Electronic Supporting Information

KO'Bu Promoted Selective Ring-Opening *N*-alkylation of 2-Oxazolines to Access 2-Aminoethyl Acetates and *N*-Substituted Thiazolidinones

Qiao Lin,¹ Shiling Zhang,¹ and Bin Li^{1*}

¹School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China

Table of Contents

- S2 General remarks
- S2 *General procedures*
- S4 Characterization data of substrates
- S11 ¹H and ¹³C NMR Spectra

General remarks

All reagents were obtained from commercial sources and used as received. Technical grade petroleum ether (40-60°C bp.) and ethyl acetate were used for chromatography column.

¹H NMR spectra were recorded in CDCl₃ at ambient temperature on Bruker AVANCE I 300 or 400 spectrometers at 300.1 or 400.1 MHz, using the solvent as internal standard (7.26 ppm). ¹³C NMR spectra were obtained at 75 or 100 MHz and referenced to the internal solvent signals (central peak is 77.2 ppm). Chemical shift (δ) and coupling constants (*J*) are given in ppm and in Hz, respectively. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and br. for broad.

GC analyses were performed with GC-14C (Shimadzu) equipped with a 30-m capillary column (Supelco, SPB-5, fused silica capillary column, 30 M*0.25 mm*0.25 mm film thickness), was used with N₂/air as vector gas. GCMS were measured by GCMS-7890A-5975C (Agilent) with GC-7890A equipped with a 30-m capillary column (HP-5ms, fused silica capillary column, 30 M*0.25 mm*0.25 mm film thickness), was used with helium as vector gas. HRMS were measured by MAT 95XP (Termol) (LCMS-IT-TOF).

The following GC conditions were used: initial temperature 80 °C, for 2 minutes, then rate 20 °C/min. until 260 °C and 260°C for 20 minutes.

<u>General procedure for KO'Bu catalyzed selective ring-opening *N*-alkylation of <u>2-oxazolines with benzyl bromides</u></u>

KO'Bu (0.5 mmol, 56 mg), 2-oxazoline (0.5 mmol), benzyl bromide (1.0 mmol) and DMC (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at 50 °C. After 16 h, the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

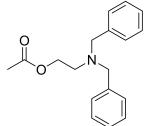
<u>General procedure for KO'Bu catalyzed selective ring-opening *N*-alkylation of <u>2-oxazolines with benzyl chlorides</u></u>

KO'Bu (0.5 mmol, 56 mg), I_2 (0.5 mmol, 127 mg), 2-oxazoline (0.5 mmol), benzyl chloride (1.0 mmol) and DMC (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at 80 °C. After 16 h, the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

<u>General procedure for KO'Bu / I2 promoted selective N-alkylation of 2-oxazolines</u> of thiazolidin-2-one derivatives

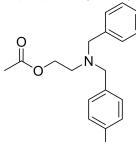
KO'Bu (1 mmol, 112 mg), I₂ (1 mmol, 254 mg), 2-(methylthio)-4,5-dihydrothiazole (0.5 mmol), benzyl halide (1.0 mmol) and DMC (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at 80 °C. After 16 h, the conversion of the

reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

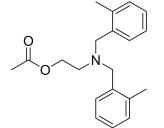

Gram scale procedure for synthesis of 2-(dibenzylamino)ethyl acetate (3a)

KO'Bu (10 mmol, 1.12 g), 2-methyl-2-oxazole (10 mmol, 0.85 mL), benzyl bromide (20 mmol, 2.38 mL) and DMC (10 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at 50 °C. After 16 h, the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent, and was isolated as a light yellow oil in 2.38 g (84%).

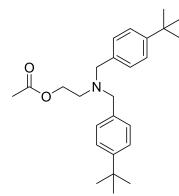
Procedure for synthesis of 2-(dibenzylamino)ethanol (6)


 K_2CO_3 (1.0 mmol, 112 mg), 2-(dibenzylamino)ethyl acetate (0.5 mmol, 142 µL), and methanol (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at room temperature. After 24 h, the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent, and was isolated as a light yellow oil in 106 mg (88%).

