Supporting Information (file 1)

Menthyl esterification allows chiral resolution for synthesis of artificial glutamate analogs

Kenji Morokuma, ${ }^{1}$ Shuntaro Tsukamoto, ${ }^{1}$ Kei Miyako, ${ }^{2}$ Ryuichi Sakai, ${ }^{2}$ Raku Irie, ${ }^{1}$ Masato Oikawa¹,*

1 Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan

2 Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan

E-mail: moikawa@yokohama-cu.ac.jp

Contents:

```
Synthetic procedures
SI-2 ~ SI-23
References SI-24
```


Synthetic procedures

General methods. All reactions sensitive to air or moisture were carried out in oven-dried glassware under argon atmosphere unless otherwise noted. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Et ${ }_{2} \mathrm{O}$, and THF were purified by Glass Contour Solvent Dispensing System (Nikko Hansen). All other reagents were purchased at the highest commercial grade and used directly, unless otherwise stated.

Analytical thin-layer chromatography (TLC) was performed using Merck silica gel 60 F254 plate (0.25-mm thickness). Flash column chromatography was carried out using Fuji Silysia silica gel BW-300 (200-400 mesh), Kanto Chemical silica gel 60N (40-50 $\mu \mathrm{m}$), or Yamazen silica gel CHIRALFLASH IC or HiFlash (SiOH-30 Premium, $30 \mu \mathrm{~m}, 60$ Å) with automated flash column systems EPCLC-Wprep2XY-10VW (Yamazen Corporation). Reversed-phase silica gel column chromatography was carried out using Fuji Silysia Chromatorex DM1020T (ODS, 100-200 mesh). For high-performance liquid chromatography (HPLC), JASCO LC2000Plus series was used.

Specific rotation ([$\alpha]_{\mathrm{D}}$) was recorded on a JASCO P-1030 polarimeter. IR spectra were recorded on a JASCO FT/IR-400 spectrometer.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BRUKER AVANCE 400 spectrometer or a BRUKER AVANCE III HD 400 spectrometer. Chemical shift values are reported in $\delta(\mathrm{ppm})$ with reference to internal residual residual solvent ${ }^{1}{ }^{1} \mathrm{H}$ NMR, $\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}$ (7.24), $\mathrm{C}_{6} \mathrm{HD}_{5} / \mathrm{C}_{6} \mathrm{D}_{6}$ (7.15), $\mathrm{HDO} / \mathrm{D}_{2} \mathrm{O}$ (4.70), $\mathrm{CHD}_{2} \mathrm{OD} / \mathrm{CD}_{3} \mathrm{OD}(3.30) ;{ }^{13} \mathrm{C} \mathrm{NMR}, ~_{\mathrm{CDCl}}^{3} \mathrm{(77.0}$), $\left.\mathrm{C}_{6} \mathrm{D}_{6}(128.0), \mathrm{D}_{2} \mathrm{O}(-), \mathrm{CD}_{3} \mathrm{OD}(49.0)\right]$. Coupling constants (J) are reported in Hertz (Hz). The following abbreviations are used to designate the multiplicities; $s=$ singlet, $d=$ doublet, $d d=$ double doublet, ddd = double double doublet, dddd = double double double doublet, $t=$ triplet, $q=q u a r t e t, m=m u l t i p l e t, ~ b r=$ broad.

ESI mass spectra were measured with a Q Exactive Focus Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA).

Methyl (4aR,5aS,6S,8aR,8bR)-5a-(2-(((1R,2S,5R)-2-isopropyl-5methylcyclohexyl) oxy) -2-oxoethyl)-7-(4-methoxybenzyl)-8-oxo2,4a,5a, 6, 7, 8, 8a, 8b-octahydropyrano[2', 3':4,5]furo[2,3-c]pyrrole-6carboxylate (9* (2S)) and methyl (4aS,5aR,6R,8aS,8bS)-5a-(2(((1R, 2S,5R)-2-isopropyl-5-methylcyclohexyl) oxy)-2-oxoethyl)-7-(4-methoxybenzyl)-8-oxo-2, 4a,5a, 6, 7, 8, 8a, 8boctahydropyrano[2', 3':4,5]furo[2,3-c]pyrrole-6-carboxylate (9 (2R))

To a stirred solution of racemic carboxylic acid rac-7 [1] (1.40 g, $3.35 \mathrm{mmol})$, $\mathrm{L}-(-)-m e n t h o l(8,629 \mathrm{mg}, 4.03 \mathrm{mmol})$, and 2-methyl-6nitrobenzoic anhydride ($1.27 \mathrm{~g}, 3.69 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28.0 \mathrm{~mL})$ at rt were added $E t_{3} N(1.40 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and $\operatorname{DMAP}(93.0 \mathrm{mg}, 0.761 \mathrm{mmol})$. After stirring for 13 h , to the reaction mixture was added saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ $10 \mathrm{~mL})$. Combined organic layer was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (SiOH -30μ Premium, 45 g, EtOAc/hexane $=33: 67$) to give an inseparable mixture of L-menthyl ester 9* (2S) and 9 (2R) (9*/9 = 50.5:49.5, $1.70 \mathrm{~g}, 91.3 \%$) as a colorless oil. The mixture was further purified by column chromatography on silica gel (CHIRALFLASH IC, 30 g, EtOH/hexane = 65:35) to give L-menthyl ester 9* (2S, less polar, $843 \mathrm{mg}, 45.3 \%$ as a colorless amorphous solid, and L-menthyl ester 9 ($2 R$, more polar, $825 \mathrm{mg}, 44.4 \%$) as a colorless powder. The stereochemical configurations were elucidated later at the stage of 10*/10.

