SUPPORTING INFORMATION

A toolbox of molecular photoswitches to modulate the CXCR3 chemokine receptor with light

Xavier Gómez-Santacana\#, Sabrina M. de Munnik, Tamara A. M. Mocking, Niels J. Hauwert, Shanliang Sun, Prashanna Vijayachandran, Iwan J. P. de Esch, Henry F. Vischer, Maikel Wijtmans,* Rob Leurs*

Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands. "Present address: Institute of Functional Genomics, Université de Montpellier, Unité 5302 CNRS and Unité U1191, INSERM, 34090 Montpellier, France.

* Corresponding author: $\underline{m . w i j t m a n s @ v u . n l ; ~ r . l e u r s @ v u . n l ~}$

Table of contents

S3-S4	Figure S1. UV spectra
S5	Figure S2: Full functional dose-response curves
S6-S43	Synthesis methods and procedures
S44	Photochemistry procedures incl. Figure S3
S45-S46	Pharmacology procedures
S47	Computational procedures
S48-S50	NMR Spectra
S51-S54	LC-PDA-MS Chromatograms
S55	References

B

Figure S1. (A) UV-Vis absorption spectra of compounds as trans- or as PSS-forms after irradiation with three different wavelengths. (B) Overlay of UV-Vis absorption spectra of PSS_{360} forms of $\mathbf{6 b}, \mathbf{4 d}, \mathbf{6 d}$ and $\mathbf{6 e}$ (having substituent $\mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I respectively) and $\mathbf{6 f} \mathbf{6 g}$ and $\mathbf{6 h}$ (having $\mathrm{Y}=\mathrm{OMe}, \mathrm{OiPr}$ and SMe respectively).

Figure S2. Full functional dose-response curves for compounds $\mathbf{3 e}, \mathbf{4 d}, \mathbf{6 b}$ and $\mathbf{6 d} \mathbf{- h}$ in trans (turquoise) or PSS_{360} (magenta) form.

Synthesis methods and procedures

Unless mentioned otherwise, all reactions were performed under N_{2} atmosphere. All chemicals and solvents were obtained from commercial suppliers (primarily Sigma-Aldrich, Acros Organics, Fluorochem and Combi-Blocks) and used without purification. DCM, DMF, THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried by passing through a PureSolv solvent purification system. Triethylamine (TEA) was dried over alumina. Compounds 2-6 were synthesized according the procedures detailed below. Compound $\mathbf{6 i}$ and 7 were synthesized as reported previously. ${ }^{1,2}$ Reactions were monitored by thin layer chromatography (Merck Silicagel 60 F254) by visualization under 254 nm lamp or under natural light conditions (for colored compounds). Flash column chromatography was performed with SNAP KP-Sil $50 \mu \mathrm{~m}$ (Biotage) or GraceResolv (Büchi) cartridges on Isolera One with UV-Vis detection (Biotage). Nuclear magnetic resonance (NMR) spectra were determined with a Brücker Avance 500 Ultrashield or a Brücker Avance 600 Ultrashield plus spectrometer. Chemical shifts are reported in parts per million (ppm) against the reference compound using the signal of the residual non-deuterated solvent $\left(\mathrm{CDCl}_{3} \delta=7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right), \delta=77.16 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)\right.$. NMR spectra were processed using MestreNova 10.0.2 software. The peak multiplicities are defined as follows: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; ddd, doublet of doublets of doublets; dt , doublet of triplets; dq, doublet of quartets; td , triplet of doublets; tt , triplet of triplets; br, broad signal; m, multiplet; app, apparent. Purity determination was performed with Liquid Chromatography using a Shimadzu LC-20AD liquid chromatography pump system with a Shimadzu SPDM20A photodiode array detector and MS detection with a Shimadzu LCMS-2010EV mass spectrometer operating in both positive and negative ionization mode. A Waters XBridge C 18 column $5 \mu \mathrm{~m} 4.6 \times 50 \mathrm{~mm}$ was used at $40^{\circ} \mathrm{C}$. The mobile phase used was a mixture of $A=$ Water $+0.1 \% \mathrm{HCO}_{2} \mathrm{H}$ and $\mathrm{B}=$ acetonitrile $(\mathrm{MeCN})+0.1 \% \mathrm{HCO}_{2} \mathrm{H}$. The eluent program used is as follows: flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, start 95% A in a linear gradient to 10% A over 4.5 min , hold 1.5 min at $10 \% \mathrm{~A}$, in 0.5 min in a linear gradient to $95 \% \mathrm{~A}$, hold 1.5 min at $95 \% \mathrm{~A}$, total runtime: 8.0 min . Compound purities were calculated as the percentage peak area of the analyzed compound by UV detection at 254 nm . All chemistry and analyses of photosensitive compounds were carried out under dimmed or red light. High-resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF mass spectrometer using ESI in positive ion mode (HRMS).

General synthetic procedures

General synthetic procedure A for compounds $9 a-c, 13 f-h, 14 e$ and $16 b, d-h$: In a round-bottom flask, compound $\mathbf{7}$ (1.0-1.3 eq) and $\mathbf{8 a - c}, \mathbf{2 6 f}-\mathbf{h}, \mathbf{2 7}$ or $\mathbf{2 8 b}$,d-h (1.0 eq) were dissolved in DCE. TEA (1.1-1.6 eq) was added. The solution was stirred at rt for 30 min . Subsequently, $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.6 \mathrm{eq})$ was added and the solution was stirred from 6 to 16 h at rt . After that, aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$ was added and the resulting mixture was stirred for 10 min . DCM was added. The layers were separated and the aqueous layer was extracted twice with DCM. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a residue, which was purified with automated flash chromatography (cHex/EtOAc $+1 \%$ TEA) to give compounds $9 \mathrm{a}-\mathrm{c}, \mathbf{1 3 f}-\mathrm{h}, \mathbf{1 4 e}$ and $\mathbf{1 6 b}, \mathrm{d}-\mathrm{h}$ as a colourless/orange oil with high purity.

General synthetic procedure B for compounds 10a-c: In a round bottom flask, a mixture of compound $9 \mathrm{a}-\mathrm{c}(1.0 \mathrm{eq})$ and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{eq})$ in EtOH was stirred for 2 h at $75^{\circ} \mathrm{C}$. Subsequently, the mixture was filtered through Celite and washed with DCM. The resulting solution was washed twice with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give compounds 10a-c as yellow oils, which were used without further purification.

General synthetic procedure C for compounds 12a-e, 13a-e, 14a-d, 14f-i and 15b-c: A solution of Oxone ${ }^{T M}(3.0 \mathrm{eq})$ in water (4 vol) was added to a solution of the corresponding aniline (1.5 eq) in DCM (1 vol). The resulting mixture was stirred vigorously at rt during 2 h . Water was added and the layers were separated. The green organic layer was washed with aq. $\mathrm{HCl}(1 \mathrm{M})$, water and brine. The resulting green nitrosobenzene solution was used directly by mixing with the corresponding aniline (1.0 eq). For the preparation of compound 12a and 13a, the commercially available nitrosobenzene (11a) was directly used (1.5 eq) dissolved in DCM. Two drops of AcOH were added and the resulting solution was left stirring for 1-5 d protected from light. Subsequently, the solvents were removed in vacuo and the resulting dark residue was purified with automated flash chromatography (cHex/DCM/EtOAc $+1 \%$ TEA) to give compounds $\mathbf{1 2 a - e}, \mathbf{1 3 a - e}, \mathbf{1 4 a - d}, \mathbf{1 4 f}$-i and $\mathbf{1 5 b}$-c as an orange/red oil with high purity.

General synthetic procedure D for compounds $\mathbf{2 a - e}, \mathbf{3 a - h}, \mathbf{4 a - 6}, \mathbf{5 b - c}, \mathbf{6 b}$ and $\mathbf{6 d - i}$: In a round-bottom flask, the tertiary amine precursor 12a-e, 13a-h, 14a-6, 15b-c, 16b and 16d-i (1.0 eq.) was dissolved in DCM. The flask was closed with a septum and protected from light. Excess Mel (20 eq) was added to the solution via a syringe. The reaction mixture was stirred at rt in the dark during 6-72 h . The reaction mixture was cooled in an ice bath, and MTBE (3 vol eq. with respect to DCM) was added slowly. This induced precipitation of the salt, which was filtered and washed with a precooled solution of DCM/MTBE (1/3). This delivered the product $\mathbf{2 a} \mathbf{- e}, \mathbf{3 a}-\mathbf{h}, \mathbf{4 a}-\mathbf{6}, \mathbf{5 b} \mathbf{- c}, \mathbf{6 b}$ and $\mathbf{6 d} \mathbf{- i}$ as an orange solid with high purity.

General synthetic procedure E for compounds 18a-d: A solution of Oxone ${ }^{T M}$ (2.0 eq) in water (4 vol) was added to a solution of the corresponding aniline 17a-d (1.0 eq) in DCM (1 vol). The resulting mixture was stirred vigorously at rt during 2 h . Water was added and the layers were separated. The green organic layer was washed with aq. $\mathrm{HCl}(1 \mathrm{M})$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding nitrosocompound 18a-d, which was used without further purification.

General synthetic procedure F for compounds 20f-h, 21, 22b and 22d: The corresponding nitrosocompound 18a-d (1.1-1.5 eq) and the corresponding aniline 19a-d (1.0 eq) were dissolved in AcOH . The mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for $16-20 \mathrm{~h}$ protected from light. Subsequently, the solvents were removed in vacuo and the resulting dark residue was purified with automated flash chromatography (cHex/DCM) to give compound 20f-h, 21, 22b or 22d as an orange/red solid with high purity.

General synthetic procedure G for compounds 23f-g, 24, 25b and 25d: The corresponding azobenzoates 20f-g, 21, 22b or 22d (1.0 eq) were dissolved in THF. DIBAL-H ($3-4 \mathrm{eq}, 1.0 \mathrm{M}$ in THF) was added slowly at $0-5^{\circ} \mathrm{C}$. The reaction mixture was warmed slowly to rt and stirred for 2-4 h. After that, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. Aq. Rochelle Salt (10%) and EtOAc were added and the resulting mixture was stirred at room temperature 1-2 h . The layers were separated. The organic phase was washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The resulting residue (orange/red oil) corresponded to the expected products with high purity (23g, 25b, $\mathbf{2 5 c}$) or were purified with automated flash chromatography (cHex/DCM) to give alcohols (23f, 24) as an orange/red oil with high purity.

General synthetic procedure H for compounds 26f-h, 27, 28b and 28d: The corresponding alcohols 23fg, 24, 25b or 25d (1.0 eq) and Dess Martin periodinane (1.0 eq) were dissolved in DCM. The resulting red solution was stirred for 1-2 h at rt . After that, satd. aq. NaHCO_{3} and EtOAc were added and the layers were separated. The organic layer was washed with satd. aq. NaHCO_{3} (twice), water and brine,
dried over MgSO_{4} and concentrated in vacuo. The residue obtained was purified with automated flash chromatography (cHex/DCM or cHex/EtOAc) to give benzaldehyde 23f-g, 24, 25b or 25d as an orange/red oil with high purity.

Detailed synthetic procedures and characterisation of compounds

Scheme S1: Synthetic strategies for compounds 2a-e, 3a-e, 4a-d, 4f-i and 5b-c. GSP=General Synthetic Procedure.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methyl-N-(4-nitrobenzyl)methanamine (9a): The general synthetic procedure A was used with ammonium salt $7(2.00 \mathrm{~g}, 9.9 \mathrm{mmol})$, TEA (1.5 mL , $10.8 \mathrm{mmol})$ and 4-nitrobenzaldehyde (8 a) ($1.42 \mathrm{~g}, 9.4 \mathrm{mmol}$) in DCE (50 mL) to give the nitrocompound 9a as a colourless oil ($2.74 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.47-5.38(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{app} . \mathrm{dq}, \mathrm{J}=13.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.84(\mathrm{app} . \mathrm{dq}, \mathrm{J}=13.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.12$ $(\mathrm{s}, 3 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 148.11,147.07,146.13,129.29,123.53,120.35,63.87,60.84,44.34,42.78,41.00,38.06,31.91$, 31.48, 26.40, 21.21. HPLC-PDA-MS: RT $=3.34 \mathrm{~min}, 99.1 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=262 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+} 301.15$.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methyl-N-(3-nitrobenzyl)methanamine (9b): The general synthetic procedure A was used with ammonium salt $7(2.00 \mathrm{~g}, 9.9 \mathrm{mmol})$, TEA (1.5 mL , $10.8 \mathrm{mmol})$ and 3-nitrobenzaldehyde (8 b) ($1.43 \mathrm{~g}, 9.4 \mathrm{mmol}$) in DCE (50 mL) to give the nitrocompound

9b as a colourless oil ($2.65 \mathrm{~g}, 93 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, \mathrm{J}=$ $8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.35(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{app} . \mathrm{dq}, \mathrm{J}=13.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{app} . \mathrm{dd}, \mathrm{J}=13.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.40,146.13,142.35$, 134.85, 129.10, 123.59, 121.99, 120.31, 63.73, 60.65, 44.33, 42.64, 40.99, 38.04, 31.91, 31.48, 26.37, 21.21. HPLC-PDA-MS: RT $=3.78 \mathrm{~min}, 99.8 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=259 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 301.15$.

N-(2-chloro-5-nitrobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methyl

methanamine (9c): The general synthetic procedure A was used with ammonium salt 7 ($3.00 \mathrm{~g}, 14.9$ $\mathrm{mmol})$, TEA ($2.5 \mathrm{~mL}, 17.9 \mathrm{mmol}$) and 2-chloro-5-nitrobenzaldehyde (8 c) ($2.63 \mathrm{~g}, 14.2 \mathrm{mmol}$) in DCE $(100 \mathrm{~mL})$ to give the nitrocompound 9 c as a colourless oil $(4.54 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.45$ (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02 ($\mathrm{dd}, \mathrm{J}=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.38(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}$, 1 H), $2.37-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 146.91,146.06,140.49,139.92,130.14,125.16,122.62,120.41$, $63.85,57.58,44.35,42.99,40.92,38.03,31.90,31.49,26.34,21.17$. HPLC-PDA-MS: RT $=3.95 \mathrm{~min}, 95.1$ $\%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=204,270 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 335.15$.

4-(((($(1 R, 5 S)-6,6$-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)(methyl)amino)methyl)aniline (10a): The general synthetic procedure B was used with nitrocompound $9 \mathrm{a}(1.36 \mathrm{~g}, 4.5 \mathrm{mmol})$ and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($5.10 \mathrm{~g}, 22.6 \mathrm{mmol}$) in $\mathrm{EtOH}(23 \mathrm{~mL})$ to give the aniline 10 a as a yellow oil (1.23 g , quant.). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.46-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{br}, 2 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.26(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{app} . \mathrm{dd}, \mathrm{J}=13.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{app} . \mathrm{dd}, \mathrm{J}=13.1,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 4 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.52,145.22,130.20,129.41,119.80,115.03$, 63.53, 61.26, 44.36, 42.43, 41.06, 38.04, 31.98, 31.52, 26.42, 21.25. HPLC-PDA-MS: RT $=3.34 \mathrm{~min}$, 99.1\% (254 nm), PDA $\lambda_{\max }=248,280 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$271.20.