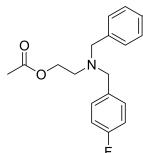
2-(dibenzylamino)ethyl acetate (3a)


Light yellow oil, yield = 80%, 113 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.43-7.28 (m, 10H), 4.21 (t, 2H, *J* = 6.0 Hz), 3.69 (s, 4H), 2.77 (t, 2H, *J* = 6.0 Hz), 2.07 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.1, 139.5, 128.9, 128.4, 127.1, 62.5, 58.8, 51.8, 21.1. HRMS (EI): *m/z* calcd for C₁₈H₂₂NO₂ [M+H]⁺ 284.1645, found 284.1640.

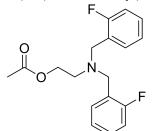
2-(bis(4-methylbenzyl)amino)ethyl acetate (3b)


Organge oil, yield = 85%, 132 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.32 (d, 4H, *J* = 8.1 Hz), 7.18 (d, 4H, *J* = 7.8 Hz), 4.22 (t, 2H, *J* = 6.0 Hz), 3.67 (s, 4H), 2.77 (t, 2H, *J* = 6.0 Hz), 2.40 (s, 6H), 2.09 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.1, 136.6, 136.4, 129.0, 128.8, 62.6, 58.4, 51.5, 21.2, 21.1. HRMS (EI): *m/z* calcd for C₂₀H₂₆NO₂ [M+H]⁺ 312.1958, found 312.1966.

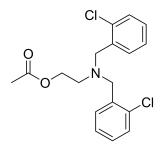
2-(bis(2-methylbenzyl)amino)ethyl acetate (3c)


Light yellow oil, yield = 73%, 113 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.37 (m, 2H), 7.22-7.18 (m, 6H), 4.18 (t, 2H, *J* = 6.0 Hz), 3.67 (s, 4H), 2.77 (t, 2H, *J* = 5.7 Hz), 2.34 (s, 6H), 2.05 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.0, 137.5, 137.1, 130.4, 130.2, 127.2, 125.6, 62.5, 57.6, 52.3, 21.1, 19.2. HRMS (EI): *m/z* calcd for C₂₀H₂₆NO₂ [M+H]⁺ 312.1958, found 312.1952.

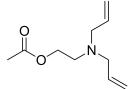
2-(bis(4-(tert-butyl)benzyl)amino)ethyl acetate (3d)


Light yellow oil, yield = 78%, 154 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.42-7.36 (m, 8H), 4.26 (t, 2H, *J* = 6.0 Hz), 3.70 (s, 4H), 2.80 (t, 2H, *J* = 6.0 Hz), 2.10 (s, 3H), 1.39 (s, 18H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.1, 149.9, 136.5, 128.5, 125.2, 62.7, 58.3, 51.8, 34.6, 31.6, 21.1. HRMS (EI): *m/z* calcd for C₂₆H₃₈NO₂ [M+H]⁺ 396.2897, found 396.2902.

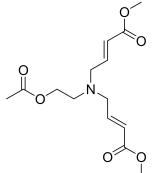
2-(bis(4-fluorobenzyl)amino)ethyl acetate (3e)


Brown oil, yield = 79%, 126 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.35-7.30 (m, 4H), 7.05-6.99 (m, 4H), 4.17 (t, 2H, *J* = 5.7 Hz), 3.60 (s, 4H), 2.72 (t, 2H, *J* = 5.7 Hz), 2.05 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.1, 160.5 (d, *J*_{CF} = 243.3 Hz), 135.0 (d, *J*_{CF} = 3.075 Hz), 130.2 (d, *J*_{CF} = 7.875 Hz), 115.1 (d, *J*_{CF} = 21.075 Hz), 62.3, 57.9, 51.7, 21.1. HRMS (EI): *m/z* calcd for C₁₈H₂₀F₂NO₂ [M+H]⁺ 320.1457, found 320.1451.