Data for L-menthyl ester 9* (2S) : $t_{\mathrm{R}} 8.5 \mathrm{~min}(4.6 \times 150 \mathrm{~mm}$ CHIRALFLASH IC column, EtOH/hexane $=65: 35,20 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$); $[\alpha]^{24} \mathrm{D}-63.7$ (c $\left.0.765, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{ATR}) 2947,2913,1738,1698,1513,1249,1201$, 1177, 1086, 1049, 1033, 995, 844, 821, 685, $592 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.99$
$(\mathrm{dd}, \mathrm{J}=10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60 (ddd, J $=10.9,10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathcal{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.75(\mathrm{~m}$, $2 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, \mathrm{~J}$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,170.4,169.6,159.2$, 130.1, 129.8 (×2), 127.3, 122.9, 114.1 (×2), 85.4, 78.4, 74.6, 73.5, $68.3,64.0,57.8,55.3,52.4,46.9,45.5,40.7,40.4,34.2,31.3$, $26.1,23.5,22.0,20.7,16.5$; HRMS (ESI, positive) calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{NO}_{8}{ }^{+}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 556.29049$, found 556.29034.

Data for L-menthyl ester $9(2 R)$: $t_{R} 12.6 \mathrm{~min}(4.6 \times 150 \mathrm{~mm}$ CHIRALFLASH IC column, EtOH/hexane $=65: 35,20 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$); $[\alpha]^{24} \mathrm{D}-14.3$ (c $\left.0.600, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{ATR}) 1739,1720,1677,1514,1248,1209,1180$, 1088, 1037, 1001, 984, 965, 813, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{dd}, J=$ $10.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=10.3,2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}$ $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{ddd}, \mathrm{J}=10.9,10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.38(\mathrm{~m}$, $2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=17.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H})$, $4.01(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H})$, $3.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.06-$ $0.75(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.68(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.4$, 169.7, 159.2, 130.3, 129.7 ($\times 2$) , 127.3, 122.8, 114.1 ($\times 2$) , 85.2, $78.4,74.7,73.6,68.3,64.0,57.9,55.3,52.3,46.9,45.4,40.8$, 40.5, $34.2,31.4,26.1,23.4,22.0,20.7,16.3$; HRMS (ESI, positive) calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{NO}_{8}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 556.29049$, found 556.28986.

Methyl (4aS,5aR,6R,8aS,8bS)-5a-(2-(($1 R, 2 S, 5 R)-2-i s o p r o p y 1-5-$ methylcyclohexyl) oxy) -2-oxoethyl)-8-oxo-2,4a,5a, 6, 7, 8, 8a, 8boctahydropyrano[2', $\left.3^{\prime}: 4,5\right]$ furo[2,3-c] pyrrole-6-carboxylate (10 (2R))

To an ice-cooled solution of N-PMB amide $9(2 R, 820 \mathrm{mg}, 1.48 \mathrm{mmol})$ in $\mathrm{MeCN}(13 \mathrm{~mL})$ and water (7 mL) was added ceric ammonium nitrate ($1.63 \mathrm{~g}, 2.97 \mathrm{mmol})$. After stirring at rt for 17 h , the mixture was diluted with EtOAc (30 mL), and washed with water (30 mL) and brine (10 mL). Aqueous layer was extracted with EtOAc (10 mL), and combined organic layer was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (SiOH-30 1 Premium, 34 g , EtOAc/hexane $=75: 25$) to give $10(2 R, 515 \mathrm{mg}, 80 \%)$ as colorless crystals: Mp 183-184 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{24}{ }^{24}-17.2$ (c 0.345, CHCl_{3}); IR (ATR) 3216, 2925, 2870, 1759, 1736, 1703, 1669, 1204, 1193, 1179, 1085, 1040, $1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04(\mathrm{~m}, 1 \mathrm{H}), 5.96$ (ddd, J = 10.3, $2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{ddd}, \mathrm{J}=10.9,10.9,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{~d}, \mathcal{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathcal{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.10$ $(\mathrm{m}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=17.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.75(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,170.4,170.0,130.9,122.3,87.5$, $78.2,74.8,73.3,64.4,64.1,56.9,52.6,46.9,40.8,40.7,34.2$, 31.4, 26.1, 23.4, 22.0, 20.7, 16.3; HRMS (ESI, positive) calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{7}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$436.23298, found 436.23285.

The absolute configuration was determined to be (2R) by the X-ray crystallographic analysis. See the other Supporting Information file for details.