3-((()(1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)(methyl)amino)methyl)aniline (10b): The general synthetic procedure B was used with nitrocompound $9 \mathrm{~b}(2.52 \mathrm{~g}, 8.4 \mathrm{mmol})$ and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(9.46 \mathrm{~g}, 41.9 \mathrm{mmol})$ in $\mathrm{EtOH}(42 \mathrm{~mL})$ to give the aniline 10 b as a yellow oil ($2.09 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, \mathrm{J}=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(d, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{app} . \mathrm{dq}, \mathrm{J}=13.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{app} . \mathrm{dd}, \mathrm{J}=13.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ ($\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.28(m, 2H), $2.25(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.19(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.83,146.80,141.32,129.46$, 120.22, 119.82, 116.07, 114.16, 64.27, 62.19, 44.76, 43.09, 41.44, 38.44, 32.36, 31.90, 26.84, 21.65. HPLC-PDA-MS: RT = $3.17 \mathrm{~min}, 95.2 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=238,293 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 271.20$.

4-chloro- 3-(((($1 R, 5 S)$-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)(methyl)amino)methyl) aniline (10c): The general synthetic procedure B was used with nitrocompound $9 \mathrm{c}(4.31 \mathrm{~g}, 12.9 \mathrm{mmol})$ and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(14.5 \mathrm{~g}, 64.4 \mathrm{mmol})$ in $\mathrm{EtOH}(70 \mathrm{~mL})$ to give the aniline 10 c as a yellow oil ($3.72 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, \mathrm{J}=8.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{br}, 2 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{app} . d q$, $\mathrm{J}=13.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dt}, \mathrm{J}=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, $2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta$ 146.22, 145.19, 137.81, 129.80, 123.21, 119.98, 116.88, 114.78, 64.08, 58.04, 44.40, 42.79, 40.99, 38.08, 31.95, 31.51, 26.45, 21.22. HPLC-PDA-MS: RT $=3.78 \mathrm{~min}, 97.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=203,249$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 305.15$.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methyl-N-(4-((E)-phenyldiazenyl)benzyl) methanamine (12a): The general synthetic procedure C was used with nitrosobenzene (11a) (45 mg, 0.42 mmol) and the aniline 10a ($103 \mathrm{mg}, 0.38 \mathrm{mmol}$) in DCM (2 mL) to give the azocompound 12a as an orange oil ($70 \mathrm{mg}, 51 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 152.84,151.87,146.40,143.38,130.95,129.63,129.21,122.90,122.85,120.13,63.81,61.39$, $44.35,42.78,41.03,38.11,31.99,31.54,26.43,21.27$. HPLC-PDA-MS: RT $=4.64 \mathrm{~min}, 96.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=320 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 360.25$.

\boldsymbol{N}-(4-((E)-(2-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- \mathbf{N} methylmethanamine (12b): The general synthetic procedure C was used with 2-chloroaniline ($125 \mu \mathrm{~L}$, $1.19 \mathrm{mmol})$ in DCM (3.6 mL) and $\mathrm{Oxone}^{\circledR}(1.49 \mathrm{~g}, 2.4 \mathrm{mmol})$ in water (14.4 mL), to form the corresponding nitrosocompound 11b, and the aniline 10a ($166 \mathrm{mg}, 0.61 \mathrm{mmol}$) in DCM (7 mL) to give the azocompound 12b as an orange oil ($167 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 H), 7.69$ (dd, J = 7.9, 1.6 Hz, 1H), 7.56 (dd, J = 7.9, 1.3 Hz, 1H), $7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{td}, \mathrm{J}=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34(\mathrm{td}, \mathrm{J}=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (152.02, 148.93, 146.47, 144.19, 135.27, 131.61, 130.79, 129.66, 127.42, 123.39, 120.11, $117.73,63.83,61.40,44.36,42.81,41.03,38.12,31.99,31.56,26.43,21.28$. HPLC-PDA-MS: RT $=4.80$ $\min , 89.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=323 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 394.20$.

N-(4-((E)-(3-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-Nmethylmethanamine (12c): The general synthetic procedure C was used with 3 -chloroaniline ($37 \mu \mathrm{~L}$, 0.35 mmol) in DCM (2.0 mL) and Oxone ${ }^{\circledR}$ ($424 \mathrm{mg}, 0.69 \mathrm{mmol}$) in water (4.0 mL), to form the corresponding nitrosocompound 11c, and the aniline 10a ($70 \mathrm{mg}, 0.26 \mathrm{mmol}$) in DCM (3 mL) to give the azocompound 12c as an orange oil ($65 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dt}, \mathrm{J}=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H})$, $5.46-5.42(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=13.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{app} . \mathrm{dd}, \mathrm{J}=17.6,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.69,151.60,146.41,144.10,135.24,130.62,130.23,129.63,123.07,122.44$, 121.84, 120.13, 63.87, 61.41, 44.41, 42.81, 41.08, 38.11, 31.99, 31.55, 26.46, 21.28. HPLC-PDA-MS: RT $=5.04 \mathrm{~min}, 97.0 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=319 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 394.20$.

N-(4-((E)-(4-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-Nmethylmethanamine (12d): The general synthetic procedure C was used with 4-chloroaniline (152 $\mathrm{mg}, 1.19 \mathrm{mmol})$ in DCM (3.6 mL) and Oxone ${ }^{\circledR}(1.50 \mathrm{~g}, 2.4 \mathrm{mmol})$ in water (14.4 mL), to form the corresponding nitrosocompound 11d, and the aniline 10a ($162 \mathrm{mg}, 0.60 \mathrm{mmol}$) in DCM (7 mL) to give the azocompound 12d as an orange oil ($102 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.20$ $(\mathrm{m}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.40,150.91,146.15,143.56,136.54,129.38,129.19,123.92,122.68,119.86$, 63.60, 61.14, 44.08, 42.57, 40.78, 37.85, 31.73, 31.28, 26.18, 21.02. HPLC-PDA-MS: RT $=4.87 \mathrm{~min}$, 94.9\% (254 nm), PDA $\lambda_{\max }=326 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$394.20.

\boldsymbol{N}-(2-((E)-(2-bromophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-Nmethylmethanamine (12e): The general synthetic procedure C was used with 2-bromoaniline ($133 \mu \mathrm{~L}$, $1.22 \mathrm{mmol})$ in $\mathrm{DCM}(3.3 \mathrm{~mL})$ and Oxone $^{\circledR}(1.54 \mathrm{~g}, 2.5 \mathrm{mmol})$ in water (13.2 mL), to form the corresponding nitrosocompound 11e, and the aniline 10a ($161 \mathrm{mg}, 0.60 \mathrm{mmol}$) in DCM (7 mL) to give the azocompound 12e as an orange oil ($216 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 2 H), 7.75 (dd, J = 8.0, 1.3 Hz, 1H), 7.67 (dd, J = 8.0, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (ddd, J = $8.1,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{td}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{app} . \mathrm{dq}, \mathrm{J}=13.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34$ (td, J = 5.8, 1.5 Hz, 1H), $2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (app. dd, J = 18.3, 2.7 Hz, 1H), 2.16 (s, 3H),
$2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.90,149.89,146.45,144.18,133.84,131.79,129.65,128.10,125.68,123.44,120.10,117.94,63.87$, $61.43,44.39,42.80,41.09,38.11,32.00,31.55,26.46,21.28$. HPLC-PDA-MS: RT $=4.81 \mathrm{~min}, 95.8 \%(254$ $\mathrm{nm}), \operatorname{PDA} \lambda_{\max }=323 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 438.20,440.20$.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methyl-N-(3-((E)-phenyldiazenyl)benzyl) methanamine (13a): The general synthetic procedure C was used with nitrosobenzene (11a) (47 mg, $0.44 \mathrm{mmol})$ and the aniline 10 b ($107 \mathrm{mg}, 0.40 \mathrm{mmol}$) in DCM (2 mL) to give the azocompound 13a as an orange oil ($95 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.75$ $(\mathrm{m}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (app. dd, J = 13.0, 2.0 Hz, 1H), $2.88(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (td, J = 5.7, 1.4 Hz, 1H), 2.28 (app. q, J = $17.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.18(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.81,152.78,146.42,141.08$, 131.69, 131.03, 129.21, 129.02, 123.33, 122.94, 121.63, 120.07, 63.83, 61.40, 44.34, 42.72, 41.04, 38.10, 32.00, 31.54, 26.44, 21.28. HPLC-PDA-MS: RT $=4.66 \mathrm{~min}, 96.1 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=318 \mathrm{~nm}$, MS (m/z) [M+H] 360.20 .

N-(3-((E)-(2-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- \mathbf{N} methylmethanamine (13b): The general synthetic procedure C was used with 2-chloroaniline ($63 \mu \mathrm{~L}$, $0.60 \mathrm{mmol})$ in DCM (1.8 mL)and Oxone ${ }^{\circledR}(0.74 \mathrm{~g}, 1.2 \mathrm{mmol})$ in water $(7.1 \mathrm{~mL})$, to form the corresponding nitrosocompound 11b, and the aniline $10 \mathrm{~b}(80 \mathrm{mg}, 0.30 \mathrm{mmol})$ in DCM (1.5 mL) to give the azocompound 13b as an orange oil ($91 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85$ (dt, J = 6.8, 2.1 Hz, 1H), 7.70 (dd, J = 7.9, 1.7 Hz, 1H), 7.56 (dd, J = 7.9, 1.4 Hz, 1H), $7.50-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.39(\mathrm{td}, \mathrm{J}=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}$, 1 H), $3.48(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{app} . \mathrm{dd}, \mathrm{J}=13.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, \mathrm{J}=$ $8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{td}, \mathrm{J}=5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (app. d, J = $17.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.25(\mathrm{app} . \mathrm{dd}, \mathrm{J}=17.5,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.97,148.95,146.46,141.24,135.35,132.23,131.66,130.80,129.07,127.40$, 124.02, 121.92, 120.08, 117.74, 63.87, 61.33, 44.38, 42.71, 41.09, 38.11, 32.01, 31.56, 26.46, 21.29. HPLC-PDA-MS: RT = $4.84 \mathrm{~min}, 94.0 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 394.20$.

\boldsymbol{N}-(3-((E)-(3-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- \boldsymbol{N} methylmethanamine (13c): The general synthetic procedure C was used with 3-chloroaniline ($37 \mu \mathrm{~L}$,
$0.60 \mathrm{mmol})$ in DCM (2.0 mL) and Oxone ${ }^{\circledR}$ ($424 \mathrm{mg}, 0.69 \mathrm{mmol}$) in water (4.0 mL), to form the corresponding nitrosocompound 11c, and the aniline 10 b ($70 \mathrm{mg}, 0.26 \mathrm{mmol}$) in DCM (3 mL) to give the azocompound 13 c as an orange oil ($72 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dt}, \mathrm{J}=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 4 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H})$, $3.63(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dt, J = 8.5, 5.6 Hz, 1H), 2.35 (td, J = 5.8, 1.4 Hz, 1H), $2.28(\mathrm{app} . q, J=19.0,18.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.61, 152.51, 146.38, 141.25, 135.24, 132.22, 130.74, 130.26, 129.11, 123.45, 122.51, 121.90, $121.86,120.10,63.82,61.33,44.35,42.72,41.03,38.11,32.00,31.55,26.44,21.28$. HPLC-PDA-MS: RT $=4.99 \mathrm{~min}, 97.0 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=317 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 394.20$.

N-(3-((E)-(4-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- N methylmethanamine (13d): The general synthetic procedure C was used with 4-chloroaniline (152 $\mathrm{mg}, 1.19 \mathrm{mmol})$ in DCM $(3.6 \mathrm{~mL})$ and Oxone ${ }^{\circledR}(1.50 \mathrm{~g}, 2.4 \mathrm{mmol})$ in water (14.4 mL), to form the corresponding nitrosocompound 11d, and the aniline 10 b ($166 \mathrm{mg}, 0.61 \mathrm{mmol}$) in DCM (7 mL) to give the azocompound 13d as an orange oil ($79 \mathrm{mg}, 33 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{td}, \mathrm{J}=4.8,4.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{br}$, $1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.43 (dt, J = 8.4, 5.6 Hz, 1H), 2.35 (t, J = 5.9 Hz, 1H), 2.26 (app. q, J = 18.6, $17.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.17(\mathrm{~s}, 3 \mathrm{H})$, $2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta$ $152.60,151.14,146.42,141.22,131.98,129.46,129.08,124.23,123.34,121.77,120.08,63.83,61.36$, $44.34,42.73,41.03,38.11,32.00,31.55,26.44,21.28$. HPLC-PDA-MS: RT $=4.87 \mathrm{~min}, 98.4 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=234 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 394.20$.

\boldsymbol{N}-(3-((E)-(2-bromophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- \boldsymbol{N} methylmethanamine (13e): The general synthetic procedure C was used with 2-bromoaniline ($133 \mu \mathrm{~L}$, $1.22 \mathrm{mmol})$ in DCM (3.3 mL) and $\mathrm{Oxone}^{\circledR}(1.54 \mathrm{~g}, 2.5 \mathrm{mmol})$ in water (13.2 mL), to form the corresponding nitrosocompound 11e, and the aniline 10 b ($150 \mathrm{mg}, 0.60 \mathrm{mmol}$) in DCM (7 mL) to give the azocompound 13 e as an orange oil ($171 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.86$ (dt, J = 6.7, 2.1 Hz, 1H), 7.75 (dd, J = 8.0, 1.3 Hz, 1H), $7.67(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.39 (td, J = 7.6, 1.3 Hz, 1H), 7.31 (td, J = 7.6, 1.7 Hz, 1H), 5.46 (tt, J = 3.0, 1.4 Hz, 1H), 3.64 (d, J = 13.4 $\mathrm{Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{app} . \mathrm{dd}, \mathrm{J}=13.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}$, $\mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (td, J = 5.7, 1.4 Hz, 1H), 2.31 (app. d, J = $17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (app. dd, J = 18.0, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.83,149.87,146.46,141.25,133.85,132.25,131.88,129.08,128.10,125.76$, 124.20, 121.86, 120.07, 117.94, 63.88, 61.34, 44.37, 42.70, 41.10, 38.11, 32.02, 31.56, 26.48, 21.29. HPLC-PDA-MS: RT = $4.80 \mathrm{~min}, 83.3 \%(240 \mathrm{~nm})$, PDA $\lambda_{\max }=322 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 438.20,440.25$.

N-(2-chloro-5-((E)-phenyldiazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-Nmethylmethanamine (14a): The general synthetic procedure C was used with nitrosobenzene (11a) ($111 \mathrm{mg}, 1.04 \mathrm{mmol}$) and the aniline 10 c ($155 \mathrm{mg}, 0.51 \mathrm{mmol}$) in DCM (5.5 mL) to give the azocompound 14a as an orange oil ($118 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.90$ (d, J $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{br}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $\mathrm{J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 5 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.67,151.28,146.39,138.51,136.68,131.24$, $130.09,129.23,125.69,123.02,121.52,120.06,64.03,58.22,44.37,42.89,41.00,38.09,32.00,31.55$, 26.44, 21.24. HPLC-PDA-MS: RT $=4.87 \mathrm{~min}, 82.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=324 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$ 394.20.

N-(2-chloro-5-((E)-(2-fluorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methylmethanamine (14b): The general synthetic procedure C was used with 2 -fluoroaniline $(97 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ in $\mathrm{DCM}(2.7 \mathrm{~mL})$ and Oxone ${ }^{\circledR}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water (10.7 mL), to form the corresponding nitrosocompound 11f, and the aniline $\mathbf{1 0 c}(153 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DCM (5.5 mL) to give the azocompound 14b as an orange oil ($102 \mathrm{mg}, 49 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.39$ $(\mathrm{m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (app. d, J=17.6 Hz, 1H), 2.28-2.18(m, $4 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.15,159.44,151.52,146.43,140.78,140.74,138.66,137.21,132.76,132.70,130.16,126.44$, 124.44, 124.41, 121.35, 120.10, 117.88, 117.31, 117.17, 64.06, 58.17, 44.43, 42.88, 41.06, 38.09, 31.99, 31.57, 26.38, 21.24. HPLC-PDA-MS: RT = $4.82 \mathrm{~min}, 90.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=327 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+} 412.20$.

