Supporting Information

Construction of

pillar[4]arene[1]quinone/1,10-dibromodecane pseudorotaxanes in solution and the solid state

Xinru Sheng^{‡1}, Errui Li^{‡1} and Feihe Huang^{*1,2}

¹State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Email: <u>fhuang@zju.edu.cn</u> ²Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

Table of Content (10 pages)

1.	Materials and methods	S2
2.	Characterizations of H and G	S3
3.	Crystallographic data of the [3]pseudorotaxane between H	
	and G in the solid state	S4
4.	Characterization studies on the complexation between ${\bf H}$ and	
	G in solution	S5
5.	References	S10

1. Materials and methods

All reagents and solvents were commercially available and used as supplied without further purification. **H** was synthesized according to literature procedures.^{S1} ¹H NMR spectra were recorded on a temperature-controlled 400MHz, 500MHz or 600MHz spectrometer with use of the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Matrix-assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) was recorded on a Bruker Ultraflex with a 355 nm Nd: YAG laser (Smartbeam II) and 25 kV Ion source voltage. UV-vis spectra were taken on a Perkin-Elmer Lambda 35 UV-vis spectrophotometer.

2. Characterizations of H and G

Figure S1: ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of H.

Figure S2: ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of G.

Figure S3: MALDI-TOF mass spectrum of H.

3. Crystallographic data of the [3]pseudorotaxane between H and G in the solid state

between H and G in the solid state			
Empirical formula	$C_{112}H_{140}Br_2O_{20}$		
Formula weight	1966.06		
Temperature	170 K		
Wavelength	0.71073		
Crystal system	Monoclinic		
Space group	P 1 2 ₁ /c 1		
Unit cell dimensions	a = 17.4426(6) Å α = 90		
	b = 19.3528(8) Å β = 96.800(1)		
	c = 15.3931(4) Å γ = 90		
Volume	5159.6(3)		
Z	4		
Density (calculated)	1.265 g/cm ⁻³		
Absorption coefficient	0.854		
F(000)	2084.0		
Crystal size	0.336 x 0.139 x 0.116 mm ³		
Theta range for data collection	2.35 to 27.40°		
Index ranges	-19<=h<=22, -25<=k<=20, -19<=l<=19		
Reflections collected	41520		
Independent reflections	11778 [R(int) = 0.0705]		
Completeness to theta = 27.492°	0.996		
Absorption correction	Multi-scan		
Max. and min. transmission	0.746, 0.686		
Data / restraints / parameters	11778 / 0 / 612		
Goodness-of-fit on F2	1.046		
Final R indices [I>2sigma(I)]	R1 = 0.0480, wR2 = 0.0511		
R indices (all data)	R1 = 0.0705, wR2 = 0.0672		
Largest diff. peak and hole	0.561, -0.709 e. Å ⁻³		
CCDC	2031286		

Table S1. Crystal data for single crystals of the [3]pseudorotaxanebetween H and G in the solid state

4. Characterization studies on the complexation between H and G in solution

MALDI-TOF Mass Spectrum

Figure S4: MALDI-TOF mass spectrum of **H** and **G**. There only exist the peaks of **H**.

Figure S5: Partial ¹H NMR spectra (500 MHz, chloroform-*d*, 298 K): (a) 6.00 mM **H**; (b) 1.00 mM **G** and 5.00 mM **H**; (c) 2.00 mM **G** and 4.00 mM **H**; (d) 3.00 mM **G** and 3.00 mM **H**; (e) 4.00 mM **G** and 2.00 mM **H**; (f) 5.00 mM **G** and 1.00 mM **H**; (g) 6.00 mM **G**.

Figure S6: Job plot showing the 1:1 stoichiometry of the complexation between **H** and **G** in chloroform-*d* using the proton NMR data for H_a . Delta is the chemical shift change of H_a . [**H**] + [**G**] = 6.00 mM. [**H**] and [**G**] are concentrations of **H** and **G**, respectively.

Figure S7: Partial ¹H NMR spectra (600 MHz, chloroform-*d*, 298 K) of **G** at the concentration of 5.00 mM upon addition of **H**: (a) 0 mM; (b) 1.16 mM; (c) 2.20 mM; (d) 3.14 mM; (e) 3.98 mM; (f) 4.74 mM; (g) 6.85 mM; (h) 8.47 mM; (i) 9.74 mM; (j) 10.77 mM; (k) 11.63 mM; (l) 12.34 mM; (m) 13.47 mM; (n) 14.33 mM; (o) 15.00 mM.

Figure S8: The chemical shift changes upon addition of **H**. The red solid line was obtained from the non-linear curve-fitting equation,^{S2} y = (P1/[**G**]) (0.5x+0.5 ([**G** $]+P2)-(0.5(x^2+(2x(P2-[$ **G**]))+(P2+[**G** $])^2)^{0.5}))$, where y = $\Delta\delta$, P1 = $\Delta\delta_{max}$, P2 = 1/*K*_a, and x = [**H**].

5. References

- S1. Han, C.; Zhang, Z.; Yu, G.; Huang, F. *Chem. Commun.*, **2012**, *48*, 9876–9878.
- S2. Zhu, X.-Z.; Chen, C.-F. J. Org. Chem., 2005, 70, 917–924.