(4aS,5aR, 6R, 8aS, 8bS)-5a-(Carboxymethyl)-8-oxo-2, 4a, 5a, 6, 7, 8, 8a, 8b-octahydropyrano[2',3':4,5]furo[2,3-c]pyrrole-6-carboxylic acid ($(2 R)$-MC-27, 4)

A suspension of diester 10 ($2 R, 102.0 \mathrm{mg}, 0.234 \mathrm{mmol}$) in hydrochloric acid ($6 \mathrm{M}, 2.0 \mathrm{~mL}$) and 1,4-dioxane (1.0 mL) was heated to $75{ }^{\circ} \mathrm{C}$ for 4 days. The mixture was then concentrated under reduced pressure. The residual solid was triturated with Et O (8 mL) to give crude ($2 R$) - MC-27 (4, 61.0 mg) as a white solid. The solid was purified by crystallization from water (5 mL) to give (2R)-MC-27 (4, 31.7 mg, $0.112 \mathrm{mmol}, 48 \%$) as a colorless powder: $[\alpha]^{24}{ }_{\mathrm{D}}+20.1$ (c 0.107 , MeOH); IR (ATR) 3373, 1719, 1705, 1664, 1437, 1418, 1404, 1258, 1223, 1200, 1183, 1112, 1094, 1076, 1059, 1038, 986, 675, $623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 6.13(\mathrm{dd}, \mathrm{J}=10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}$, $1 \mathrm{H}), 4.28-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{d}, \mathrm{J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 175.8,173.5,173.3$, 132.1, 120.3, 87.0, 77.6, 73.1, 66.0, 64.2, 57.3, 40.3; HRMS (ESI, positive) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{7} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 306.05842$, found 306.05855 .

Methyl (4aR,5aS,6S,8aR,8bR)-5a-(2-(($(1 R, 2 S, 5 R)-2-i s o p r o p y l-5-$ methylcyclohexyl) oxy)-2-oxoethyl)-8-oxo-2,4a,5a, 6, 7, 8, 8a, 8boctahydropyrano[2', 3':4,5]furo[2,3-c]pyrrole-6-carboxylate (10* (2S))

To an ice-cooled solution of N-PMB amide 9* ($2 S, 294 \mathrm{mg}, 0.529 \mathrm{mmol}$) in $\operatorname{MeCN}(5 \mathrm{~mL})$ and water $(2.5 \mathrm{~mL})$ was added ceric ammonium nitrate $(577 \mathrm{mg}, 1.05 \mathrm{mmol})$. After stirring at rt for 32 h , the mixture was diluted with EtOAc (20 mL) and water (10 mL). Organic layer was separated and filtered through a pad of silica gel (Chromatorex NHDM2035, Fuji Silysia Chemical Ltd, 5 g, EtOAc/hexane $=60: 40$), and the filtrate was concentrated under reduced pressure. The residual solid was triturated with ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ (4 mL) to give 10* ($2 S, 153 \mathrm{mg}, 66 \%$) as a colorless powder: $\left[\alpha{ }^{20}{ }_{D}-76.6\right.$ ($\left.C 0.610, \mathrm{CHCl}_{3}\right)$; IR (ATR) 3199, 3114, 2958, 2944, 2917, 2864, 2848, 1737, 1712, 1344, 1200, 1179, 1131, 1085, 1056, 1049, 995, 984, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.41(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 4.66$ (td, J$=10.9,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12$ $(\mathrm{m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=16.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.11-0.79(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,170.5,170.0,130.7,122.4,87.7$, $78.3,74.8,73.2,64.4,64.1,56.9,52.7,46.8,40.7,40.6,34.2$, 31.4, 26.1, 23.5, 22.0, 20.7, 16.4; HRMS (ESI, positive) calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$458.2149, found 458.2139.

```
(4aR,5aS,6S,8aR,8bR)-5a-(Carboxymethyl)-8-oxo-2,4a,5a,6,7,8,8a,8b-
octahydropyrano[2',3':4,5]furo[2,3-c]pyrrole-6-carboxylic acid
((2S)-MC-27, 4*)
```


$(-)-(2 S)-$ MC-27 $\left(4^{*}\right)$

A stirred mixture of diester 10* ($2 \mathrm{~S}, 114 \mathrm{mg}, 0.262 \mathrm{mmol}$) in hydrochloric acid ($6 \mathrm{M}, 2 \mathrm{~mL}$) and 1,4-dioxane (1 mL) was heated to $85{ }^{\circ} \mathrm{C}$ for 70 h . The mixture was then concentrated under reduced pressure. The residual solid was triturated with Et ${ }_{2} \mathrm{O}$ (5 mL) to give a pale brown solid (66.5 mg), which was crystallized from water (6 $\mathrm{mL})$ to give (2S)-MC-27 (4*, $46.3 \mathrm{mg}, 0.163 \mathrm{mmol}, 62 \%$ as a pale brown powder: $[\alpha]^{24}$ d -20.9 (c 0.149, MeOH).

The other spectroscopic data were in good agreement with those for 4 (see above).

2,2,2-Trifluoro-N-(pent-4-en-1-yl)acetamide (12)

