $-\mathrm{CH}_{2}$), 35.0 (1C, $-\mathrm{CH}_{2}$), 34.4 (1C, -CH 2), $31.8(1 \mathrm{C},-\mathrm{CH} 2), 21.3$ (1C, $-\mathrm{CH}_{3}$); HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$: 267.1380; found: 267.1389, HPLC: YMC Chiral ART Cellulose-SB, n-hexane/i-PrOH 3:1, $1 \mathrm{~mL} / \mathrm{min}, 10^{\circ} \mathrm{C} ; t_{\mathrm{R}}=9.2 \mathrm{~min}$ [minor], 11.1 min [major].

3c: Following the general procedure using $\mathbf{4 e}$, a conversion of 38% of rac-2 was achieved. Ester 3c was

3c obtained as a white solid after silica gel column chromatography using heptanes/ethyl acetate (10:1); e.r. $=77: 23(s=4.5) ;$ TLC (heptanes/ethyl acetate $=10 / 1$): $\boldsymbol{R}_{f}=0.27$ (UV). $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{22}=12.5\left(\mathrm{c} 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, e.r. $=77: 23$); m.p. $=68-70^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298.0\right.$ $K): \delta / \mathrm{ppm}=6.91(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.42(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ - $2.96(\mathrm{~m}, 7 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{q}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) 1.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298.0 \mathrm{~K}$): $\delta / \mathrm{ppm}=172.3(1 \mathrm{C}, \mathrm{C}=0)$, 149.0 ($1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}$), 141.7 (1C, C_{Ar}), 139.6 $\left(1 C, C_{A r}\right), 139.3\left(1 C, C_{A r}\right), 135.4\left(1 C, C_{A r}\right), 133.5\left(1 C, C_{A r}\right), 133.0\left(1 C, C_{A r}\right), 132.4\left(1 C, C_{A r}\right), 131.1\left(1 C, C_{A r}\right)$, $130.2\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 128.1\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 35.4\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 35.0\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 34.4\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 31.8(1 \mathrm{C}$, $-\mathrm{CH}_{2}$), $28.1\left(1 \mathrm{C},-\mathrm{CH}_{2}\right)$, $9.5\left(1 \mathrm{C},-\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z : calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{H}\right]{ }^{+}$: 281.1536; found: 281.1541, HPLC: YMC Chiral ART Cellulose-SB, n-hexane $/ i-\operatorname{PrOH} 3: 1,1 \mathrm{~mL} / \mathrm{min}, 10^{\circ} \mathrm{C} ; t_{R}=8.7 \mathrm{~min}$ [minor], 10.4 min [major].

[^0]3d: Following the general procedure, a conversion of 30% of rac- 2 was achieved. Ester 3d was obtained

3d as a white solid after silica gel column chromatography using heptanes/ethyl acetate (10:1). rac; TLC (heptanes/ethyl acetate $=10 / 1$): $\boldsymbol{R}_{f}=0.30$ (UV). m.p. $=135-139^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298.0 \mathrm{~K}$): $\delta / \mathrm{ppm}=8.32-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H})$, 7.61$7.56(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.45(\mathrm{~m}, 5 \mathrm{H}), 6.16(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ - $3.18(\mathrm{~m}, 1 \mathrm{H}), 3.15-2.97(\mathrm{~m}, 6 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298.0 \mathrm{~K}\right)$: $\delta / \mathrm{ppm}=164.5(1 \mathrm{C}, \mathrm{C}=0), 149.2\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 141.9\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 139.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 139.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right)$, $135.5\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.6\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 131.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 130.3(1 \mathrm{C}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 130.2\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 130.0\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 129.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 128.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 128.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 35.4\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 35.0$ (1C, $-\mathrm{CH}_{2}$), $34.7\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 32.0\left(1 \mathrm{C},-\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 329.1536$; found: 329.1531 , HPLC: YMC Chiral ART Cellulose-SB, n-hexane/i-PrOH 3:1, $1 \mathrm{~mL} / \mathrm{min}, 10^{\circ} \mathrm{C} ; t_{R}=9.0,9.7 \mathrm{~min}$;

2. NMR spectra of products 3

NMR-spectra of 3a

NMR-spectra of 3c

3c

3. HPLC Chromatograms

HPLC chromatogram of (rac)-2:

HPLC chromatogram of enantioenriched 2:

HPLC chromatogram of (rac)-3a:

HPLC chromatogram of enantioenriched 3a:

Chromatogram

HPLC chromatogram of (rac)-3b:

HPLC chromatogram of enantioenriched 3b:

HPLC chromatogram of (rac)-3c:

HPLC chromatogram of enantioenriched 3c:

HPLC chromatogram of (rac)-3d:

[^0]: ${ }^{1}$ a) Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti, O.; Pizzo, F. J. Org. Chem. 1997, 62, 3744-3747; b) Rozenberg, V.; Danilova, T.; Sergeeva, E.; Vorontsov, E.; Starikova, Z.; Lysenko, K.; Belokon, Y. Eur. J. Org. Chem. 2000, 3295-3303; c) Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti, O.; Scappini, A. M.; Ruzziconi, R. Tetrahedron 1997, 53, 11853-11858.