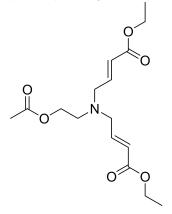
2-(bis(2-fluorobenzyl)amino)ethyl acetate (3f)


Light yellow oil, yield = 72%, 115 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.53-7.48 (m, 2H), 7.29-7.01 (m, 6H), 4.22 (t, 2H, *J* = 6.0 Hz), 3.78 (s, 4H), 2.79 (t, 2H, *J* = 6.0 Hz), 2.05 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.1, 159.8 (d, *J*_{CF} = 244.4 Hz), 131.1 (d, *J*_{CF} = 4.5 Hz), 128.7 (d, *J*_{CF} = 8.175 Hz), 125.8 (d, *J*_{CF} = 13.875 Hz), 124.0 (d, *J*_{CF} = 3.6 Hz), 115.2 (d, *J*_{CF} = 22.05 Hz), 62.4, 51.9, 51.3 (d, *J*_{CF} = 2.25 Hz), 21.0. HRMS (EI): *m*/*z* calcd for C₁₈H₁₉F₂NO₂Na [M+Na]⁺ 342.1276, found 342.1279.

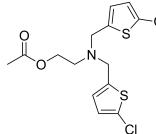
2-(bis(2-chlorobenzyl)amino)ethyl acetate (3g)


Light yellow oil, yield = 70%, 123 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.62-7.59 (m, 2H), 7.37-7.16 (m, 6H), 4.24 (t, 2H, *J* = 6.0 Hz), 3.86 (s, 4H), 2.84 (t, 2H, *J* = 6.0 Hz), 2.06 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.0, 136.8, 134.1, 130.5, 129.5, 128.2, 126.8, 62.5, 55.9, 52.6, 21.1. HRMS (EI): *m/z* calcd for C₁₈H₂₀Cl₂NO₂ [M+H]⁺ 352.0866, found 352.0861.

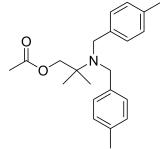
2-(diallylamino)ethyl acetate (3h)


Light yellow oil, yield = 69%, 63 mg, ¹H NMR (300 MHz, CDCl₃): δ = 5.95-5.81 (m, 2H), 5.26-5.19 (m, 4H), 4.19 (t, 2H, *J* = 6.0 Hz), 3.22 (d, 4H, *J* = 6.3 Hz), 2.79 (t, 2H, *J* = 6.0 Hz), 2.07 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.1, 134.3, 119.0, 62.1, 57.3, 51.2, 21.2. HRMS (EI): *m/z* calcd for C₁₀H₁₈NO₂ [M+H]⁺ 184.1332, found 184.1339.

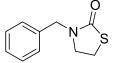
(2E,2'E)-dimethyl 4,4'-((2-acetoxyethyl)azanediyl)bis(but-2-enoate) (3i)


Light red oil, yield = 71%, 106 mg, ¹H NMR (300 MHz, CDCl₃): δ = 6.92-6.83 (m, 2H), 6.04-5.98 (m, 2H), 4.10 (t, 2H, *J* = 5.7 Hz), 3.71 (s, 6H), 3.27 (d, 4H, *J* = 5.7 Hz), 2.70 (t, 2H, *J* = 5.7 Hz), 2.05 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.0, 166.6, 145.4, 122.9, 62.1, 55.3, 52.5, 51.6, 21.0. HRMS (EI): *m/z* calcd for C₁₄H₂₂NO₆ [M+H]⁺ 300.1442, found 300.1448.

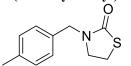
(2E,2'E)-diethyl 4,4'-((2-acetoxyethyl)azanediyl)bis(but-2-enoate) (3j)


Brown oil, yield = 58%, 95 mg, ¹H NMR (300 MHz, CDCl₃): δ = 6.93-6.85 (m, 2H), 6.01 (d, 2H, *J* = 15.6 Hz), 4.22-4.10 (m, 6H), 3.28 (d, 4H, *J* = 5.4 Hz), 2.74-2.70 (m, 2H), 2.07 (s, 3H), 1.31-1.25 (m, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.0, 166.2, 145.1, 123.3, 62.2, 60.5, 55.3, 52.5, 21.0, 14.3. HRMS (EI): *m/z* calcd for C₁₆H₂₆NO₆ [M+H]⁺ 328.1755, found 328.1757.