NTMA
12

To a stirred solution of trifluoroacetamide (6.00 g, 53.1 mmol$)$ in DMF (120 mL) at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride (55\% dispersion in paraffin liquid, $2.54 \mathrm{~g}, 58.4 \mathrm{mmol}$. After stirring at rt for 2 h , to the mixture was added 5 -bromo-1-pentene ($6.92 \mathrm{~mL}, 58.4 \mathrm{mmol}$). After stirring at $50{ }^{\circ} \mathrm{C}$ for 21 h , the mixture was cooled to rt, poured into water (100 mL), and extracted with Et $\mathrm{E}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL}$). Combined extracts were washed with brine (3 $\times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (SiOH-30 1 Premium, 40 g, EtOAc/hexane $=1: 9$) to give N-butenyl TFA amide 12 (6.07 g, 63\%) as a colorless oil: IR (ATR) 3305, 3102, 2941, 1703, 1560, 1444, 1347, 1209, 1183, 994, $917 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{~m}$, $1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dt}, \mathrm{J}=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (dt, J $=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65$ (tt, $J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4(\mathrm{q}, \mathrm{J}=36.7 \mathrm{~Hz}), 137.0,117.3(\mathrm{q}, \mathrm{J}=287.6$ Hz), 115.6, 39.5, 30.7, 27.8; HRMS (ESI, positive) calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NONa}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$204.0607, found 204.0607.
(3R*, 3aR*, 6R*, 7S*, 7aS*) -N-Benzyl-2-(4-methoxybenzyl)-1-oxo-7-(2,2,2-trifluoro-N-(pent-4-en-1-yl) acetamido) -1, 2, 3, 6, 7, 7a-hexahydro-3a,6-epoxyisoindole-3-carboxamide (rac-13)

rac-13

To a stirred solution of N-butenyl TFA amide 12 ($34.2 \mathrm{mg}, 0.189 \mathrm{mmol}$) in DMF (0.47 mL) at rt were added iodide rac-6 ($50.0 \mathrm{mg}, 0.0943 \mathrm{mmol}$) and cesium carbonate ($61.4 \mathrm{mg}, 0.189 \mathrm{mmol}$). After 13 h , the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. Combined extracts were washed with brine (3 $\times 2 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (SiOH30μ Premium, 7 g, EtOAc/hexane $=4: 6$) to give TFA amide rac-13 (28.0 mg, 51\%) as a colorless oil: IR (ATR) 3315, 2935, 1686, 1513, 1350, 1246, 1191, 1144, 1032, 1144, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) δ $7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.01(\mathrm{dd}, \mathcal{J}=13.4,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, \mathcal{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-$ $4.34(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.53(\mathrm{~m}, ~ 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,166.9,159.4$, $157.6(q, J=35.7 \mathrm{~Hz}), 137.1,136.6,135.4,134.2,129.6(\times 2)$, $128.9(x 2), 128.1,127.9(x 2), 126.6,119.1(q, J=287.1 \mathrm{~Hz})$, $116.0,114.3(\times 2), 90.8,80.7,62.8,59.1,55.2,51.7,47.1,45.5$, 44.0, 30.6, 27.5; HRMS (ESI, positive) calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}^{+}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 606.2186$, found 606.2187 .

(E)- and (Z)-2-((6aS*,7aR*,8R*,10aS*,10bS*,Z)-8-(Benzylcarbamoyl)-9- (4-methoxybenzyl)-10-oxo-1-(2,2,2-trifluoroacetyl)-
 1,2,3,4,6a, 8, 9,10,10a,10b-decahydro-7aH-pyrrolo[3', 4':4,5]furo[3,2-b]azocin-7a-yl)vinyl acetate (rac-16)

To a stirred solution of diene rac-13 (5.17 mg, 0.0089 mmol$)$ in benzene (1.26 mL) at $69{ }^{\circ} \mathrm{C}$ were added vinyl acetate (0.00409 mL, 0.0443 mmol) and Zhan Catalyst-1B (14, $0.20 \mathrm{mg}, 0.0003 \mathrm{mmol})$. After 25 h , the mixture was concentrated under reduced pressure. The ruthenium catalyst was removed by passing through a short pad of silica gel (60N, 600 mg , EtOAc/hexane $=3: 7$). The filtrate was concentrated under reduced pressure to give a residue (5.85 mg), which is a mixture mainly composed of triene rac-15.

The residue thus obtained, without purification, was dissolved in benzene (1.26 mL). To the stirred mixture at $69{ }^{\circ} \mathrm{C}$ was added Zhan Catalyst-1B ($0.20 \mathrm{mg}, 0.0003 \mathrm{mmol})$. After 4 h , the mixture was cooled to rt and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (60N, 600 mg , EtOAc/hexane $=5: 5$) to give heterotricycle rac-16 (E/Z $=4 / 1,3.63$ mg, 64\%) as a brown oil: IR (ATR) 3293, 2939, 1761, 1690, 1514, 1439, 1246, 1205, 1178, 1145, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (selected for the transisomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ and 7.40 (two doublets, J =12.7, 12.3 Hz each, 1 H total), $7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{t}, \mathrm{J}=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.60(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 2.05 ($\mathrm{m}, 1 \mathrm{H}$), 1.68-1.44 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (selected for the major rotamer of the trans-isomer, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,167.7,166.6$,
159.5, $156.5(q, J=35.6 \mathrm{~Hz}), 138.8,137.9,137.2,130.1,129.9$, $128.8(\times 2), 128.1(\times 2), 127.8,126.9,122.2,116.6(q, J=287.5$ $\mathrm{Hz}), 114.3(\times 2), 111.9,83.2,79.6,70.7,66.4,58.3,55.3,46.6$, 45.3, 43.8, 25.7, 25.3, 20.6; HRMS (ESI, positive) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 664.2241$, found 664.2239.
(E) - and (Z)-2-((6aS*, 7aR*, 8R*,10aS*,10bS*, Z)-8-(Benzyl (tert-
butoxycarbonyl) carbamoyl) -9- (4-methoxybenzyl)-10-oxo-1-(2,2,2trifluoroacetyl) $-1,2,3,4,6 a, 8,9,10,10 a, 10 b-d e c a h y d r o-7 a H-$ pyrrolo[3',4':4,5]furo[3,2-b]azocin-7a-yl)vinyl acetate (rac-17)

