Supporting Information for

Effect of Different Silica Coatings on the Toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

Cynthia Kembuan,¹ Helena Oliveira,² and Christina Graf*³

Address: ¹Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany, ²University of Aveiro, Department of Biology & CESAM, Pt-3810-193 Aveiro, Portugal, and ³Hochschule Darmstadt - University of Applied Sciences, Fachbereich Chemie- und Biotechnologie, Stephanstr. 7, D-64295 Darmstadt, Germany

Email: Christina Graf - christina.graf@h-da.de

* Corresponding author

Supporting Information:

X-ray diffraction (XRD)

For XRD measurements, a minimum amount of 10 mg dried samples were used. The XRD device was a STOE Stadi P from STOE. A Cu $K_{\alpha 1}$ radiation source with a radiation wavelength of 0.15405 nm was used. The measurement angle was between 10-90° and with a measurement time of 120 s/0.2°.

Measurements of the upconversion luminescence

The upconversion luminescence (UCL) was measured at 25°C with a *FluoroMax-4* spectrometer from *Horiba Jobin Yvon* equipped with a 2 W 980 nm laser diode from *Insaneware-Robert Nowak*. The concentration of the samples was 1-2 g/L in cyclohexane for oleate-capped UCNP or ethanol for silica-coated UCNP, and quartz glass cuvettes (*QS Suprasil*, 5 mm, *Hellma* or *VWR*) were used.

Inductively coupled plasma-optical emission spectroscopy (ICP-

OES)

The elemental composition of the UCNP cores was determined by ICP-OES. For this purpose, 1 mL (c = 5 g/L) of their dispersion in cyclohexane was dried. The dried UCNP were subsequently dissolved in 1 mL of aqua regia for 30 minutes and diluted with 5 mL of ultrapure water. The measurements were performed with an iCAP 6000 Series ICP Spectrometer from Thermo Scientific with a radial optical approach. For calibration, series of solutions with different concentrations were prepared separately from an erbium standard for ICP (c(Er³⁺) = 1, 5, 10 ppm).), ytterbium standard for ICP (c(Yb³⁺) = 10, 20, 40 ppm), and an yttrium standard for ICP (c(Y³⁺) = 10, 20 and 40 ppm.

X-ray diffraction measurements

The XRD diffractogram (Figure S1) shows a predominantly hexagonal crystal structure for example at 18°, 29°, 44° and 54° (ICDD no. 28-1192), with two minor peaks from the α -phase at 47° for [220] reflex and 55° for [311] reflex (ICDD no. 06-0334; see Figure S1).

Figure S1: XRD diffractogram of the NaYF₄: Yb, Er cores (red lines: hexagonal phase peaks (ICDD no. 28-1192); blue lines: cubic phase peaks (ICDD no. 06-0334).

Figure S2: Upconversion luminescence spectra of UC@thin_NH₂ ($r_{SiO2} = 8\pm 2$ nm) and UC@thick_NH₂ ($r_{SiO2} = 21\pm 2$ nm) in ethanol. The cores of both particles are NaYF₄: 18 % Yb, 2 % Er nanoparticles. The spectra are normalized at 655 nm for better comparison. The excitation power density was 2 W/cm² at 980 nm.

Figure S3: STEM images of A: UC@thin_NH₂ ($r_{SiO2} = 8\pm 2$ nm); B: UC@thick_NH₂ ($r_{SiO2} = 21\pm 2$ nm; C: UC@thin_RBITC_NH₂ ($r_{SiO2} = 9\pm 2$ nm); D: UC@thick_RBITC_NH₂ ($r_{SiO2} = 22\pm 2$ nm) and E: functionalized SiO₂-nanoparticles SiO₂@RBITC_NH₂ (average STEM-diameter = 52±3 nm). The cores of all particles are NaYF₄: 18 % Yb, 2 % Er nanoparticles

Table S1: Filtered lanthanide ions value from the corresponding chlorides obtainedfrom ICP-OES measurement.

Initial ions	Y		Yb		Er	
concentration						
Concentration	Concentration	lons	Concentration	lons	Concentration	lons
[ppm]	[mmol/L]	filtered	[mmol/L]	filtered	[mmol/L]	filtered
		[%]		[%]		[%]
1	[4.30±0.05]·10 ⁻³	38±3	[1.00±0.01]·10 ⁻³	17±2	[3.32±0.05]·10 ⁻⁴	6.0±0.6
2	[1.00±0.01]·10 ⁻²	45±4	[2.40 ±0.01]·10 ⁻³	21±2	[7.48±0.05]·10 ⁻⁴	6.4±0.6

Figure S4: Effect of silica particles without a UCNP core (NP@SiO₂-RBITC-NH₂) on the cell cycle dynamics of RAW 264.7 macrophages after 24 h of exposure. The concentration was 200 μ g/mL.