N-(2-chloro-5-((E)-(2-bromophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methylmethanamine (14c): The general synthetic procedure C was used with 2chloroaniline ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) in DCM (2.7 mL) and Oxone ${ }^{\circledR}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water (10.7 mL), to form the corresponding nitrosocompound 11b, and the aniline $\mathbf{1 0 c}$ ($153 \mathrm{mg}, 0.50 \mathrm{mmol}$) in DCM $(5.5 \mathrm{~mL})$ to give the azocompound 14 c as an orange oil ($125 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$8.16(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (td, J = $7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{td}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H}), 3.71(\mathrm{~d}$, $\mathrm{J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dt}, \mathrm{J}=$ $8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31$ (app. d, J = $17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27-2.20(m,4H), 2.12-2.06(m, $1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N M R\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.51,148.79$, $146.44,138.73,137.33,135.62,64.14,58.13,38.11,32.01,31.57 . \delta$. HPLC-PDA-MS: RT $=5.08 \mathrm{~min}$, $76.2 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=326 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 428.20$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methylmethanamine (14d): The general synthetic procedure C was used with 2bromoaniline ($133 \mu \mathrm{~L}, 1.22 \mathrm{mmol}$) in DCM $(2.9 \mathrm{~mL})$ and Oxone ${ }^{\circledR}(1.54 \mathrm{~g}, 2.5 \mathrm{mmol})$ in water (11.5 mL), to form the corresponding nitrosocompound 11e, and the aniline 10 c ($170 \mathrm{mg}, 0.56 \mathrm{mmol}$) in DCM $(6.0 \mathrm{~mL})$ to give the azocompound 14 d as an orange oil ($201 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.17(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, \mathrm{J}=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dt}, \mathrm{J}=7.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.34,149.65,146.42,138.72,137.34,133.92,132.15,130.20,128.12,126.68$, $126.06,121.51,120.08,117.86,64.18,58.11,44.31,42.82,41.02,38.10,32.01,31.55,26.46,21.23$. HPLC-PDA-MS: RT = $5.09 \mathrm{~min}, 67.3 \%(240 \mathrm{~nm}), \mathrm{PDA} \lambda_{\max }=329 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 474.20$.

N-(2-chloro-5-((E)- o-tolyldiazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-Nmethylmethanamine (14f): The general synthetic procedure C was used with o-toluidine ($107 \mu \mathrm{~L}, 1.00$ $\mathrm{mmol})$ in DCM (2.7 mL) and Oxone ${ }^{\circledR}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water $(10.7 \mathrm{~mL})$, to form the corresponding nitrosocompound 11g, and the aniline 10c (151 mg, 0.50 mmol) in $\mathrm{DCM}(5.5 \mathrm{~mL})$ to give the azocompound $\mathbf{1 4 f}$ as an orange oil ($47 \mathrm{mg}, 23 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (dd, J = 8.4, 2.4 Hz, 1H), $7.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30$ $-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.96(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dt}, \mathrm{J}=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{app} . \mathrm{d}$, $\mathrm{J}=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}$, $3 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.72,150.79,146.49,138.54,138.39,136.46,131.42,131.20$, $130.04,126.58,125.62,121.67,120.02,115.55,64.17,58.21,44.39,42.82,41.07,38.11,31.99,31.56$, 26.43, 21.23, 17.70. HPLC-PDA-MS: RT $=5.15 \mathrm{~min}, 97.8 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=325 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+} 408.25$.

N-(2-chloro-5-((E)-(2-(trifluoromethyl)phenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo
[3.1.1]hept-2-en-2-yl)-N-methylmethanamine ($\mathbf{1 4 g}$): The general synthetic procedure C was used with 2-(trifluoromethyl)aniline ($126 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) in DCM (2.7 mL) and Oxone ${ }^{\circledR}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water (10.7 mL), to form the corresponding nitrosocompound $\mathbf{1 1 h}$, and the aniline $\mathbf{1 0 c}(155 \mathrm{mg}, 0.51$ mmol) in DCM (5.5 mL) to give the azocompound 14 g as an orange oil ($116 \mathrm{mg}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-$ $2.16(\mathrm{~m}, 5 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (151.37, 149.53, 146.45, 138.80, 137.61, 132.69, 130.63, 130.26, 129.09, 128.84, 128.59, $128.34,127.37,126.89,126.78,126.74,126.70,126.65,125.20,123.02,121.46,120.84,120.08$, 116.29, 64.24, 58.07, 44.26, 42.74, 41.02, 38.09, 31.95, 31.55, 26.34, 21.20. HPLC-PDA-MS: RT = 5.15 $\min , 92.8 \%(256 \mathrm{~nm})$, PDA $\lambda_{\max }=324 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 462.20$.

N-(2-chloro-5-((E)-(2-methoxyphenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo [3.1.1]hept-2-en-2-yl)-N-methylmethanamine (14h): The general synthetic procedure C was used with 2methoxyaniline ($113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) in DCM (2.7 mL) and Oxone ${ }^{\circledR}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water (10.7 mL), to form the corresponding nitrosocompound 11 i , and the aniline $\mathbf{1 0 c}(159 \mathrm{mg}, 0.52 \mathrm{mmol})$ in DCM $(5.5 \mathrm{~mL})$ to give the azocompound $\mathbf{1 4 h}$ as an orange oil ($88 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ $(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{app} . q d, \mathrm{~J}=6.5,5.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33-2.17(\mathrm{~m}, 5 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.15,151.83,146.39,142.28,138.33,136.54,132.77,130.07,127.21,120.90,120.37$, 120.04, 117.08, 112.85, 64.09, 58.23, 56.44, 44.34, 42.77, 40.99, 38.07, 31.99, 31.54, 26.38, 21.21. HPLC-PDA-MS: RT = $4.63 \mathrm{~min}, 98.0 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=324,363 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 424.25$.

N-(2-chloro-5-((E)-(2-(trifloromethoxy)phenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo [3.1.1]hept-2-en-2-yl)-N-methylmethanamine (14i): The general synthetic procedure C was used with 2-(trifluoromethoxy)aniline ($136 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) in DCM (2.7 mL) and Oxone ${ }^{\circledR}$ ($1.26 \mathrm{~g}, 2.1 \mathrm{mmol}$) in water (10.7 mL), to form the corresponding nitrosocompound $\mathbf{1 1}$, and the aniline $\mathbf{1 0 c}(153 \mathrm{mg}, 0.50$
$\mathrm{mmol})$ in DCM (5.5 mL) to give the azocompound $\mathbf{1 4 i}$ as an orange oil ($152 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.47 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44(\mathrm{dt}, \mathrm{J}=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (ddd, J = 8.4, $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{app} . \mathrm{d}, \mathrm{J}=17.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.51,147.00,146.42,145.12,138.74,137.48,132.12,130.23,127.69$, $126.95,123.34,123.20,121.63,121.04,120.05,119.93,118.22,117.63,64.19,58.13,44.38,42.79$, $41.06,38.09,31.96,31.56,26.37,21.20$. HPLC-PDA-MS: RT $=5.24 \mathrm{~min}, 87.8 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=324$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 478.25$.

N-(5-((E)-(3-bromophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- N-methylmethanamine (15b): The general synthetic procedure C was used with 3 bromoaniline ($109 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) in DCM (2.7 mL) and Oxone ${ }^{\oplus}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water (10.7 mL), to form the corresponding nitrosocompound $\mathbf{1 1 k}$, and the aniline $\mathbf{1 0 c}(153 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DCM (5.5 mL) to give the azocompound $\mathbf{1 5 b}$ as an orange oil ($161 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 8.12\right.$ ($\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.06(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{ddd}, \mathrm{J}=8.0,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}$, 1 H), 7.60 (ddd, J = $7.9,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.19(\mathrm{~m}$, 7H), 2.16-2.03(m, 1H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.54,150.98,146.35,138.71,137.26,133.82,130.60,130.18,125.73,124.79,123.27,123.15$, 121.74, 120.09, $64.01,58.19,44.39,42.94,40.99,38.11,32.00,31.55,26.46,21.25$. HPLC-PDA-MS: RT $=5.26 \mathrm{~min}, 96 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=324 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 474.15$.

N-(5-((E)-(4-bromophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)- N-methylmethanamine (15c): The general synthetic procedure C was used with 4bromoaniline ($109 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) in DCM (2.7 mL) and Oxone ${ }^{\oplus}(1.26 \mathrm{~g}, 2.1 \mathrm{mmol})$ in water (10.7 mL), to form the corresponding nitrosocompound 111, and the aniline $\mathbf{1 0 c}(153 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DCM (5.5 mL) to give the azocompound $\mathbf{1 5 c}$ as an orange oil ($165 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 1H), $5.46(\mathrm{br}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, \mathrm{J}=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{app} . \mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ $-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) $151.42,151.15,146.38,138.70,137.04,132.49,130.16,125.66,125.63,124.53,121.65$, $120.07,64.01,58.22,44.45,42.93,41.04,38.11,32.01,31.57,26.47,21.25$. HPLC-PDA-MS: RT $=5.96$
$\min , \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=332 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 474.20$.

N-(4-((E)-(2-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-

 N, N-dimethylmethanaminium iodide (2a): The general synthetic procedure D was used with the amine 12a ($35 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{Mel}(122 \mu \mathrm{~L}, 1.9 \mathrm{mmol})$ in $\mathrm{DCM}(2.5 \mathrm{~mL})$ to give the ammonium salt 2a as an orange solid ($32 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.76(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.38$ $(\mathrm{m}, 3 \mathrm{H}), 6.23(\mathrm{br}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.15$ $(\mathrm{s}, 3 \mathrm{H}), 2.57-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.72,152.43,136.94,136.09,134.47,131.82,129.63,129.25,123.34$, $123.25,68.98,66.71,49.13,48.91,47.02,39.70,38.18,32.24,32.06,26.00,21.52$. HPLC-PDA-MS: RT $=4.54 \mathrm{~min}, 99.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=320,442 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 374.30$. HRMS (m/z): $[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{3}, 374.2591$; found, 374.2585 .
N-(4-((E)-(2-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (2b): The general synthetic procedure D was used with the amine 12b ($54 \mathrm{mg}, 0.14 \mathrm{mmol}$) and $\mathrm{Mel}(171 \mu \mathrm{~L}, 2.7 \mathrm{mmol})$ in DCM (2.5 mL) to give the ammonium salt $\mathbf{2 b}$ as an orange solid ($62 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ $(\mathrm{s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}, \mathrm{J}=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H})$, $1.14(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.72,148.37,136.94,136.13$, 136.06, 134.55, 132.50, 130.87, 130.23, 127.37, 123.78, 117.49, 68.97, 66.59, 49.13, 48.91, 47.01, 39.69, 38.17, $32.24,32.04,25.98,21.50$. HPLC-PDA-MS: RT $=4.66 \mathrm{~min}, 98.7 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=$ 323, $455 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$408.20. HRMS (m/z): [M] calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}, 408.2201$; found, 408.2202 .

N-(4-((E)-(3-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-

 \mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (2c): The general synthetic procedure D was used with the amine 12c ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{Mel}(121 \mu \mathrm{~L}, 1.9 \mathrm{mmol})$ in $\mathrm{DCM}(2.5 \mathrm{~mL})$ to give the ammonium salt 2c as an orange solid ($47 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 4 \mathrm{H}), 7.81(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 ($\mathrm{dt}, \mathrm{J}=6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dt}, \mathrm{J}=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.18$ - $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.29$,$153.10,137.00,136.06,135.30,134.55,131.51,130.30,130.17,123.51,122.84,121.98,69.08,66.61$, $49.14,48.90,47.04,39.71,38.20,32.26,32.07,26.00,21.52$. HPLC-PDA-MS: RT $=4.79 \mathrm{~min}, 99.5 \%(254$ $\mathrm{nm})$, PDA $\lambda_{\max }=319,447 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 408.25$. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}$, 408.2201; found, 408.2198.

N-(4-((E)-(4-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (2d): The general synthetic procedure D was used with the amine 12d ($90 \mathrm{mg}, 0.23 \mathrm{mmol}$) and $\mathrm{Mel}(286 \mu \mathrm{~L}, 4.6 \mathrm{mmol})$ in DCM (4.5 mL) to give the ammonium salt 2d as an orange solid (104 mg, 85\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}, \mathrm{J}=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.39,150.67,137.85$, 136.94, 136.06, 134.52, 129.92, 129.50, 124.46, 123.38, 68.98, 66.57, 49.11, 48.88, 47.03, 39.70, 38.18, 32.25, 32.06, 26.00, 21.51. HPLC-PDA-MS: RT $=4.80 \mathrm{~min}, 99.7 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=327,445$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 408.20$. HRMS (m/z): $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}, 408.2201$; found, 408.2193.

N-(4-((E)-(2-bromophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (2e): The general synthetic procedure D was used with the amine 12e ($143 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{Mel}(408 \mu \mathrm{~L}, 6.5 \mathrm{mmol})$ in DCM $(6.0 \mathrm{~mL})$ to give the ammonium salt 2e as an orange solid ($147 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{br}$, $1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}$, J $=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{td}, \mathrm{J}=5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 0.83 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.55,149.25,136.94,136.06,134.56,133.94,132.70$, $130.25,128.07,126.69,123.87,117.69,68.98,66.59,49.14,48.91,47.01,39.69,38.17,32.24,32.05$, 25.99, 21.51. HPLC-PDA-MS: RT $=4.75 \mathrm{~min}, 98.8 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=323,457 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$ 452.25, 454.25. HRMS (m/z): [M] calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrN}_{3}, 452$. 1696; found, 452.1687.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethyl-N-(3-((E)-phenyldiazenyl) benzyl)methanaminium iodide (3a): The general synthetic procedure D was used with the amine 13a ($39 \mathrm{mg}, 0.11 \mathrm{mmol}$) and $\mathrm{Mel}(136 \mu \mathrm{~L}, 2.2 \mathrm{mmol})$ in DCM $(2.5 \mathrm{~mL})$ to give the ammonium salt 3a as an orange solid ($33 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{br}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}, \mathrm{J}=8.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 3 \mathrm{H})$, $2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta$ 152.79, 152.33, 137.01, 136.09, 135.92, 131.80, 130.33, 129.29, 128.42, 127.97, 124.11, 123.24, 69.13, $66.89,49.25,49.02,47.01,39.70,38.17,32.24,32.08,26.00,21.54$. HPLC-PDA-MS: RT $=4.62 \mathrm{~min}$, 99.6\% (254 nm), PDA $\lambda_{\max }=317,440 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$374.20. HRMS (m/z): [M] ${ }^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{3}, 374.2591$; found, 374.2581 .

N-(3-((E)-(2-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (3b): The general synthetic procedure D was used with the amine 13b ($61 \mathrm{mg}, 0.16 \mathrm{mmol}$) and $\mathrm{Mel}(194 \mu \mathrm{~L}, 3.1 \mathrm{mmol})$ in $\mathrm{DCM}(4.5 \mathrm{~mL})$ to give the ammonium salt 3b as an orange solid ($34 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{t}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (dd, J = 8.0, 1.7 Hz, 1H), $7.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (td, $\mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{br}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{dt}, \mathrm{J}=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.19$ - $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.94$, $148.33,137.16,136.48,136.06,136.05,132.59,130.93,130.52,129.03,128.49,127.53,123.92$, $117.67,69.28,66.85,47.08,39.73,32.28,32.11,26.02,21.56$. HPLC-PDA-MS: RT $=4.67 \mathrm{~min}, 98.6 \%$ $(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321,452 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 408.25$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}$, 408.2201; found, 408.2202.