To a stirred solution of N-benzyl amide rac-16 (337.9 mg, 0.527 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{Boc}_{2} \mathrm{O}(0.365 \mathrm{~mL}, 1.59 \mathrm{mmol})$, $E t_{3} \mathrm{~N}(0.294 \mathrm{~mL}, 2.11 \mathrm{mmol})$ and $\operatorname{DMAP}(32.16 \mathrm{mg}, 0.263 \mathrm{mmol})$. After 17 h, the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and extracted with EtOAc (3 $\times 20 \mathrm{~mL}$). Combined extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (SiOH-30ر Premium, 7 g, EtOAc/hexane $=3: 7$) to give N-Boc imide rac-17 (E/Z = 4:1, $339.4 \mathrm{mg}, 87 \%$) as a colorless oil: IR (ATR) 2937, 1736, 1698, 1514, 1431, 1370, 1304, 1249, 1203, 1144, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (selected for the trans-isomer, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41$ and 7.38 (two doublets, $J=5.0,5.0 \mathrm{~Hz}$ each, 1 H total), 7.31-7.25 (m, 3H), $7.19(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ and 6.91 (two doublets, $J=7.8,7.8$ Hz each, 2 H total), 6.77 (d, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.99$ (m, 1H), 5.46 (m, $1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}$, $1 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.05$ and 2.02 (two singlets, 3 H total), 1.95 ($\mathrm{m}, 1 \mathrm{H}$) , 1.81 ($\mathrm{m}, 1 \mathrm{H}$) , 1.57 ($\mathrm{m}, 1 \mathrm{H}$), 1.28 ($\mathrm{s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (selected for the major rotamer of the trans-isomer, 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,171.4,167.3,159.4,156.7(q, J=35.7 \mathrm{~Hz}), 151.5$, 140.0, 137.2, 137.1, 130.3, 130.2, 128.3 (× 3), 128.0 (x 2), 126.3, 122.8, 116.3 (q, $J=288.1 \mathrm{~Hz}), 114.3,114.1,112.8,83.4,80.7,79.8$, 66.7, 59.3, 57.4, 55.2, 47.9, 46.4, 45.5, 28.2, 27.6 (× 3), 25.1, 20.5; HRMS (ESI, positive) calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 764.2765$, found 764.2753.
(6aS*, 7aR*, 8R*, 10aS*, 10bs*, Z) -Methyl 9-(4-methoxybenzyl)-10-oxo-7a-(2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-2,3,4,6a,7a,8,9,10,10a,10b-decahydro-1H-pyrrolo[3', 4':4,5]furo[3,2-b]azocine-8-carboxylate (rac-18)

To a stirred solution of N-Boc imide rac-17 (339.4 mg, 0.458 mmol$)$ in $\mathrm{MeOH}(12.3 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.3 \mathrm{mg}, 0.046 \mathrm{mmol})$. After 3 h , the mixture was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.3 \mathrm{mg}, 0.046 \mathrm{mmol})$ to complete the reaction. After 1.5 h , the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and extracted with EtOAc ($30 \mathrm{~mL}, 20 \mathrm{~mL}$, and then 10 mL). Combined extracts were washed with brine ($3 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (SiOH30μ Premium, 16 g, EtOAc/hexane $=4: 6)$ to give ester aldehyde rac-18 (177.2 mg, 74\%) as a white foam: IR (ATR) 2935, 1746, 1697, 1612, 1514, 1442, 1248, 1205, 1179, 1146, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.58-5.44(\mathrm{~m}, ~ 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathcal{J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(s, 3 H), 3.61(s, 3 H), 3.48(s, 1 H), 3.43(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,173.1,169.2,159.5$, 156.9 (q, J $=36.7 \mathrm{~Hz}), 129.7(\times 2), 128.8,128.1,126.7,116.1$ (q, $J=288.0 \mathrm{~Hz}), 114.3(\times 2), 84.9,80.4,73.2,67.9,56.1,55.2,52.3$, 51.9, 48.7, 45.2, 27.4, 26.0; HRMS (ESI, positive) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 547.1663$, found 547.1661 .

```
2-( (6aS*, 7aR* , 8R* , 10aS* , 10bS* , Z) -9-(4-Methoxybenzyl)-8-
(methoxycarbonyl)-10-oxo-1-(2,2,2-trifluoroacetyl)-
```

2,3,4,6a,7a, 8, 9,10,10a,10b-decahydro-1H-pyrrolo[3', 4':4,5]furo[3,2b] azocin-7a-yl)acetic acid (rac-19)