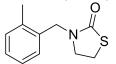
2-(bis((5-chlorothiophen-2-yl)methyl)amino)ethyl acetate (3k)


Brown oil, yield = 66%, 120 mg, ¹H NMR (300 MHz, CDCl₃): δ = 6.75-6.69 (m, 4H), 4.20 (t, 2H, *J* = 6.0 Hz), 3.81 (s, 4H), 2.80 (t, 2H, *J* = 6.0 Hz), 2.10 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.0, 141.5, 129.5, 125.6, 125.1, 62.1, 53.1, 51.2, 21.1. HRMS (EI): *m/z* calcd for C₁₄H₁₆Cl₂NO₂S₂ [M+H]⁺ 363.9994, found 363.9997.

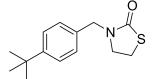
2-(bis(4-methylbenzyl)amino)-2-methylpropyl acetate (3l)


Yellow oil, yield = 72%, 122 mg, ¹H NMR (300 MHz, CDCl₃): δ = 7.21 (d, 4H, *J* = 7.8 Hz), 7.06 (d, 4H, *J* = 7.8 Hz), 4.11 (s, 2H), 3.79 (s, 4H), 2.31 (s, 6H), 2.11 (s, 3H), 1.19 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 171.2, 139.2, 135.9, 128.7, 128.3, 70.1, 57.8, 53.6, 23.3, 21.2, 21.1. HRMS (EI): *m/z* calcd for C₂₂H₃₀NO₂ [M+H]⁺ 340.2271, found 340.2274.

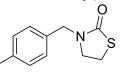
3-benzylthiazolidin-2-one¹ (5a)


Light yellow oil, yield = 83%, 80 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.26 (m, 5H), 4.48 (s, 2H), 3.51 (t, 2H, *J* = 7.2 Hz), 3.22 (t, 2H, *J* = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.2, 136.0, 128.8, 128.1, 127.9, 48.6, 48.0, 25.5. HRMS (EI): *m*/*z* calcd for C₁₀H₁₂ONS [M+H]⁺ 194.0634, found 194.0639.

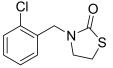
3-(4-methylbenzyl)thiazolidin-2-one (5b)


Yellow oil, yield = 82%, 85 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.28-7.17 (m, 4H), 4.45 (s, 2H), 3.51 (t, 2H, *J* = 7.2 Hz), 3.22 (t, 2H, *J* = 7.6 Hz), 2.36 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.2, 137.7, 133.0, 129.5, 128.3, 128.2, 48.5, 48.0, 25.6, 21.2. HRMS (EI): *m/z* calcd for C₁₁H₁₄ONS [M+H]⁺ 208.0791, found 208.0796.

3-(2-methylbenzyl)thiazolidin-2-one (5c)

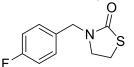

Colorless solid, yield = 86%, 89 mg, ¹H NMR (600 MHz, CDCl₃): δ = 7.22-7.17 (m, 4H), 4.49 (s, 2H), 3.44 (t, 2H, *J* = 7.2 Hz), 3.21 (t, 2H, *J* = 7.2 Hz), 2.31 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ = 171.9, 136.9, 133.9, 130.8, 129.0, 128.1, 126.3, 48.0, 46.9, 25.6, 19.2. HRMS (EI): *m/z* calcd for C₁₁H₁₄ONS [M+H]⁺ 208.0791, found 208.0792.

3-(4-(tert-butyl)benzyl)thiazolidin-2-one (5d)

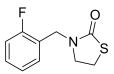

Colorless solid, yield = 90%, 112 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.37 (d, 2H, *J* = 8.0 Hz), 7.21 (d, 2H, *J* = 8.4 Hz), 4.47 (s, 2H), 3.53 (t, 2H, *J* = 7.2 Hz), 3.23 (t, 2H, *J* = 7.6 Hz), 1.33 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.2, 150.9, 133.0, 128.0, 125.8, 48.4, 48.1, 34.6, 31.4, 25.5. HRMS (EI): *m/z* calcd for C₁₄H₂₀ONS [M+H]⁺ 250.1260, found 250.1262.