N-(3-((E)-(3-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-

\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (3c): The general synthetic procedure D was used with the amine 13c ($52 \mathrm{mg}, 0.13 \mathrm{mmol}$) and $\mathrm{Mel}(165 \mu \mathrm{~L}, 2.64 \mathrm{mmol})$ in DCM $(2.5 \mathrm{~mL})$ to give the ammonium salt 3 c as an orange solid ($33 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{br}, 1 \mathrm{H}), 5.28$ $(\mathrm{s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dt}, \mathrm{J}=8.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.05,152.45,137.05,136.40,136.07,135.29,131.47,130.38,130.36$, $128.56,128.15,124.31,122.85,122.04,69.13,66.77,49.23,49.00,47.02,39.70,38.18,32.25,32.09$, 26.00, 21.55. HPLC-PDA-MS: RT $=4.79 \mathrm{~min}, 99.5 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=319,447 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$ 408.25. HRMS (m/z): [M] calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}, 408.2201$; found, 408.2191.

N-(3-((E)-(4-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-

 N, N-dimethylmethanaminium iodide ($\mathbf{3 d}$): The general synthetic procedure D was used with the amine 13d ($52 \mathrm{mg}, 0.13 \mathrm{mmol}$) and $\mathrm{Mel}(165 \mu \mathrm{~L}, 2.6 \mathrm{mmol})$ in $\mathrm{DCM}(2.5 \mathrm{~mL})$ to give the ammonium salt 3d as an orange solid ($59 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{br}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H})$, $4.45(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}, \mathrm{J}=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.57,150.62,137.76,137.00,136.11,136.07,130.31,129.53,128.52,128.16,124.52$, 124.11, 69.06, 66.80, 49.20, 48.97, 47.00, 39.69, 38.17, 32.23, 32.07, 26.00, 21.53. HPLC-PDA-MS: RT $=4.78 \mathrm{~min}, 98.9 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=317,441 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 408.25 . \mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}, 408.2201$; found, 408.2186 .
N-(3-((E)-(2-bromophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)$\boldsymbol{N}, \boldsymbol{N}$-dimethylmethanaminium iodide (3e): The general synthetic procedure D was used with the amine 13e ($126 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Mel}(165 \mu \mathrm{~L}, 2.6 \mathrm{mmol})$ in $\mathrm{DCM}(5.0 \mathrm{~mL})$ to give the ammonium salt 3 e as an orange solid ($103 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-$ $7.94(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (td, J = 7.6, 1.5 Hz, 1H), 7.32 (td, J = 7.6, 1.8 Hz, 1H), $6.25(\mathrm{br}, 1 \mathrm{H}), 5.30-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}$, $3 H), 2.18-2.08(m, 1 H), 1.27(s, 3 H), 1.14(d, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.74,149.15,137.03,136.44,136.08,133.93,132.75,130.43,129.24,128.56,128.18,126.58$, $123.77,117.82,69.07,66.65,49.24,49.02,47.00,39.70,38.17,32.24,32.07,26.00,21.55$. HPLC-PDA$\mathrm{MS}: \mathrm{RT}=4.74 \mathrm{~min}, 99.0 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321,454 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 452.30,454.25 . \mathrm{HRMS}$ $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrN}_{3}, 452.1696$; found, 452.1687.

N-(2-chloro-5-((E)-phenyldiazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide (4a): The general synthetic procedure D was used with the amine 14a ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{Mel}(317 \mu \mathrm{~L}, 5.1 \mathrm{mmol})$ in DCM $(5.0 \mathrm{~mL})$ to give the ammonium salt 4a as an orange solid ($100 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.89(\mathrm{~m}, 3 \mathrm{H})$, $7.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.37(\mathrm{br}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 6 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.32(\mathrm{~m}$, $3 H), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.17, $151.35,138.67,137.66,136.07,132.16,131.87,131.66,129.31,126.48,124.36,123.53,70.40,63.11$, $49.74,49.52,47.16,39.72,38.26,32.34,32.06,26.01,21.54$. HPLC-PDA-MS: RT $=4.64 \mathrm{~min}, 99.2 \%(254$ $\mathrm{nm}), \operatorname{PDA} \lambda_{\max }=231,324 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$408.20. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3}$, 408.2201; found, 408.2208.

N-(2-chloro-5-((E)-(2-fluorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (4b): The general synthetic procedure D was used with the amine 14b ($89 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $\mathrm{Mel}(270 \mu \mathrm{~L}, 4.3 \mathrm{mmol})$ in DCM $(4.3 \mathrm{~mL})$ to give the ammonium salt 4b as an orange solid ($116 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.38$ (br, 1H), 5.29 (d, J = $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.63,159.57,151.52,140.26,140.21,139.20$, $137.72,136.05,133.92,133.85,131.75,126.57,124.64,124.61,122.82,118.01,117.36,117.20,70.41$, 63.03, 49.77, 47.19, 39.74, $38.28,32.35,32.08,26.02,21.55$. HPLC-PDA-MS: RT $=4.78 \mathrm{~min}, 99.1 \%(254$ $\mathrm{nm})$, PDA $\lambda_{\max }=328 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 426.20 . \mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{FClN} 3,426.2107$; found, 426.2100.

\mathbf{N}-(2-chloro-5-((E)-(2-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (4c): The general synthetic procedure D was used with the amine $14 \mathrm{c}(95 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\operatorname{Mel}(277 \mu \mathrm{~L}, 4.4 \mathrm{mmol})$ in $\mathrm{DCM}(4.5 \mathrm{~mL})$ to give the ammonium salt 4 c as an orange solid ($97 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (t, J = 7.4 Hz, 1H), $6.38(\mathrm{br}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 6 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.46,148.13,139.33$, $137.73,136.38,136.05,133.91,132.97,130.93,127.59,126.60,123.11,117.87,70.39,63.02,49.76$, 49.54, 47.18, 39.74, 38.28, 32.35, 32.08, 26.02, 21.56. HPLC-PDA-MS: RT = $4.95 \mathrm{~min}, 99.5 \% ~(254 \mathrm{~nm}$), PDA $\lambda_{\max }=233,329 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$442.20. HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{3}$, 442.1811; found, 4421805.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (4d): The general synthetic procedure D was used with the amine 14d ($123 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{Mel}(325 \mu \mathrm{~L}, 5.2 \mathrm{mmol})$ in DCM (5.0 mL) to give the ammonium salt 4d as an orange solid ($123 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95$ (dd, J = 8.6, 2.2 Hz, 1H), 7.73 (dd, J = 7.8, 1.7 Hz, 1H), $7.70(\mathrm{dd}, \mathrm{J}=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (d, J
$=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{br}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 6 \mathrm{H}), 2.54$ ($\mathrm{dt}, \mathrm{J}=8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 151.25,148.96,139.38,137.67,136.08,133.97,133.55$, $133.15,131.78,128.24,127.00,126.63,123.48,118.01,70.27,62.91,49.72,49.51,47.13,39.72$, 38.25, 32.34, 32.06, 26.01, 21.55. HPLC-PDA-MS: RT $=4.88 \mathrm{~min}, 98.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=317,440$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 486.15,488.20$. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrClN}_{3}, 486.1306$; found, 486.1283.

N-(2-chloro-5-((E)o-tolyldiazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,Ndimethylmethanaminium iodide (4f): The general synthetic procedure D was used with the amine $\mathbf{1 4 f}$ ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{Mel}(123 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$ in DCM $(2.0 \mathrm{~mL})$ to give the ammonium salt $\mathbf{4 f}$ as an orange solid ($22 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.38(\mathrm{br}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 6 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.75,150.25,139.52$, $138.41,137.69,136.09,132.24,131.76,131.62,131.58,126.60,126.45,124.54,115.61,70.35,63.05$, 49.70, 49.47, 47.18, 39.74, 38.28, 32.35, 32.08, 26.03, 21.56, 18.04. HPLC-PDA-MS: RT $=4.99 \mathrm{~min}$, 99.5\% (254 nm), PDA $\lambda_{\max }=233,331 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$422.20. HRMS (m/z): [M] ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{ClN}_{3}, 422.2358$; found, 422.2359 .

N-(2-chloro-5-((E)-(2-(trifluoromethyl)phenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo
[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide ($\mathbf{4 g}$): The general synthetic procedure D was used with the amine $14 \mathrm{~g}(95 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{Mel}(257 \mu \mathrm{~L}, 4.1 \mathrm{mmol})$ in DCM $(4.0 \mathrm{~mL})$ to give the ammonium salt $\mathbf{4 g}$ as an orange solid ($109 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55$ $(\mathrm{m}, 2 \mathrm{H}), 6.39(\mathrm{br}, 1 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ $(\mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 6 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $3 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.33,148.75,139.69,137.78$, 136.04, 134.59, 132.92, 131.91, 131.69, 129.54, 129.29, 129.05, 128.80, 127.29, 126.84, 126.80, $126.75,126.71,126.64,125.11,122.94,122.71,120.76,116.50,70.39,63.01,49.75,49.52,47.19$, 39.74, 38.29, 32.36, 32.08, 26.02, 21.54. HPLC-PDA-MS: RT $=4.88 \mathrm{~min}, 99.7 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=$ 324, nm, MS (m/z) [M] 476.25. HRMS (m/z): [M] calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{ClF}_{3} \mathrm{~N}_{3}$ 476.2075; found, 476.2092.

N-(2-chloro -5-((E)-(2-methoxyphenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (4h): The general synthetic procedure D was used with amine $14 \mathrm{~h}(70 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{Mel}(206 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ in DCM (3.3 mL). Following the general synthetic procedure D the ammonium salt $\mathbf{4 h}$ did not precipitate as a solid, but as an oil. MTBE was decanted and the oil was washed with several portions of MTBE. The product was dried in the vacuum oven to give an orange oil, which corresponded to the expected product 4 h with the presence of a 0.44 molar fraction of solvated MTBE ($91 \mathrm{mg}, 91 \%$). The MTBE solvate could not be removed under high vacuum and temperature and was taken into account when calculating the yield and the concentrations for pharmacological experiments. The product contained 95\% of the trans-isomer and 5% of cis-isomer. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, \mathrm{J}=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, J = 8.1, 1.7 Hz, 1H), $7.60(d, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, \mathrm{J}=8.6,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{br}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{dt}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.73$, 152.12, 141.84, 138.29, 137.73, 136.07, 133.98, 132.69, 131.67, 126.32, 123.61, 120.99, 117.31, $113.04,72.91,70.49,63.38,56.54,49.77,49.59,49.55,47.27,39.80,38.31,32.38,32.09,27.11,26.05$, 21.57. HPLC-PDA-MS: trans-isomer: $\mathrm{RT}=4.48 \mathrm{~min}, 94.7 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=323,362 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})$ [M] ${ }^{+} 438.30$; cis-isomer: $\mathrm{RT}=4.20 \mathrm{~min}, 4.1 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=434 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 438.35$. HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}, 438.2307$; found, 438.2298.

N-(2-chloro-5-((E)-(2-(trifluoromethoxy)phenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo
[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (4i): The general synthetic procedure D was used with the amine $14 \mathrm{i}(74 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathrm{Mel}(194 \mu \mathrm{~L}, 3.1 \mathrm{mmol})$ in DCM $(3.10 \mathrm{~mL})$ to give the ammonium salt 4 i as an orange solid ($72 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (d, J = 8.4 Hz, 1H), $7.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.35$ (m, 2H), $6.39(b r, 1 H), 5.30(d, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (d, J = $12.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.28(\mathrm{~s}, 6 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.43,147.37,144.43,139.56$, 137.72, 136.07, 134.50, 133.26, 131.85, 127.88, 126.62, 123.73, 123.19, 122.35, 121.68, 119.63, $117.75,117.58,70.32,62.96,49.72,49.50,47.15,39.72,38.26,32.34,32.06,26.00,21.53$. HPLC-PDAMS: RT $=5.05 \mathrm{~min}, 99.7 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=325 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 492.25 . \mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}, 492.2019$; found, 492.2024

N-(5-((E)-(3-bromophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (5b): The general synthetic procedure D was used with the amine 15b ($138 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Mel}(365 \mu \mathrm{~L}, 5.8 \mathrm{mmol})$ in $\mathrm{DCM}(6.0 \mathrm{~mL})$ to give the ammonium salt 5b as an orange solid ($148 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}$, $1 \mathrm{H}), 7.97-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{br}, 1 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 6 \mathrm{H}), 2.63-2.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.50-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.95,150.97,139.28,137.68,136.07,134.69,131.89,131.74,130.72$, 126.67, 125.09, 124.67, 123.67, 123.25, 70.40, 62.93, 47.15, 39.72, 38.26, 32.34, 32.07, 26.02, 21.55. HPLC-PDA-MS: RT $=4.96 \mathrm{~min}, 99.7 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=324 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 488.20 . H R M S(\mathrm{~m} / \mathrm{z}):$ $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrClN}_{3}, 486.1306$; found, 486.1302.

\boldsymbol{N}-(5-((E)-(4-bromophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (5c): The general synthetic procedure D was used with the amine 15c ($76 \mathrm{mg}, 0.16 \mathrm{mmol}$) and $\mathrm{Mel}(201 \mu \mathrm{~L}, 3.2 \mathrm{mmol})$ in DCM $(3.3 \mathrm{~mL})$ to give the ammonium salt 5 c as an orange solid ($58 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 3 \mathrm{H}), 6.36(\mathrm{br}, 1 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.31$ $(\mathrm{m}, 3 \mathrm{H}), 2.17(\mathrm{app} . \mathrm{q}, \mathrm{J}=4.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.14,150.85,138.99,137.66,136.06,132.57,131.97,131.70,126.75,126.62$, 125.00, 124.48, $70.35,62.99,49.77,49.53,47.15,39.72,38.26,32.34,32.06,26.01,21.55$. HPLC-PDAMS: RT $=4.95 \mathrm{~min}, 97.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=233,333 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 488.20 . \mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrClN}_{3}, 486.1306$; found, 4861304.

Scheme S2: Synthetic strategies for compounds $\mathbf{3 f - h}, \mathbf{4 e} \mathbf{6} \mathbf{6 b}$ and $\mathbf{6 d}$. (*)Compound $\mathbf{2 3 h}$ was not prepared under the same conditions of the general procedure G. GSP=General Synthetic Procedure.

Methyl 3-nitrosobenzoate (18a): The general synthetic procedure E was used with methyl 3aminobenzoate (17a) ($1.00 \mathrm{~g}, 6.6 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ and Oxone ${ }^{\circledR}(8.3 \mathrm{~g}, 13.6 \mathrm{mmol})$ in water (80 mL) to form the corresponding nitrosocompound 18a (1.03g, 94\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60$ $(\mathrm{s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.84$, 164.89, 135.84, 131.83, 129.66, 123.90, 122.61, 52.84.

Methyl 2-fluoro-5-nitrosobenzoate (18b): The general synthetic procedure E was used with methyl 5-amino-2-fluorobenzoate (17b) ($300 \mathrm{mg}, 1.8 \mathrm{mmol}$) in DCM (5.5 mL) and Oxone ${ }^{\circledR}(2.24 \mathrm{~g}, 3.6 \mathrm{mmol})$ in water (22.0 mL) to form the corresponding nitrosocompound $\mathbf{1 8 b}$ ($295 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.83-8.64(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.72,164.55,163.53,163.50,161.99,161.96,127.95,124.83,124.74,119.94,119.85$, 118.47, 118.28, 53.08.