To a stirred solution of aldehyde rac-18 (409.1 mg, 0.7800 mmol) in tert-butanol (21.0 mL) at rt was added 2 -methyl-2-butene (0.412 mL , 3.893 mmol) . A solution of sodium dihydrogen phosphate (102.7 mg, $0.8563 \mathrm{mmol})$ and sodium chlorite ($211.6 \mathrm{mg}, 2.340 \mathrm{mmol}$) in water (7.0 $\mathrm{mL})$ was added dropwise over 10 min . After 30 min , the mixture was poured into hydrochloric acid (1 M, 30 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30 \mathrm{~mL})$. Combined extracts were washed with brine ($2 \times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by trituration with Et ${ }_{2} \mathrm{O}$ three times to give carboxylic acid rac-19 (181.0 mg , 43\%) as a white solid: IR (ATR) 2953, 1750, 1719, 1697, 1670, 1515, 1454, 1401, 1200, 1145, $1011 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR (selected for the major rotamer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.60-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.04$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathcal{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.06(\mathrm{~m}, 2 \mathrm{H})$, $4.09(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 1 \mathrm{H}), 3.49-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-$ $1.68(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (selected for the major rotamer, $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 176.0,173.0,170.4,161.1,158.3(q, J=36.1 \mathrm{~Hz}), 131.0(\times 2)$, 130.5, 129.1, 128.2, 117.8 ($q, J=287.4 \mathrm{~Hz}), 115.3(\times 2), 86.2,80.9$, $74.1,69.4,56.9,55.7,52.9,52.5,46.3,40.4,28.9,26.5 ; H R M S(E S I$, positive) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 563.1612$, found 563.1615.

Methyl (6aR,7aS, 8S,10aR,10bR,Z)-7a-(2-(($1 R, 2 S, 5 R)-2$-isopropyl-5methylcyclohexyl) oxy) -2-oxoethyl) -9- (4-methoxybenzyl)-10-oxo-1-(2,2,2-trifluoroacetyl) -2, 3, 4, 6a, 7a, $8,9,10,10 a, 10 b-$ decahydro- $1 H-$ pyrrolo[3',4':4,5] furo[3,2-b]azocine-8-carboxylate (20* (2S)) and methyl (6aS,7aR,8R,10aS,10bS, 2)-7a-(2-(($1 R, 2 S, 5 R$)-2-isopropyl-5methylcyclohexyl) oxy) -2-oxoethyl) -9-(4-methoxybenzyl)-10-oxo-1-(2,2,2-trifluoroacetyl) - $2,3,4,6 a, 7 a, 8,9,10,10 a, 10 b-d e c a h y d r o-1 H-$ pyrrolo[3',4':4,5]furo[3,2-b]azocine-8-carboxylate (20 (2R))

20* (2S, 53\%)
retention time: 9.6 min

20 (2R, 46\%)
retention time: 11.8 min

To a stirred solution of carboxylic acid rac-19 (181.0 mg, 0.3348 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mL})$ at rt were added $\mathrm{L}-(-)$-menthol ($57.6 \mathrm{mg}, 0.368$ mmol), MNBA ($126.8 \mathrm{mg}, 0.3683 \mathrm{mmol}), E t_{3} \mathrm{~N}(0.140 \mathrm{~mL}, 1.00 \mathrm{mmol})$, and DMAP ($8.2 \mathrm{mg}, 0.067 \mathrm{mmol})$. After 18 h , to the mixture were added $\mathrm{L}-$ (-) -menthol ($57.6 \mathrm{mg}, 0.368 \mathrm{mmol})$, MNBA ($126.8 \mathrm{mg}, 0.3683 \mathrm{mmol}$), Et ${ }_{3} \mathrm{~N}$ $(0.140 \mathrm{~mL}, 1.00 \mathrm{mmol})$, and $\operatorname{DMAP}(8.2 \mathrm{mg}, 0.067 \mathrm{mmol})$ to complete the reaction. After 1 h , the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (60N, 10 9, EtOAc/hexane $=3: 7$) to give an inseparable mixture of menthyl ester diastereomers ($d r=6: 5,193.8 \mathrm{mg}, 85 \%$) as a white foam.

Purification of the mixture $(d r=6: 5,189.1 \mathrm{mg})$ by HPLC (CHIRALPACK IC, $4.6 \times 150 \mathrm{~mm}$, EtOH/hexane $=0.5: 9.5,1.0 \mathrm{~mL} / \mathrm{min}, 40{ }^{\circ} \mathrm{C}$, detected at 254 nm) gave diastereomerically pure menthyl esters 20* ($2 \mathrm{~S}, 100.8$ $\left.\mathrm{mg}, t_{\mathrm{R}} 9.6 \mathrm{~min}\right)$ and $20\left(2 R, 87.4 \mathrm{mg}, t_{\mathrm{R}} 11.8 \mathrm{~min}\right)$. The structures were determined later at the stage of $21 * / 21$ after removal of the PMB group (see below).

Data for menthyl ester 20* (2S) : retention time $9.6 \mathrm{~min} ; \quad[\alpha]{ }^{26.6_{D}}+24.8$ (c 5.04, CHCl_{3}); IR (ATR) 2952, 2870, 1734, 1697, 1514, 1455, 1370,

1247, 1200, 1145, $1037 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (selected for the major rotamer, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.55-5.45(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62$ (ddd, J $=11.0,11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.31(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.79(\mathrm{~m}, 7 \mathrm{H}), 0.70(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (selected for the major rotamer, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.7, 169.3, 169.1, 159.3, 156.8 (q, J $=36.3 \mathrm{~Hz}$), $129.7(\times 2)$, 128.4, 128.3, 127.1, 116.2 (q, J $=288.3 \mathrm{~Hz}), 114.2(\times 2), 85.1$, $79.8,74.8,72.1,67.6,55.2,55.0,52.3,51.3,46.7,45.1,40.3$, 39.9, $34.1,31.3,27.3,26.1,26.0,23.4,21.9,20.6,16.3 ; H R M S(E S I$, positive) calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 701.3020$, found 701.3014.