Methyl 2-chloro-5-nitrosobenzoate (18c): The general synthetic procedure E was used with methyl 5-amino-2-chlorobenzoate (17c) ($630 \mathrm{mg}, 3.4 \mathrm{mmol}$) in DCM (10 mL) and Oxone ${ }^{\circledR}(4.38 \mathrm{~g}, 7.1 \mathrm{mmol})$ in
water (40 mL) to form the corresponding nitrosocompound 18c ($665 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.84,162.46,141.56,132.48,131.26,125.66,122.09,53.15$.

Methyl 2-bromo-5-nitrosobenzoate (18d): The general synthetic procedure E was used with methyl 5-amino-2-bromobenzoate ($\mathbf{1 7 d}$) ($300 \mathrm{mg}, 1.3 \mathrm{mmol}$) in DCM (4 mL) and Oxone ${ }^{\oplus}(1.64 \mathrm{~g}, 2.7 \mathrm{mmol})$ in water (16 mL) to form the corresponding nitrosocompound $18 \mathrm{~d}(308 \mathrm{mg}, 97 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\mathrm{CDCl}_{3} \delta 165.42,162.74,142.48,135.86,130.53,125.13,121.90,53.20$.

Methyl (E)-3-((2-iodophenyl)diazenyl)benzoate (20f): The general synthetic procedure F was used with the nitrosocompound 18a ($444 \mathrm{mg}, 2.7 \mathrm{mmol}$) and 2-iodoaniline 19a ($544 \mathrm{mg}, 2.5 \mathrm{mmol}$) in AcOH $(10 \mathrm{~mL})$ to give the azocompound $\mathbf{2 0 f}$ as an orange solid ($662 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.64(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{td}, \mathrm{J}=8.3,7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, \mathrm{J}=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.55,152.35,151.25,140.08,132.74,132.36,131.56,129.42,129.06$, $126.40,126.10,117.47,103.02,52.55$. HPLC-PDA-MS: RT $=5.77 \mathrm{~min}, 93 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 367.05$.

Methyl (E)-3-((3-iodophenyl)diazenyl)benzoate ($\mathbf{2 0 g}$): The general synthetic procedure F was used with the nitrosocompound 18a ($280 \mathrm{mg}, 1.70 \mathrm{mmol}$) and 3-iodoaniline 19 b ($248 \mathrm{mg}, 1.13 \mathrm{mmol}$) in AcOH (11 mL) to give the azocompound $\mathbf{2 0 g}$ as an orange solid ($397 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dt}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{ddd}, \mathrm{J}=8.0$, $2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (ddd, J = $7.9,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dt}, \mathrm{J}=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.53,153.26,152.36,140.07,132.26$, $131.51,130.88,130.83,129.39,127.26,124.25,123.85,94.71,52.53$. HPLC-PDA-MS: RT $=6.01 \mathrm{~min}$, $99.4 \%(254 \mathrm{~nm})$, PDA $\lambda_{\text {max }}=315 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 366.95$.

Methyl (E)-3-((4-iodophenyl)diazenyl)benzoate (20h): The general synthetic procedure F was used with the nitrosocompound 18a ($450 \mathrm{mg}, 2.7 \mathrm{mmol}$) and 4-iodoaniline 19c ($475 \mathrm{mg}, 2.2 \mathrm{mmol}$) in AcOH $(10 \mathrm{~mL})$ to give the azocompound $\mathbf{2 0 h}$ as an orange solid ($730 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.56(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.59,152.52,151.85,138.58$, 132.12, 131.51, 129.40, 127.19, 124.73, 124.23, 98.42, 52.54. HPLC-PDA-MS: RT $=5.99 \mathrm{~min}, 97.8 \%$ $(254 \mathrm{~nm})$, PDA $\lambda_{\max }=332 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 367.00$.

Methyl (E)-2-chloro-5-((2-iodophenyl)diazenyl)benzoate (21): The general synthetic procedure F was used with the nitrosocompound 18c ($546 \mathrm{mg}, 2.7 \mathrm{mmol}$) and 2-iodoaniline 19 ($563 \mathrm{mg}, 2.6 \mathrm{mmol}$) in AcOH (10 mL) to give the azocompound $\mathbf{2 1}$ as an orange solid ($637 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.46(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) . \delta^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.59,151.07,150.38,140.16,136.78,132.99,132.19,130.97,129.08,128.01$, 125.61, 103.31, 52.85. HPLC-PDA-MS: RT $=5.92 \mathrm{~min}, 86 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=329 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+} 401.00$.

Methyl (E)-5-((2-bromophenyl)diazenyl)-2-fluorobenzoate (22b): The general synthetic procedure F was used with the nitrosocompound 18b ($353 \mathrm{mg}, 1.9 \mathrm{mmol}$) and 2-bromoaniline 19d ($221 \mathrm{mg}, 1.3$ mmol) in $\mathrm{AcOH}(13 \mathrm{~mL})$ to give the azocompound $\mathbf{2 2 b}$ as an orange solid ($307 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{dt}, \mathrm{J}=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ($164.44,164.24,164.22,162.67,149.32,148.65,148.63,133.99,132.49,129.09,129.08$, $128.12,127.68,127.61,126.27,119.56,119.48,118.23,118.07,117.80,52.73$. HPLC-PDA-MS: RT = $5.58 \mathrm{~min}, 98.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\text {max }}=323 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 337.00,338.95$.

Methyl (E)- 2-bromo-5-((2-bromophenyl)diazenyl)-benzoate (22d): The general synthetic procedure F was used with the nitrosocompound $\mathbf{1 8 d}$ ($471 \mathrm{mg}, 1.9 \mathrm{mmol}$) and 2-bromoaniline 19d ($221 \mathrm{mg}, 1.3$ mmol) in $\mathrm{AcOH}(13 \mathrm{~mL})$ to give the azocompound 22d as an orange solid ($314 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (dd, J $=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, \mathrm{J}=8.1,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.11,151.18,149.42,135.47,134.07,133.15$,
132.74, 128.16, 127.35, 126.50, 125.71, 125.05, 117.81, 52.89. HPLC-PDA-MS: RT = $5.86 \mathrm{~min}, 92.1 \%$ $(254 \mathrm{~nm})$, PDA $\lambda_{\max }=331 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 399.10$.

(E)-(3-((2-iodophenyl)diazenyl)phenyl)methanol (23f): The general synthetic procedure G was used with benzoate $20 f(172 \mathrm{mg}, 0.40 \mathrm{mmol})$ and DIBAL-H ($1.6 \mathrm{~mL}, 1.6 \mathrm{mmol}$) in THF (8 mL) to give the alcohol 23 f as an orange oil ($102 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, \mathrm{J}=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (br, 1H), $7.96-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.63$ (dd, J = 8.0, 1.6 Hz, 1H), $7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43$ (ddd, J = 8.2, $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (td, J = $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.83(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.67,151.46$, 142.29, 140.01, 132.42, 130.10, 129.57, 129.07, 123.01, 121.95, 117.50, 102.65, 65.10. HPLC-PDA-MS: RT $=4.88 \mathrm{~min}, 97.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=324 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 338.75$.

(E)-(3-((3-iodophenyl)diazenyl)phenyl)methanol ($\mathbf{2 3 g}$): The general synthetic procedure G was used with benzoate $\mathbf{2 2 g}(364 \mathrm{mg}, 0.99 \mathrm{mmol})$ and DIBAL-H ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in THF (20 mL) to give the alcohol $\mathbf{2 3 g}$ as an orange oil ($334 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-$ $7.88(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{dt}, \mathrm{J}=6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, \mathrm{J}=7.8,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.27$ (t, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.82(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.47,152.68,142.27,139.77,130.81$, $130.75,129.96,129.53,123.75,123.01,120.86,94.71,65.03$. HPLC-PDA-MS: RT $=5.09 \mathrm{~min}, 98.8 \%$ $(254 \mathrm{~nm})$, PDA $\lambda_{\max }=320 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 339.05$.

(E)-(3-((3-iodophenyl)diazenyl)phenyl)methanol (23h): Benzoate 20h ($208 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in a mixture of DCM (8 mL) and PhMe (4 mL). DIBAL-H ($682 \mu \mathrm{~L}, 0.68 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added slowly at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to quench the reaction. The mixture was slowly warmed to rt. An aqueous Rochelle salt solution $(10 \%, 20 \mathrm{~mL})$ was added and the mixture was stirred for 3 h at rt . Water (30 mL) and DCM (20 mL) were added and the layers were separated. The organic layer was washed with brine ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo to give a residue (orange/red oil) that showed only 50% conversion. The residue was purified with automated flash chromatography ($\mathrm{cHex} / \mathrm{EtOAc}$) to give alcohol $\mathbf{2 3 h}$ as an orange/red oil with high purity ($86 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91$ (s, $1 \mathrm{H}), 7.90-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.76,151.97,142.23,138.51,129.82,129.53,124.62,122.95,120.77,97.97,65.04$. HPLC-PDA-MS: RT $=5.08 \mathrm{~min}, 93.4 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=333 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 338.95$.

(E)-(2-chloro-5-((2-iodophenyl)diazenyl)phenyl)methanol (24): The general synthetic procedure G was used with benzoate $\mathbf{2 1}(140 \mathrm{mg}, 0.28 \mathrm{mmol})$ and DIBAL-H ($1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}$) in THF (6 mL) to give the alcohol 24 as an orange oil ($88 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (dd, J = 7.9, 1.3 Hz, 1H), 7.87 (dd, J = 8.4, 2.4 Hz, 1H), 7.63 (dd, J = 8.0, 1.6 Hz, 1H), $7.52(d, J=8.4 \mathrm{~Hz}$, 1 H), 7.43 (ddd, J = 8.1, $7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (td, J = $7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (151.29, 151.19, 140.09, 139.52, 135.79, 132.65, 130.34, 129.08, 124.10, 123.23, 117.46, 102.96, 62.80. HPLC-PDA-MS: RT $=5.33 \mathrm{~min}, 99.1 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=331 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$ 373.05 .

(E)-(5-((2-bromophenyl)diazenyl)-2-fluorophenyl)methanol (25b): The general synthetic procedure G was used with benzoate 22b ($306 \mathrm{mg}, 0.91 \mathrm{mmol}$) and DIBAL-H ($2.7 \mathrm{~mL}, 2.7 \mathrm{mmol}$) in THF (18 mL) to give the alcohol 25b as an orange oil ($276 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ (dd, J = 7.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (ddd, J = 8.7, 5.0, 2.5 Hz, 1H), 7.76 (dd, J = 8.0, 1.3 Hz, 1H), $7.66(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}$, 1 H), 7.39 (ddd, J = 8.1, 7.3, 1.4 Hz, 1H), 7.32 (ddd, J = 8.0, 7.2, 1.7 Hz, 1H), $7.21(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.35,161.67,149.59,149.36,149.34,133.94,132.13,129.13$, $129.02,128.14,125.91,124.86,124.80,124.52,124.48,117.88,116.36,116.21,59.39,59.37$. HPLC-PDA-MS: RT $=4.88 \mathrm{~min}, 96.7 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=327 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 308.95,311.00$.

(E)-(2-bromo-5-((2-bromophenyl)diazenyl)phenyl)methanol (25d): The general synthetic procedure G was used with benzoate 22d ($250 \mathrm{mg}, 0.63 \mathrm{mmol}$) and DIBAL-H ($1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$) in THF (12.5 mL) to give the alcohol 25d as an orange oil ($226 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, \mathrm{J}=8.0,7.3$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (td, J = 7.9, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.85(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.00,149.63$, 141.13, 134.01, 133.58, 132.39, 128.16, 126.18, 125.79, 123.96, 123.29, 117.88, 64.96. HPLC-PDA-MS: $R T=5.29 \mathrm{~min}, 80.8 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=333 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 370.95$.

(E)-3-((2-iodophenyl)diazenyl)benzaldehyde (26f): The general synthetic procedure H was used with alcohol 23 f ($187 \mathrm{mg}, 0.55 \mathrm{mmol}$) and Dess Martin periodinane ($235 \mathrm{mg}, 0.55 \mathrm{mmol}$) in DCM (11 mL)
to give benzaldehyde $\mathbf{2 6 f}$ as an orange oil ($171 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.15(\mathrm{~s}, 1 \mathrm{H})$, 8.46 (t, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.25 (ddd, J = 7.9, 2.1, 1.2 Hz, 1H), 8.06 (dd, J = 7.9, 1.2 Hz, 1H), 8.04 (dt, J = 7.6, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.71(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, \mathrm{J}=7.7,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (td, J = 7.6, 1.6 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.70,152.74,151.17,140.17,137.56,132.99$, 131.70, 130.12, 129.11, 128.78, 125.41, 117.48, 103.26. HPLC-PDA-MS: RT = $5.49 \mathrm{~min}, 99.5 \% ~(254 \mathrm{~nm})$, PDA $\lambda_{\max }=319 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 337.10$.

((E)-3-((3-iodophenyl)diazenyl)benzaldehyde (26g): The general synthetic procedure H was used with alcohol $\mathbf{2 3 g}$ ($329 \mathrm{mg}, 0.97 \mathrm{mmol}$) and Dess Martin periodinane ($413 \mathrm{mg}, 0.97 \mathrm{mmol}$) in DCM (20 mL) to give benzaldehyde $\mathbf{2 6 g}$ as an orange oil ($222 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H})$, $8.40(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{ddd}, \mathrm{J}=7.9,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dt}, \mathrm{J}=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.95 (ddd, J = 7.9, 1.9, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.84(\mathrm{dt}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}$, $\mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.70,153.21,152.80,140.33,137.52,131.71,130.94$, $130.91,130.10,129.07,124.07,123.97,94.75$. HPLC-PDA-MS: RT $=5.67 \mathrm{~min}, 91.6 \%$ (254 nm), PDA $\lambda_{\max }=319 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 337.00$.

(E)-3-((4-iodophenyl)diazenyl)benzaldehyde (26h): The general synthetic procedure H was used with alcohol 23h ($187 \mathrm{mg}, 0.55 \mathrm{mmol}$) and Dess Martin periodinane ($235 \mathrm{mg}, 0.55 \mathrm{mmol}$) in DCM (11 mL) to give benzaldehyde $\mathbf{2 6 h}$ as an orange oil ($156 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H})$, $8.40(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) 191.81, 152.89, 151.74, 138.65, 137.47, 131.62, 130.09, 129.02, 124.78, 123.99, 98.78. HPLC-PDA-MS: RT = $5.65 \mathrm{~min}, 99.6 \% ~(254 \mathrm{~nm})$, PDA $\lambda_{\max }=332$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 337.00$.

(E)-2-chloro-5-((2-iodophenyl)diazenyl)benzaldehyde (27): The general synthetic procedure H was used with alcohol 24 ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$) and Dess Martin periodinane ($228 \mathrm{mg}, 0.54 \mathrm{mmol}$) in DCM $(11 \mathrm{~mL})$ to give benzaldehyde 27 as an orange oil ($192 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.55(\mathrm{~s}$, $1 \mathrm{H}), 8.53$ (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, J = $8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (dd, J = 7.9, 1.3 Hz, 1H), 7.66 (dd, J = 8.0, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, \mathrm{J}=8.2,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.10,150.90,140.17,140.09,133.22,133.05,131.66,128.99,127.43$, 126.07, 117.32, 103.38. HPLC-PDA-MS: RT = $5.91 \mathrm{~min}, 97.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+} 371.10$.