Data for menthyl ester $20(2 R)$: retention time 11.8 min ; $[\alpha]^{26.7_{D}}$ 73.7 ($с 4.37, \mathrm{CHCl}_{3}$); IR (ATR) 2954, 2928, 2869, 1698, 1514, 1455, 1247, 1200, 1145, 1103, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (selected for the major rotamer, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.55-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, \mathcal{J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathcal{J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{ddd}, \mathrm{J}=11.1,11.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H})$, $2.19(\mathrm{~m}, ~ 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~m}$, 1H) , 0.87-0.79 (m, 7H), $0.67(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (selected for the major rotamer, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,169.6,169.2,159.3$, 156.8 ($q, J=36.3 \mathrm{~Hz}$) , $129.7(\times 2), 128.5,128.4,127.1,116.2(q$, $J=288.1 \mathrm{~Hz}), 114.2(\times 2), 85.2,79.8,74.7,72.5,67.8,55.2,55.0$, $52.3,51.4,46.8,45.1,40.7,39.6,34.1,31.3,27.2,26.1,25.8$, 23.2, 22.0, 20.7, 16.0; HRMS (ESI, positive) calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}^{+}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 701.3020$, found 701.3014 .

Methyl (6aR,7aS, 8S, 10aR,10bR,Z)-7a-(2-(($1 R, 2 S, 5 R)$-2-isopropyl-5methylcyclohexyl) oxy) -2-oxoethyl)-10-oxo-1-(2,2,2-trifluoroacetyl)2,3,4,6a, 7a, 8, 9, 10, 10a,10b-decahydro-1H-pyrrolo[3', 4':4,5]furo[3,2-b]azocine-8-carboxylate (21* (2S))

21* (2S)

To a stirred solution of N - PMB amide 20* ($2 S, 10.4 \mathrm{mg}, 0.0153 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(0.60 \mathrm{~mL})$ and water (0.60 mL) at $-10{ }^{\circ} \mathrm{C}$ was added CAN (125.9 $\mathrm{mg}, 0.2297 \mathrm{mmol})$. After 3.5 h , the mixture was diluted with EtOAc (1 $\mathrm{mL})$ and poured into water (1 mL). Aqueous layer was separated and extracted with EtOAc ($4 \times 1 \mathrm{~mL})$. Combined extracts were washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a pad of silica gel (60N, $1 \mathrm{~g}, \mathrm{EtOAc})$, and concentrated under reduced pressure at rt to a volume of ca. 1 mL . The residual solution was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$, and the mixture was vigorously stirred at rt. After 2 h , the mixture was extracted with EtOAc ($4 \times 1 \mathrm{~mL}$). Combined extracts were washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (60N, 600 mg , EtOAc/hexane = 8:2) to give unprotected amide 21* ($2 S, 7.5 \mathrm{mg}, 88 \%$) as a colorless oil: $[\alpha]^{24.6}+1.83\left(C 3.47, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{ATR}) 3350,2954,2927,2872,1698$, 1456, 1372, 1202, 1146, 1094, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (selected for the major rotamer, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.49(\mathrm{~m}, 2 \mathrm{H})$, $4.96(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, \mathcal{J}=10.9,10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.48(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.68(\mathrm{~m}$, $3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.87-$ $0.77(\mathrm{~m}, 7 \mathrm{H}), 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (selected for the major rotamer, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,169.6,169.3,156.7(q, J=$ $36.5 \mathrm{~Hz}), 128.9,128.1,116.2(q, J=288.3 \mathrm{~Hz}), 87.4,79.5,75.1$, $73.7,64.1,55.7,52.5,51.9,46.6,40.3,40.2,34.0,31.3,27.8$,
26.2, 25.6, 23.4, 21.9, 20.5, 16.4; HRMS (ESI, positive) calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 581.2445$, found 581.2448.

Methyl (6aS,7aR,8R,10aS,10bS,Z)-7a-(2-(($1 R, 2 S, 5 R)$-2-isopropyl-5methylcyclohexyl) oxy) -2-oxoethyl)-10-oxo-1-(2,2,2-trifluoroacetyl)-2,3,4,6a,7a,8,9,10,10a,10b-decahydro-1H-pyrrolo[3', 4':4,5]furo[3,2-b]azocine-8-carboxylate (21 (2R))

To a stirred solution of N-PMB amide 20 ($2 R$, $87.4 \mathrm{mg}, 0.129 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ and water $(5.0 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was added CAN (1.063 g, 1.939 mmol) . After 3.5 h , the mixture was diluted with EtOAc (10 mL) and poured into water (10 mL). The aqueous layer was separated and extracted with EtOAc ($4 \times 10 \mathrm{~mL}$) . Combined extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a pad of silica gel (60N, $10 \mathrm{~g}, \mathrm{EtOAc})$, and concentrated under reduced pressure at rt to a volume of ca. 10 mL . The residual solution was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$, and the mixture was vigorously stirred at rt. After 2 h , the mixture was extracted with EtOAc (4 \times $10 \mathrm{~mL})$. Combined extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (60N, 2 g, EtOAc/hexane = 5:5) to give unprotected amide $21(2 R, 57.9 \mathrm{mg}$, 80%) as a colorless oil: [$\alpha]^{26.4}$ d -52.5 (c 2.90, CHCl_{3}); IR (ATR) 3346, 2954, 2930, 2871, 1698, 1455, 1371, 1201, 1146, 1092, $1010 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (selected for the major rotamer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78$ ($\mathrm{m}, 1 \mathrm{H}$), $5.61-5.46(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (ddd, $J=11.2$, $11.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~m}$, $1 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, ~ 3 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~m}$, $1 \mathrm{H}), 1.02-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.76(\mathrm{~m}, 7 \mathrm{H}), 0.64(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (selected for the major rotamer, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0$, 170.0, 169.5, $156.7(q, J=36.5 \mathrm{~Hz}), 128.9,128.2,116.2(q, J=$ $288.1 \mathrm{~Hz}), 87.7,79.5,74.8,73.9,64.3,55.6,52.6,51.9,46.8,40.7$,
$40.0,34.1,31.3,27.8,26.0,25.6,23.3,22.0,20.6,16.1 ; \operatorname{HRMS}(E S I$, positive) calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 581.2445$, found 581.2446 .
($6 \mathrm{aR}, 7 \mathrm{aS}, 8 \mathrm{~S}, 10 \mathrm{aR}, 10 \mathrm{bR}, Z$) -7a-(Carboxymethyl)-10-oxo-
$2,3,4,6 a, 7 a, 8,9,10,10 a, 10 b-d e c a h y d r o-1 H$-pyrrolo[3' , 4': 4, 5] furo[3,2b] azocine-8-carboxylic acid ($2 S$)-TKM-38, 3*)

(2S)-TKM-38 (3*)

Ester amide 21* ($2 S, 69.3 \mathrm{mg}, 0.124 \mathrm{mmol}$) was dissolved in a solution of KOH in $\mathrm{MeOH}(1 \mathrm{M}, 11.2 \mathrm{~mL}, 11.2 \mathrm{mmol})$. After stirring at $40{ }^{\circ} \mathrm{C}$ for 16 h , the mixture was poured into water (2 mL) and concentrated by blowing of air. The residue was dissolved in water (1 mL), neutralized with hydrochloric acid (12 M, 0.5 mL), and subjected to ion-exchange column chromatography (Dowex ${ }^{\circledR}$ 50W x8-200, H^{+}form, 12.5 g). The column was washed with water until the eluate became neutral, and then eluted with ammonium hydroxide (5 M). Positive fractions in the ninhydrin test were combined and concentrated by blowing of air to give glutamate analog (2S)-TKM-38 (3*, $29.6 \mathrm{mg}, 77 \%$) as a brown oil: $[\alpha]^{24.9}{ }_{D}-31.4$ (c 1.20, 50\% MeOH); IR (ATR) 3093, 3069, 3046, 1697, 1573, 1395, 1291, 1185, 1121, 1073, $1007 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (TFA salt, $\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{brdd}, \mathrm{J}=11.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ $(s, 1 H), 4.41(s, 1 H), 4.24(\mathrm{dd}, J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{ddd}, J=14.1,4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddd}, J=$ $14.1,10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 177.0,174.7,173.9,133.8,124.4,84.5,77.8,68.2,63.1$, $56.1,45.5,44.8,23.6,23.1$; HRMS (ESI, positive) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}$ $\left[(M+H)^{+}\right] 311.1228$, found 311.1237.
($6 \mathrm{aS}, 7 \mathrm{aR}, 8 \mathrm{R}, 10 \mathrm{aS}, 10 \mathrm{bS}, Z$)-7a-(Carboxymethyl)-10-oxo-
$2,3,4,6 a, 7 a, 8,9,10,10 a, 10 b-d e c a h y d r o-1 H$-pyrrolo[3' , 4': 4, 5] furo[3,2b] azocine-8-carboxylic acid ($(2 R)-T K M-38,3)$

(2R)-TKM-38 (3)

Ester amide 21 ($2 R, 4.3 \mathrm{mg}, 0.0078 \mathrm{mmol}$) was dissolved in a solution of KOH in $\mathrm{MeOH}(1 \mathrm{M}, 0.700 \mathrm{~mL}, 0.700 \mathrm{mmol})$. After stirring at $40{ }^{\circ} \mathrm{C}$ for 18 h , the mixture was poured into water (1 mL) and concentrated by blowing of air. The residue was dissolved in water, neutralized with hydrochloric acid (12 M, 0.1 mL$)$, and subjected to ion-exchange column chromatography (Dowex ${ }^{\circledR} 50 \mathrm{~W} x 8-200, \mathrm{H}^{+}$form, 800 mg). The column was washed with water until the eluate became neutral, and then eluted with ammonium hydroxide (5 M). Positive fractions in the ninhydrin test were combined and concentrated by blowing of air to give glutamate analog (2R)-TKM-38 (3, $2.2 \mathrm{mg}, 90 \%$ as a brown oil: $[\alpha]^{25.0_{D}}+31.1$ (C 1.01, 50\% MeOH).

The other spectroscopic data were in good agreement with those for 3* (see above).

References

[1] M. Oikawa, M. Ikoma, M. Sasaki, M.B. Gill, G.T. Swanson, K. Shimamoto, R. Sakai, Eur. J. Org. Chem. 2009 (2009) 5531-5548.