(E)-5-((2-bromophenyl)diazenyl)-2-fluorobenzaldehyde (28b): The general synthetic procedure H was used with alcohol 25b ($264 \mathrm{mg}, 0.85 \mathrm{mmol}$) and Dess Martin periodinane ($362 \mathrm{mg}, 0.85 \mathrm{mmol}$) in DCM (17 mL) to give benzaldehyde $\mathbf{2 8 b}$ as an orange oil ($205 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 10.44 (s, 1H), 8.50 (dd, J = 6.5, 2.6 Hz, 1H), 8.23 (ddd, J = 8.6, 4.9, 2.6 Hz, 1H), 7.77 (dd, J = 8.0, 1.3 Hz, $1 \mathrm{H}), 7.69(\mathrm{dd}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, \mathrm{J}=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.71,186.67,186.62,166.89,165.14,149.31,149.26$, 149.24, 134.08, 132.73, 129.50, 129.44, 128.19, 126.48, 125.56, 124.84, 124.78, 117.89, 117.84, 117.74. HPLC-PDA-MS: RT $=5.44 \mathrm{~min}, 95.1 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=319 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 307.00$, 309.00.

(E)-5-((2-bromophenyl)diazenyl)-2-fluorobenzaldehyde (28d): The general synthetic procedure H was used with alcohol 25d ($219 \mathrm{mg}, 0.59 \mathrm{mmol}$) and Dess Martin periodinane ($251 \mathrm{mg}, 0.59 \mathrm{mmol}$) in DCM (12 mL) to give benzaldehyde 28d as an orange oil ($185 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.44(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=$ $7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (dd, J = 8.0, 1.7 Hz, 1H), 7.41 (td, J = 7.9, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (td, J = 7.7, 1.8 Hz , $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.22,151.88,149.38,135.04,134.49,134.14,132.95,129.64$, $128.21,127.61,126.72,126.37,117.85$. HPLC-PDA-MS: RT $=5.87 \mathrm{~min}, 99.5 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=328$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 369.00$.

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-(3-((E)-(2-iodophenyl)diazenyl)benzyl)-Nmethylmethanamine (13f): The general synthetic procedure A was used with ammonium salt 7 (115 $\mathrm{mg}, 0.57 \mathrm{mmol})$, TEA ($89 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) and benzaldehyde $\mathbf{2 6 f}$ ($153 \mathrm{mg}, 0.46 \mathrm{mmol}$) in DCE (9.0 mL) to give the tertiary amine $13 \mathrm{f}(213 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}$, $1 \mathrm{H}), 7.91-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{td}, \mathrm{J}=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (td, J = 7.6, 1.6 Hz, 1H), 5.46 (br, 1H), 3.64 (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (d, J $=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{app}$. d, J = $17.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (app. d, J = $17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (s, 3H), 2.15 - 2.07 (m, 1H), 1.31 (s, 3H), 1.17 (d, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.53,151.54,146.49,141.29,139.95$, $132.25,132.21,129.09,129.04,124.55,121.79,120.03,117.49,102.54,63.93,61.39,44.37,42.69$, 41.11, 38.13, 32.04, 31.57, 26.51, 21.29. HPLC-PDA-MS: RT = $4.81 \mathrm{~min}, 99.9 \% ~(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 486.25$

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-(3-((E)-(3-iodophenyl)diazenyl)benzyl)-Nmethylmethanamine (13g): The general synthetic procedure A was used with ammonium salt 7 (160 $\mathrm{mg}, 0.79 \mathrm{mmol})$, TEA ($124 \mu \mathrm{~L}, 0.89 \mathrm{mmol}$) and benzaldehyde $\mathbf{2 6 g}$ ($213 \mathrm{mg}, 0.63 \mathrm{mmol}$) in DCE (12.5 $\mathrm{mL})$ to give the tertiary amine $13 \mathrm{~g}(269 \mathrm{~g}, 87 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.91 (ddd, J = 7.9, 2.0, 1.0 Hz, 1H), $7.86(\mathrm{br}, 1 \mathrm{H}), 7.79(\mathrm{dt}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.26$ (t, J = 7.9 Hz, 1H), $5.49-5.42(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{app} . \mathrm{d}$, $\mathrm{J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (app. d, J = $17.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.60,152.52,146.44,141.28,139.55,132.16$, $130.77,130.74,129.08,123.64,123.44,121.85,120.05,94.70,63.84,61.38,44.41,42.74,41.09$, $38.12,32.02,31.56,26.47,21.29$. HPLC-PDA-MS: RT $=4.81 \mathrm{~min}, 99.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=321 \mathrm{~nm}$, $\mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 486.25$

1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-(3-((E)-(4-iodophenyl)diazenyl)benzyl)-Nmethylmethanamine (13h): The general synthetic procedure A was used with ammonium salt 4 (110 $\mathrm{mg}, 0.55 \mathrm{mmol})$, TEA ($100 \mu \mathrm{~L}, 0.73 \mathrm{mmol}$) and benzaldehyde $19 \mathrm{~h}(150 \mathrm{mg}, 0.45 \mathrm{mmol})$ in DCE (10 mL) to give the tertiary amine $13 \mathrm{~h}(192 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.82-$ $7.76(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ $(\mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.20$ $(\mathrm{m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.59,152.09,146.39,141.22,138.45,132.03,129.08,124.57,123.35,121.79$, 120.07, $97.67,63.83,61.36,44.34,42.75,41.03,38.10,32.00,31.54,26.44,21.28$. HPLC-PDA-MS: RT $=5.64 \mathrm{~min}, 99.7 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=333 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 486.15$.

N-(2-chloro-5-((E)-(2-iodophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-
2-yl)-N-methylmethanamine (14e): The general synthetic procedure A was used with ammonium salt 7 ($116 \mathrm{mg}, 0.58 \mathrm{mmol})$, TEA ($90 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$) and benzaldehyde 27 ($171 \mathrm{mg}, 0.46 \mathrm{mmol}$) in DCE (9 mL) to give the tertiary amine $14 \mathrm{e}(199 \mathrm{~g}, 83 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43$ (td, J = 7.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (td, J = $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (d, J = $13.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.96(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.34-$
$2.18(\mathrm{~m}, 5 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 151.36,151.09,146.45,140.02,138.75,137.34,132.45,130.22,129.06,126.80,121.62$, 120.05, 117.44, 102.87, 64.24, 58.19, 44.37, 42.79, 41.08, 38.13, 32.05, 31.58, 26.52, 21.23. HPLC-PDA-MS: RT $=5.13 \mathrm{~min}, 99.4 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=329 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 520.20$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-fluorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methylmethanamine (16b): The general synthetic procedure A was used with ammonium salt 7 ($163 \mathrm{mg}, 0.81 \mathrm{mmol}$), TEA ($126 \mu \mathrm{~L}, 0.90 \mathrm{mmol}$), benzaldehyde $\mathbf{2 8 b}$ ($198 \mathrm{mg}, 0.65 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(219 \mathrm{mg}, 1.03 \mathrm{mmol})$ in DCE $(13 \mathrm{~mL})$ to give the tertiary amine $\mathbf{1 6 b}(228 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{dd}, \mathrm{J}=6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, \mathrm{J}=8.7,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, \mathrm{J}=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (t, J = 8.9 Hz, 1H), 5.47 (br, 1H), 3.69 (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H})$, $2.92(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, \mathrm{J}=5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 2 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (164.25, 162.58, 149.69, 149.23, 149.21, 146.33, 133.89, 131.93, 128.11, 127.50, 127.46, $127.36,125.82,123.28,123.22,120.22,117.88,116.24,116.08,63.91,53.81,44.33,42.59,41.08$, 38.11, 32.03, 31.58, 26.45, 21.25. HPLC-PDA-MS: RT $=4.76 \mathrm{~min}, 86.8 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=324 \mathrm{~nm}$, MS (m/z) $[\mathrm{M}+\mathrm{H}]^{+} 456.20,458.25$.

N-(2-bromo-5-((E)-(2-iodophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methylmethanamine (16d): The general synthetic procedure A was used with ammonium salt 7 ($134 \mathrm{mg}, 0.66 \mathrm{mmol}$), TEA ($103 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$), benzaldehyde 28d ($195 \mathrm{mg}, 0.53 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(180 \mathrm{mg}, 0.85 \mathrm{mmol})$ in DCE $(11 \mathrm{~mL})$ to give the tertiary amine 16d (198 g, 72\%). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{td}$, J = 7.6, 1.3 Hz, 1H), 7.33 (td, J = 7.6, 1.7 Hz, 1H), $5.47(b r, 1 H), 3.68(d, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, \mathrm{J}=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 5 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.91,149.72,146.46,140.48,133.94,133.49,132.17,128.13,127.83$, 126.68, 126.08, 121.64, 120.04, 117.88, 64.09, 60.75, 44.39, 42.77, 41.08, 38.12, 32.02, 31.57, 26.48, 21.24. HPLC-PDA-MS: RT $=5.21 \mathrm{~min}, 95.5 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=331 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 518.20$.

N-(3-((E)-(2-iodophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-
dimethylmethanaminium iodide (3f): The general synthetic procedure D was used with the amine $\mathbf{1 3 f}$ $(176 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Mel}(453 \mu \mathrm{~L}, 7.3 \mathrm{mmol})$ in DCM $(7.0 \mathrm{~mL})$ to give the ammonium salt 3 f as an orange solid ($215 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=8.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dt}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, \mathrm{J}=$ $8.1,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{br}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dt}, \mathrm{J}=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.19$ - $2.13(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.42,150.71$, $139.92,137.06,136.31,135.97,132.97,130.42,129.00,128.38,124.76,117.28,103.77,69.20,66.77$, $49.20,48.94,47.01,39.66,38.12,32.19,32.01,25.93,21.50$. HPLC-PDA-MS: RT $=4.75 \mathrm{~min}, 99.6 \%(254$ $\mathrm{nm})$, PDA $\lambda_{\max }=322 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$500.20. HRMS (m/z): $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{I} \mathrm{N}_{3}, 500.1557$; found, 500.1547.

N-(3-((E)-(3-chlorophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)\mathbf{N}, \mathbf{N}-dimethylmethanaminium iodide $\mathbf{(3 g)}$: The general synthetic procedure D was used with the amine $13 \mathrm{~g}(260 \mathrm{mg}, 0.54 \mathrm{mmol})$ and $\mathrm{Mel}(670 \mu \mathrm{~L}, 10.7 \mathrm{mmol})$ in DCM $(11.0 \mathrm{~mL})$ to give the ammonium salt $\mathbf{3 g}$ as an orange solid ($305 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{br}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{dt}, \mathrm{J}=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.06,152.50,140.34$, $137.15,136.41,136.09,130.92,130.88,130.44,128.53,128.04,124.45,124.00,94.73,69.30,66.89$, $49.31,49.07,47.13,39.78,38.24,32.30,32.13,26.05,21.58$. HPLC-PDA-MS: RT $=4.58 \mathrm{~min}, 99.9 \%(254$ $\mathrm{nm})$, PDA $\lambda_{\max }=317, \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 500.25 . \mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3}, 500.1557$; found, 500.1541.

N-(3-((E)-(4-iodophenyl)diazenyl)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,Ndimethylmethanaminium iodide (3h): The general synthetic procedure D was used with the amine 13h (112 mg, 0.23 mmol$)$ and $\mathrm{Mel}(289 \mu \mathrm{~L}, 4.6 \mathrm{mmol})$ in DCM (4.5 mL) to give the ammonium salt 3h as an orange solid ($141 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.91(\mathrm{~m}$, $2 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{br}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H})$, $4.46(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dt}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.66,151.64,138.61,137.16,136.20,136.07,130.42,128.48,128.00,124.82,124.41$, $98.87,69.32,66.98,49.31,49.07,47.14,39.78,38.24,32.31,32.14,26.05,21.58$. HPLC-PDA-MS: RT = $4.99 \mathrm{~min}, 100 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=333, \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 500.20$. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{IN}_{3}, 500.1557$; found, 500.1542 .

N-(5-((E)-(2-iodophenyl)diazenyl)-2-chlorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (4e): The general synthetic procedure D was used with the amine $14 \mathrm{e}(195 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{Mel}(469 \mu \mathrm{~L}, 7.5 \mathrm{mmol})$ in DCM $(7.5 \mathrm{~mL})$ to give the ammonium salt 4 e as an orange solid ($203 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-$ $7.98(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.39(\mathrm{br}, 1 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 6 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.12,150.69,140.08,139.25$, 137.81, 136.07, 133.48, 132.82, 131.84, 129.17, 126.62, 124.60, 117.61, 104.53, 70.46, 63.20, 49.79, 49.54, 47.27, 39.80, 38.32, 32.40, 32.12, 26.06, 21.61. HPLC-PDA-MS: RT = $4.69 \mathrm{~min}, 99.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=212,329 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$534.25. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClIN} 3,534.1167$; found, 534.1175 .

N-(5-((E)-(2-bromophenyl)diazenyl)-2-fluorobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (6b): The general synthetic procedure D was used with the amine 16b ($218 \mathrm{mg}, 0.48 \mathrm{mmol}$) and $\mathrm{Mel}(597 \mu \mathrm{~L}, 9.6 \mathrm{mmol})$ in DCM (9.5 mL) to give the ammonium salt 6b as an orange solid ($216 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53$ (dd, J=6.8, 2.4 $\mathrm{Hz}, 1 \mathrm{H}$), 8.08 (ddd, J = 8.8, 4.9, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, J = 8.0, 1.3 Hz, 1H), 7.72 (dd, J = 8.0, 1.7 Hz, 1H), 7.40 (td, J = 7.6, 1.4 Hz, 1H), $7.34(t d, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{br}, \mathrm{J}=3.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H})$, $2.55(\mathrm{dt}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.35,162.65,149.53,149.51,149.07,137.69,136.07$, $133.98,133.71,133.70,132.95,126.76,124.91,124.85,118.09,117.61,117.45,115.88,115.78,70.09$, 60.26, 49.66, 49.45, 47.21, 39.79, 38.28, 32.36, 32.14, 26.07, 21.57. HPLC-PDA-MS: RT = 4.68 min , 99.9\% (254 nm), PDA $\lambda_{\max }=323 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 470.25,472.25$. HRMS (m/z): [M] calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrFN}_{3}$, 470.1602; found, 470.1596.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-bromobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide ($6 \mathbf{d}$): The general synthetic procedure D was used with the amine 16d ($187 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{Mel}(452 \mu \mathrm{~L}, 7.2 \mathrm{mmol})$ in DCM (4.5 mL) to give the ammonium salt $6 \mathbf{d}$ as an orange solid ($182 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.88(\mathrm{dd}, \mathrm{J}=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dt}, \mathrm{J}=8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.36(\mathrm{~m}$, $3 H), 2.22-2.14(m, 1 H), 1.32(s, 3 H), 1.27(d, J=8.9 H z, 1 H), 0.88(d, J=3.1 H z, 3 H) .{ }^{13} C$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.89,149.08,137.80,136.05,135.26,134.03,133.50,133.23,130.39,128.48,128.29$, 127.07, 123.55, 118.10, 70.54, 65.29, 49.88, 49.60, 47.27, 39.81, 38.34, 32.41, 32.11, 26.05, 21.58. HPLC-PDA-MS: RT $=4.78 \mathrm{~min}, 99.7 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=330 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 532.15 . H R M S(\mathrm{~m} / \mathrm{z}):$ $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{~N}_{3}, 530.0801$; found, 530.0804.

Scheme S3: Synthetic strategies for compounds 6e. GSP=General Synthetic Procedure.

(E)-2-amino-5-((2-bromophenyl)diazenyl)benzaldehyde (30): A solution of phtalimide (195 mg, 1.32 $\mathrm{mmol})$, benzaldehyde $\mathbf{2 8 b}(271 \mathrm{mg}, 0.88 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(244 \mathrm{mg}, 1.77 \mathrm{mmol})$ in DMF $(6.5 \mathrm{~mL})$ was heated in the microwave at $65^{\circ} \mathrm{C}$ for 3 h . Water (30 mL) was added and the mixture was allowed to cool to room temperature. Slightly acidic water (50 mL) and DCM $(50 \mathrm{~mL})$ were added. The layers were separated. The organic layer was washed with slightly acidic brine ($3 \times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a red solid. The solid was dissolved in $\mathrm{AcOH}(50 \mathrm{~mL})$. The mixture was heated to reflux for 1 h . Around 30 mL of the solvent were removed in vacuo and water was added slowly to induce precipitation. The suspension was heated to reflux to re-dissolve the solids and slowly cooled to $0^{\circ} \mathrm{C}$ to crystallize the product. The crystals were filtered and washed with cold water ($3 \times 5 \mathrm{~mL}$). The
crystalline red solid was purified with automated flash chromatography ($\mathrm{cHex} / \mathrm{EtOAc}$) to give compound $\mathbf{3 0}(179 \mathrm{mg}, 67 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.06 (dd, J = $8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (dd, J = $8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (dd, J=8.0, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (ddd, J = 8.2, 7.3, 1.3 Hz, 1H), $7.28(\mathrm{td}, \mathrm{J}=8.5,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{br}, \mathrm{J}=8.9$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 93.91,152.54,149.76,144.15,134.95,133.80,131.24,128.40$, $128.12,125.18,118.14,117.88,116.98$. HPLC-PDA-MS: RT $=5.05 \mathrm{~min}, 98.2 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=375$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 304.05,306.00$.

(E)-5-((2-bromophenyl)diazenyl)-2-iodobenzaldehyde (28e): To a solution of $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.139 \mathrm{~g}$, $0.730 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added amine $\mathbf{3 0}(74 \mathrm{mg}, 0.243 \mathrm{mmol})$. The suspension of ammonium salt was cooled to $10-15^{\circ} \mathrm{C}$ and to this was added gradually a solution of $\mathrm{NaNO}_{2}(34 \mathrm{mg}, 0.487 \mathrm{mmol})$ and $\mathrm{KI}(101 \mathrm{mg}, 0.61 \mathrm{mmol})$ in water (0.9 mL). The reaction mixture was stirred for 10 min while allowed to warm to rt , after which it was stirred for 2 h . Water (10 mL) and satd. aq. NaHCO_{3} were added (until pH = 9-10), followed by aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{M}, 5 \mathrm{~mL})$. The precipitate was filtered and purified with automated flash chromatography ($\mathrm{cHex} / \mathrm{DCM}$) to give compound $\mathbf{2 8 e}$ ($13 \mathrm{mg}, 13 \%$) as an orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, J = 8.4, 2.5 Hz, 1H), 7.77 (dd, J = 7.8, 1.4 Hz, 1H), $7.70(d d, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{td}, \mathrm{J}=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36$ (td, J = 7.6, 1.7 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.03,152.71,149.37,141.76$, $136.26,134.13,132.95,128.20,127.59,126.73,126.63,117.85,103.48$. HPLC-PDA-MS: RT $=5.15 \mathrm{~min}$, $80.3 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=377 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$no clear MS signal detectable

N-(5-((E)-(2-bromophenyl)diazenyl)-2-iodobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-
$2-\mathrm{yl})-\mathrm{N}$-methylmethanamine (16e): The general synthetic procedure A was used with ammonium salt $7(20 \mathrm{mg}, 0.10 \mathrm{mmol})$, TEA ($14 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$), benzaldehyde $28 \mathrm{e}(33 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ ($27 \mathrm{mg}, 0.13 \mathrm{mmol}$) in DCE (1.6 mL) to give the tertiary amine $16 \mathrm{e}\left(24 \mathrm{mg}, 54 \%\right.$) as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{br}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (br, 1H), 3.62 (s, 2H), 3.16-2.87 (m, 2H), 2.49-2.37 (m, 2H), 2.37-2.22 (m, 5H), 2.17-2.08 (m, 1H), $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $852.75,149.68,140.93$, $140.26,133.94,132.24,128.13,126.13,124.42,121.83,117.91,109.53,104.28,61.28,59.03,44.47$, $42.64,41.01,38.13,32.01,31.60,26.44,21.27,21.27$. HPLC-PDA-MS: RT $=5.50 \mathrm{~min}, 97.7 \%$ (254 nm), PDA $\lambda_{\text {max }}=338 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 564.05,566.15$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-iodobenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (6e): The general synthetic procedure D was used with the amine $16 \mathrm{e}(24 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{Mel}(53 \mu \mathrm{~L}, 0.85 \mathrm{mmol})$ in $\mathrm{DCM}(0.9 \mathrm{~mL})$ to give the ammonium salt $6 \mathbf{e}$ as an orange solid ($14.3 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta 8.50(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, \mathrm{J}=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (br, 1H), $5.31(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.28$ $(\mathrm{m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.74,149.09,142.23,137.88,135.96,134.04$, 133.27, 132.43, 131.94, 128.31, 127.10, 123.51, 118.11, 107.86, 70.72, 69.42, 50.06, 49.68, 47.32, 39.83, 38.41, 32.44, 32.14, 26.05, 21.58.HPLC-PDA-MS: trans-6e RT $=4.89 \mathrm{~min}, 96.8 \%$ (254 nm), PDA $\lambda_{\max }=337 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 578.10,570.10$; cis-6e RT $=4.62 \mathrm{~min}, 2.1 \%(254 \mathrm{~nm}), \mathrm{PDA} \lambda_{\max }=293,420$ $\mathrm{nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 578.10,570.10$. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrIN}_{3}, 578.0662$; found, 578.0661 .

Scheme S4: Synthetic strategies for compounds 6f-h. GSP=General Synthetic Procedure.

(E)-5-((2-bromophenyl)diazenyl)-2-methoxybenzaldehyde (28f): NaOMe (30\% in MeOH, $50 \mu \mathrm{~L}, 0.27$ mmol) was added to a solution of fluoride $\mathbf{2 8 b}(66 \mathrm{mg}, 0.22 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(4.5 \mathrm{~mL})$. The
mixture was heated in the MW at $65^{\circ} \mathrm{C}$ for 60 min . The product partially crystallised. Water (4.5 mL) was added. The resulting suspension was filtered and washed with water ($3 \times 4.5 \mathrm{~mL}$) to give an orange solid which was dried in the oven overnight. This afforded compound $\mathbf{2 8 f}$ as an orange solid (62 mg , 90%), which was used without further purification. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}$, $\mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, \mathrm{J}=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (td, J = 7.6, 1.3 Hz, 1H), 7.31 (td, J = 7.6, 1.7 Hz, 1H), $7.15(d, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.27,164.00,149.59,146.71,133.92,131.99,129.33,128.14,125.85,125.84$, $125.24,117.90,112.41,56.40$. HPLC-PDA-MS: RT $=5.32 \mathrm{~min}, 99.0 \%(254 \mathrm{~nm}), \mathrm{PDA} \lambda_{\max }=338 \mathrm{~nm}, \mathrm{MS}$ (m/z) [M+H] $319.00,321.05$.

(E)-1-(5-((E)-(2-bromophenyl)diazenyl)-2-isopropoxyphenyl)-N-(tert-butyl)methanimine (31): A solution of benzaldehyde $\mathbf{2 8 b}$ ($650 \mathrm{mg}, 2.1 \mathrm{mmol}$) and tert-butyl amine ($227 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) in PhMe was heated to reflux with a Dean-Stark system for 20 h . The solvent was removed in vacuo to give an orange solid that corresponds to $32(755 \mathrm{mg}, 99 \%)$ which was used as such in further reactions. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68$ (dd, J = 6.8, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.61(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{ddd}, \mathrm{J}=8.7,4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, J = 7.9, 1.3 Hz, 1H), 7.67 (dd, J = 8.0, 1.6 Hz, 1H), 7.42-7.36 (m, 1H), 7.32 (td, J = 7.6, 1.7 Hz, $1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.77,163.06,149.61,149.33$, 149.31, 147.92, 147.90, 133.92, 132.13, 128.14, 126.22, 126.19, 125.92, 125.73, 125.66, 123.68, 123.61, 117.94, 116.91, 116.75, 58.35, 29.78. HPLC-PDA-MS: RT $=5.43 \mathrm{~min},>99 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }$ $=320 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 306.95,308.95$, hydrolysis product (aldehyde) observed in MS.

(E)-5-((2-bromophenyl)diazenyl)-2-isopropoxybenzaldehyde (28g): Anhydrous 2-PrOH (40 $\mu \mathrm{L}, 0.53$ mmol) was added to a suspension of $\mathrm{NaH}(13 \mathrm{mg}, 0.53 \mathrm{mmol})$ in anhydrous DMSO (1.5 mL). It was stirred for 30 min . Fluoride 31 ($181 \mathrm{mg}, 0.50 \mathrm{mmol}$) was added. The dark blue mixture was heated to $100^{\circ} \mathrm{C}$ for 1 h , during which the colour turned to dark red. The reaction mixture was poured into water $(40 \mathrm{~mL})$ and extraction with EtOAc ($3 \times 20 \mathrm{~mL}$) was performed. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo to give a pink oil. This residue containing intermediate 32 was dissolved in THF (5 mL). Water (1.5 mL) and $\mathrm{AcOH}(100 \mu \mathrm{~L}$) were added. The mixture was stirred for 16 h at rt . The solvent was removed in vacuo and the obtained residue was redissolved in $\mathrm{EtOAc} /$ water 3:2 (50 mL). The layers were separated. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo to give a residue that was purified with automated flash chromatography (cHex/DCM) to give $\mathbf{2 8 g}$ as an orange solid (138 $\mathrm{mg}, 79 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, \mathrm{J}=9.0,2.6 \mathrm{~Hz}$, 1 H), 7.74 (dd, J = 7.9, 1.3 Hz, 1H), 7.66 (dd, J = $8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (ddd, J = 8.0, 7.2, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (ddd, J = 8.0, 7.2, 1.7 Hz, 1H), 7.12 (d, J = 9.0 Hz, 1H), 4.81 (hept, J = $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.47 (d, J = $6.1 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.55,162.89,149.60,146.32,133.87,131.89,128.73,128.12,126.05$, $125.84,125.78,117.90,114.29,71.94,22.12$. HPLC-PDA-MS: RT $=5.84 \mathrm{~min}, 94.4 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }$ $=341 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 347.00,349.00$.

(E)-5-((2-bromophenyl)diazenyl)-2-(methylthio)benzaldehyde (28h): A solution of fluoride 28b (76 $\mathrm{mg}, 0.25 \mathrm{mmol})$ and NaSMe ($18 \mathrm{mg}, 0.25 \mathrm{mmol}$) in DMF (3 mL) was heated in the MW at $65^{\circ} \mathrm{C}$ for 30 min . Water (6 mL) was added. The suspension was filtered. The solid was washed with water (3×3 mL) and dried in the oven overnight to give $\mathbf{2 8 h}$ as an orange solid ($73 \mathrm{mg}, 88 \%$), which was used as such for further reactions. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (t, J = 7.7 Hz, 1H), $2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.13,149.53,149.29,147.83,134.01$, $132.91,132.35,129.93,128.17,127.25,126.19,125.33,117.85,15.45$. HPLC-PDA-MS: RT = 5.51 min, $92.1 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=353 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 334.90,337.05$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-methoxybenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-methylmethanamine (16f): The general synthetic procedure A was used with ammonium salt 7 ($92 \mathrm{mg}, 0.45 \mathrm{mmol}$), TEA ($71 \mu \mathrm{~L}, 0.51 \mathrm{mmol}$), benzaldehyde 28 f ($116 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(123 \mathrm{mg}, 0.58 \mathrm{mmol})$ in DCE $(7.2 \mathrm{~mL})$ to give the tertiary amine $16 \mathrm{f}(162 \mathrm{mg}, 95 \%)$ as an orange oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, \mathrm{J}=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}$ $=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.02$ (dd, J = 13.2, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 ($\mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.42(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.35$ (m, 1H), 2.31 (app. d, J = $17.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (app. d, J = $17.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H})$, $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H})$. HPLC-PDA-MS: RT $=5.10 \mathrm{~min}, 98.4 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=349 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 468.20,470.20$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-isopropoxybenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]
hept-2-en-2-yl)-N-methylmethanamine (16g): The general synthetic procedure A was used with ammonium salt 7 ($94 \mathrm{mg}, 0.47 \mathrm{mmol}$), TEA ($68 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$), benzaldehyde $\mathbf{2 8 g}$ ($130 \mathrm{mg}, 0.37 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(127 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{DCE}(7.5 \mathrm{~mL})$ to give the tertiary amine $\mathbf{1 6 g}(172 \mathrm{mg}, 93 \%)$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, \mathrm{J}=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$
(dd, J = 8.0, 1.3 Hz, 1H), $7.65(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}), 4.67(\mathrm{hept}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dt}, \mathrm{J}=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (app. d, J = $17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (app. d, J = $17.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.05(\mathrm{~m}$, $1 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.38,150.09,146.74,133.70,131.10,129.52,128.06,126.51,125.18,123.36,119.59,117.95$, $112.57,100.13,70.64,64.00,54.81,44.35,42.61,41.13,38.11,32.04,31.58,26.47,22.27,21.25$. HPLC-PDA-MS: RT = $5.46 \mathrm{~min}, 89.9 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=352 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 496.30,498.35$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-(methylthio)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1] hept-2-en-2-yl)-N-methylmethanamine (16h): The general synthetic procedure A was used with ammonium salt $\mathbf{7}$ ($72 \mathrm{mg}, 0.36 \mathrm{mmol}$), TEA ($56 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$), benzaldehyde $\mathbf{2 8 h}(96 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(97 \mathrm{mg}, 0.46 \mathrm{mmol})$ in DCE $(5.7 \mathrm{~mL})$ to give the tertiary amine $16 \mathrm{~h}(117 \mathrm{mg}, 84 \%)$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{br}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=8.0,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{br}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.16-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 5 \mathrm{H})$, $2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.75$, $149.68,140.93,140.26,133.94,132.24,128.13,126.13,124.42,121.83,117.91,109.53,104.28,61.28$, 59.03, 44.47, 42.64, 41.01, 38.13, 32.01, 31.60, 26.44, 21.27, 21.27. HPLC-PDA-MS: RT = 5.14 min , $98.8 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=367 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+} 484.20,486.20$.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-methoxybenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (6f): The general synthetic procedure D was used with the amine $16 \mathrm{f}(144 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{Mel}(384 \mu \mathrm{~L}, 6.2 \mathrm{mmol})$ in DCM $(6.0 \mathrm{~mL})$ to give the ammonium salt 6 f as an orange solid ($169 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta 8.24(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, \mathrm{J}=8.9,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (d, J = 8.9 Hz, 1H), $6.35(b r, 1 H), 4.95(d, J=12.9 H z, 1 H), 4.91(d, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.34(\mathrm{~m}$, $3 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.28, 149.29, 146.76, 137.20, 136.35, 133.85, 132.49, 132.22, 128.21, 126.09, 125.79, 117.99, 116.40, 112.29, 70.03, 61.71, 56.72, 49.65, 49.50, 47.23, 39.81, 38.23, 32.33, 32.13, 26.10, 21.58. HPLC-PDA-MS: trans-6f RT $=4.89 \mathrm{~min}, 98.6 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }=349 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 482.25$, 484.25; cis-6f RT $=4.40 \mathrm{~min}, 0.9 \%(254 \mathrm{~nm}), \mathrm{PDA} \lambda_{\max }=309,427 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 482.25,484.25$. HRMS (m/z): [M] calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{BrN}_{3} \mathrm{O}$, 482.1802; found, 482.1795.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-isopropoxybenzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1] hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (6 g): The general synthetic procedure D was used with the amine $16 \mathrm{~g}(153 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{Mel}(385 \mu \mathrm{~L}, 6.2 \mathrm{mmol})$ in DCM $(6.0 \mathrm{~mL})$ to give the ammonium salt 6 g as an orange solid ($171 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \delta 8.29(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (dd, J= $9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, \mathrm{J}=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{td}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{br}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{p}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dt}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.62,148.34,145.44,136.16,135.37,132.84,132.53$, 131.19, 127.22, 125.06, 124.15, 117.07, 115.79, 112.67, 70.93, 69.29, 61.00, 48.76, 48.69, 46.29, 38.84, 37.30, 31.36, 31.12, 25.07, 21.27, 20.60. HPLC-PDA-MS: trans-6g RT = $5.32 \mathrm{~min}, 98.6 \%$ (254 $\mathrm{nm})$, PDA $\lambda_{\max }=352 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 510.30,512.30 ; c i s-6 \mathrm{~g}$ RT $=4.84 \mathrm{~min}, 1.0 \%(254 \mathrm{~nm})$, PDA $\lambda_{\max }$ $=309,429 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 510.35,512.35$. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{BrN}_{3} \mathrm{O}, 510.2115$; found, 510.2121.

N-(5-((E)-(2-bromophenyl)diazenyl)-2-(methylthio)benzyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1] hept-2-en-2-yl)-N,N-dimethylmethanaminium iodide (6h): The general synthetic procedure D was used with the amine $16 \mathrm{~h}(104 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{Mel}(268 \mu \mathrm{~L}, 4.3 \mathrm{mmol})$ in DCM (4.5 mL) to give the ammonium salt 6 h as an orange solid ($115 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \delta 8.33(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=$ $8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{br}, 1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $\mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.50$ $-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right)$ $\delta 150.06,149.24,145.90,137.53,136.15,133.91,132.67,132.56,128.23,127.58,126.61$, 125.97, 123.00, 118.05, 70.54, 64.02, 49.89, 49.64, 47.29, 39.81, 38.32, 32.37, 32.05, 26.05, 21.56, 16.81. HPLC-PDA-MS: RT $=4.95 \mathrm{~min}, 99.2 \%(254 \mathrm{~nm}), \operatorname{PDA} \lambda_{\max }=367 \mathrm{~nm}, \mathrm{MS}(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+} 498.30$, 500.25. HRMS (m/z): [M] ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{BrN}_{3} \mathrm{~S}, 498.1565$; found, 498.1573 .

Photochemistry procedures

UV-Vis spectra were obtained using a Thermo-scientific Evolution 201 PC spectrophotometer. Fits of UV-Vis spectroscopy data were generated using GraphPad Prism 6 or 7 software. Illumination was executed using a Sutter instruments Lambda LS with a 300 Watt full-spectrum lamp connected to a Sutter instruments Lambda 10-3 optical filter changer equipped with $434 \pm 9 \mathrm{~nm}$ and $360 \pm 20 \mathrm{~nm}$ filters. The light intensity is $0.77 \mathrm{~mW} / \mathrm{mm} 2$ using the $360 \pm 20 \mathrm{~nm}$ filter and $0.57 \mathrm{~mW} / \mathrm{mm}^{2}$ for the 434 $\pm 9 \mathrm{~nm}$ filter as measured using a Thorlabs PM16-401 power meter. For the determination of UV-Vis spectra or the cis-to-trans thermal relaxation, illuminations were performed in Hellma Suprasil ${ }^{\text {TM }}$ quartz 114-QS cuvettes with a $360-\mathrm{nm}$ filter, a $434-\mathrm{nm}$ and $497-\mathrm{nm}$ or $460-\mathrm{nm}$ filter during 2 min . Samples were $25 \mu \mathrm{M}$ in PBS buffer + 1\% DMSO.

Selected cis-to-trans thermal relaxations were performed in the dark at $10 \mu \mathrm{M} \mathrm{PSS} 360$ in HEPES solution with 1% DMSO, either by prolonged measuring at $25^{\circ} \mathrm{C}(\mathbf{4 d}, \mathbf{6 f})^{1}$ or by an Arrhenius extrapolation method from measurements at higher temperatures (6e, Figure S3). ${ }^{3}$

Illuminations for pharmacological experiments were performed in cylindrical clear glass vials with a volume of $150 \mu \mathrm{~L}$ during 30 min with a $360-\mathrm{nm}$ filter. Samples were 1.0 mM in a mixture of 68 vol\% HEPES binding buffer and $32 \mathrm{vol} \%$ DMSO, or 1.0 mM in a mixture of $68 \mathrm{vol} \%$ TRIS binding buffer and 32 vol\% DMSO (for [${ }^{35}$ S]-GTP γ S binding experiments). For compounds $\mathbf{1 6 f - h}$, irradiation was performed at 3.16 mM in 100% DMSO and subsequent dilution adapted accordingly. The photoisomerization and photostability was monitored by LC-PDA for all the samples. The typical distance between light source and vial or cuvette was 2 cm .

Figure S3. Arrhenius plot for $\mathbf{6 e}$ measured at a concentration of $10 \mu \mathrm{M}$ in HEPES buffer with 1% DMSOd_{6}. The value provided in the main text is an extrapolation of the linear fit presented in this plot. The R^{2} value for linear fit was over 0.999 .

Pharmacology procedures

Cell culture and transfection: Human embryonic kidney 293T (HEK293T) cells were cultured at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in Dulbecco's modified Eagle's medium (Thermo Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (Bodinco, Alkmaar, The Netherlands), $50 \mathrm{IU} / \mathrm{mL}$ penicillin and $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin (Thermo Scientific). Cells were transfected using linear polyethylenimine (PEI) with a molecular weight of 25 kDa (Polysciences, Warrington, PA, USA). Briefly, $1 \mu \mathrm{~g}$ cDNA encoding human CXCR3 (isoform A) and $4 \mu \mathrm{~g}$ empty vector pcDEF_{3} (a gift from Dr. Langer, Robert Wood Johnson Medical School, Piscataway, NJ, USA) was diluted in a total volume of $250 \mu \mathrm{~L} \mathrm{NaCl}$ solution (150 mM). Next, $30 \mu \mathrm{~g}$ PEI diluted in a total volume of $250 \mu \mathrm{~L} \mathrm{NaCl}$ solution was added to the DNA solution, mixed and incubated for 20 min at $22^{\circ} \mathrm{C}$. The DNA/PEI mixture was subsequently added to the medium of adherent HEK293T cells.

Membrane preparation: Membranes were prepared as previously described. ${ }^{4}$ In brief, 48 h posttransfection, CXCR3-expressing HEK293T cells were collected in phosphate buffered saline (PBS). Then, cells were subsequently centrifuged at 1500 xg for 10 min at $4^{\circ} \mathrm{C}$ and washed with PBS. The cell pellet was resuspended in ice-cold membrane buffer (15 mM Tris, $\mathrm{pH} 7.5,1 \mathrm{mM}$ EGTA, 0.3 mM EDTA and 2 mM MgCl 2) and homogenized using a Teflon-glass potter. Next, the membranes were frozen in liquid N_{2} and thawed twice and subsequently centrifuged at 40.000 xg for 25 min at $4^{\circ} \mathrm{C}$. The pellet was resuspended in Tris-sucrose buffer (20 mM Tris, $\mathrm{pH} 7.4,250 \mathrm{mM}$ sucrose) and further homogenized through a 23 G needle. Aliquots were quickly frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.
[${ }^{3} \mathrm{H}$]-VUF11211 binding assay: $\left[{ }^{3} \mathrm{H}\right]$-VUF11211 binding was performed as previously described. ${ }^{4}$ In brief, CXCR3 membranes were incubated in black 96-well plates with increasing concentrations photoswitchable ligand and $1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ VUF11211 (PerkinElmer Life Sciences, Boston, MA, USA, 38.4 $\mathrm{Ci} / \mathrm{mmol}$) in binding buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.4,100 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ (w / v) Tween $80,0.1 \% ~(\mathrm{w} / \mathrm{v}$) BSA fraction V) for 2 h at $25^{\circ} \mathrm{C}$ (shaking at 600 rpm and protected from light). After incubation, the membranes were harvested by rapid filtration and washing with ice-cold wash buffer (50 mM Tris$\mathrm{HCl}, \mathrm{pH} 7.4,0.5 \mathrm{M} \mathrm{NaCl}$) over 96-well GF/C filter plates (PerkinElmer) that were presoaked in $0.5 \% \mathrm{w} / \mathrm{v}$ $\mathrm{BSA} / \mathrm{H}_{2} \mathrm{O}$. The GF/C plates were dried and scintillation liquid was added to determine bound radioactivity with a MicroBeta scintillation counter (PerkinElmer).
[${ }^{35}$ S]-GTPYS binding assay: $\left[{ }^{35}\right.$ S]-GTPYS binding was performed as previously described. ${ }^{5}$ Briefly, 5 $\mu \mathrm{g} /$ well CXCR3-membranes were incubated in a black 96-well plate with indicated concentrations of photoswitchable ligand and $300 \mathrm{pM}\left[{ }^{35}\right.$ S]GTP NPD-3079S (PerkinElmer, $1250 \mathrm{Ci} / \mathrm{mmol}$) in assay buffer (50 mM HEPES, 10 mM MgCl , and $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.2$), supplemented with $3 \mu \mathrm{M}$ GDP (SigmaAldrich) and $5 \mu \mathrm{~g} /$ well saponin for 1 h at $25^{\circ} \mathrm{C}$ (shaking at 600 rpm and protected from light). Next, the CXCR3 membranes were harvested by rapid filtration through Unifilter GF/B plates (PerkinElmer) using ice-cold washing buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.4,5 \mathrm{mM} \mathrm{MgCl})_{2}$) and scintillation liquid was added after drying the GF/B plates. $\left[{ }^{35}\right.$ S]GTP γ S membrane binding was determined using a Microbeta scintillation counter (PerkinElmer) and the response was normalized to that of the endogenous agonist CXCL11 (PeproTech, Rocky Hill, NJ, USA) to determine the relative efficacy of the photoswitchable ligands (α value).

Data analysis: GraphPad Prism 6, 7 or 8 software (GraphPad Software, San Diego) was used for plotting radioligand displacement curves and sigmoidal concentration-response curves and to determine IC_{50} and $\mathrm{pEC} \mathrm{C}_{50}$ values, respectively, by nonlinear regression. The IC_{50} values were converted
to K_{i} values using the method of Cheng and Prusoff. ${ }^{6}$ Statistical analyses were performed using Graphpad Prism 6, 7 or 8 software.

Computational methods

The small molecules were built and optimized using MOE (Molecular Operating Environment, version 2016.0802). A conformational analysis using the stochastic search method (default settings) was performed to obtain the ideal conformation of the azobenzene moieties (taken from the global energy minimum conformation). The potential of the azobenzene atoms was fixed to ensure an optimal conformation throughout molecular superpositions. The three-dimensional structures of $\mathbf{1 e}$ and the azobenzene analogues (trans- and cis-2a) were superposed using the flexible alignment module, using volume as the similarity term (weight 3). Other settings were used as default. For the superposition of trans-2a with 1e, the alignment with the lowest alignment score S of -75.5234 was selected, which is the sum of the average strain energy $U(95.8843 \mathrm{kcal} / \mathrm{mol})$ and the similarity score $F(-171.4077)$ values. The same procedure was used with $\mathbf{1 e}$ and cis-2a, leading to the best alignment with S, U and F values of $-197.7601,95.3657 \mathrm{kcal} / \mathrm{mol}$ and -293.1258 , respectively.

NMR Spectra

Compound 4d (VUF15888).

Compound 6e (VUF16620).

Compound 6 f (VUF16216).

LC-PDA-MS chromatograms

Compound 4d (VUF15888). The iodide counter ion is visible at 0.8 min .
mAU

PDA Ch1 254 nm 4 nm

Peak\#	Name	Ret. Time	Area	Area $\%$
1		3.999	3250	0.501
2		4.542	545	0.084
3		4.882	639476	98.612
4		5.339	1061	0.164
5	5.603	276	0.043	
6		5.888	3872	0.597

\#:1 Ret.Time:Averaged 4.960-4.980(Scan\#:497-499)
Mass Peaks:10 Base Peak:488.20(870908) Polarity:Pos Segment1 - Event1

Compound $6 \mathbf{e}$ (VUF16620). The iodide counter ion is visible at 0.8 min . A trace of cis isomer is visible at 4.62 min .
mAU

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254nm 4nm

Peak\#	Name	Ret. Time	Area	Area $\%$
1		3.452	775	0.023
2		3.987	12585	0.381
3		4.373	712	0.022
4	4.623	69984	2.117	
5		4.891	3201191	96.820
6		5.921	10975	0.332
7		6.071	10114	0.306

Compound $\mathbf{6 f}$ (VUF16216). The iodide counter ion is visible at 0.8 min .
mAU

1PDA Multi

1 PDA Multi 1 / 254 nm 4 nm
PDA Ch1 254 nm 4 nm

Peak\#	Name	Ret. Time	Area	Area $\%$
1		4.108	3422	0.350
2	4.400	8828	0.903	
3	4.885	963798	98.578	
4		5.533	1651	0.169

\#:2 Ret.Time:Averaged 4.960-4.980(Scan\#:497-499)
Mass Peaks:6 Base Peak:482.25(674463) Polarity:Pos Segment1 - Event1
(100)

Retention Time $: 4.885$
$\begin{array}{ll}\text { Compound Name } & \text { : } \\ \text { Spectrum Operation } & \text { : BG Adjust }\end{array}$

nm

References

(1) Gómez-Santacana, X.; de Munnik, S. M.; Vijayachandran, P.; Da Costa Pereira, D.; Bebelman, J. P. M.; de Esch, I. J. P.; Vischer, H. F.; Wijtmans, M.; Leurs, R. Angew. Chemie - Int. Ed. 2018, 57 (36), 11608-11612.
(2) Wijtmans, M.; Verzijl, D.; Bergmans, S.; Lai, M.; Bosch, L.; Smit, M. J.; de Esch, I. J.; Leurs, R. Bioorg. Med. Chem. 2011, 19 (11), 3384-3393.
(3) Hauwert, N. J.; Mocking, T. A. M.; Da Costa Pereira, D.; Kooistra, A. J.; Wijnen, L. M.; Vreeker, G.; Verweij, N. W. E.; De Boer, B. H.; Smit, M. J.; de Graaf, C.; et al. J. Am. Chem. Soc. 2018, 140 (12), 4232-4243.
(4) Scholten, D. J.; Wijtmans, M.; van Senten, J. R.; Custers, H.; Stunnenberg, A.; de Esch, I. J.; Smit, M. J.; Leurs, R. Mol. Pharmacol. 2015, 87 (4), 639-648.
(5) Scholten, D. J.; Canals, M.; Wijtmans, M.; de Munnik, S.; Nguyen, P.; Verzijl, D.; de Esch, I. J.; Vischer, H. F.; Smit, M. J.; Leurs, R. Br. J. Pharmacol. 2012, 166 (3), 898-911.
(6) Yung-Chi, C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22 (23), 3099-3108.