3-(4-bromobenzyl)thiazolidin-2-one (5e)

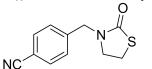
Colorless oil, yield = 71%, 96 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, 2H, *J* = 8.4 Hz), 7.15 (d, 2H, *J* = 8.4 Hz), 4.43 (s, 2H), 3.50 (t, 2H, *J* = 7.2 Hz), 3.24 (t, 2H, *J* = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.4, 135.2, 132.0, 129.9, 121.9, 48.1, 48.0, 25.6. HRMS (EI): *m/z* calcd for C₁₀H₁₁ONBrS [M+H]⁺ 271.9739, found 271.9742.


3-(2-chlorobenzyl)thiazolidin-2-one (5f)

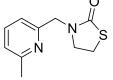
Rr


Yellow oil, yield = 63%, 72 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.38-7.24 (m, 4H), 4.62 (s, 2H), 3.57 (t, 2H, *J* = 7.2 Hz), 3.26 (t, 2H, *J* = 7.6 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.4, 133.7, 133.6, 130.0, 129.8, 129.3, 127.4, 48.3, 45.9, 25.7. HRMS (EI): *m/z* calcd for C₁₀H₁₁ONClS [M+H]⁺ 228.0244, found 228.0246.

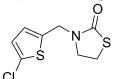
3-(4-fluorobenzyl)thiazolidin-2-one (5g)


Yellow oil, yield = 74%, 78 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.25-7.22 (m, 2H), 7.03-6.99 (m, 2H), 4.43 (s, 2H), 3.49 (t, 2H, *J* = 7.2 Hz), 3.22 (t, 2H, *J* = 6.8 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.3, 161.2 (d, *J*_{CF} = 244.8 Hz), 131.9 (d, *J*_{CF} = 3.1 Hz), 129.9 (d, *J*_{CF} = 8.1 Hz), 115.6 (d, *J*_{CF} = 21.4 Hz), 48.0, 47.9, 25.5. HRMS (EI): *m/z* calcd for C₁₀H₁₁ONFS [M+H]⁺ 212.0540, found 212.0538.

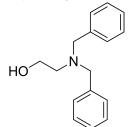
3-(2-fluorobenzyl)thiazolidin-2-one (5h)


Yellow oil, yield = 83%, 87 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.36-7.27 (m, 2H), 7.16-7.04 (m, 2H), 4.55 (s, 2H), 3.58 (t, 2H, *J* = 7.2 Hz), 3.25 (t, 2H, *J* = 7.6 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.4, 159.8 (d, *J*_{CF} = 246.5 Hz), 130.8 (d, *J*_{CF} = 3.7 Hz), 129.8 (d, *J*_{CF} = 8.1 Hz), 124.7 (d, *J*_{CF} = 3.5 Hz), 122.9 (d, *J*_{CF} = 15.0 Hz), 115.5 (d, *J*_{CF} = 21.6 Hz), 48.2, 41.9 (d, *J*_{CF} = 3.9 Hz), 25.6. HRMS (EI): *m*/z calcd for C₁₀H₁₁ONFS [M+H]⁺ 212.0540, found 212.0539.

4-((2-oxothiazolidin-3-yl)methyl)benzonitrile (5i)


Light yellow solid, yield = 80%, 87 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, 2H, *J* = 8.0 Hz), 7.36 (d, 2H, *J* = 8.0 Hz), 4.51 (s, 2H), 3.52 (t, 2H, *J* = 7.2 Hz), 3.27 (t, 2H, *J* = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.6, 141.6, 132.6, 128.6, 118.5, 111.7, 48.2, 48.1, 25.5. HRMS (EI): *m/z* calcd for C₁₁H₁₁ON₂S [M+H]⁺ 219.0587, found 219.0589.

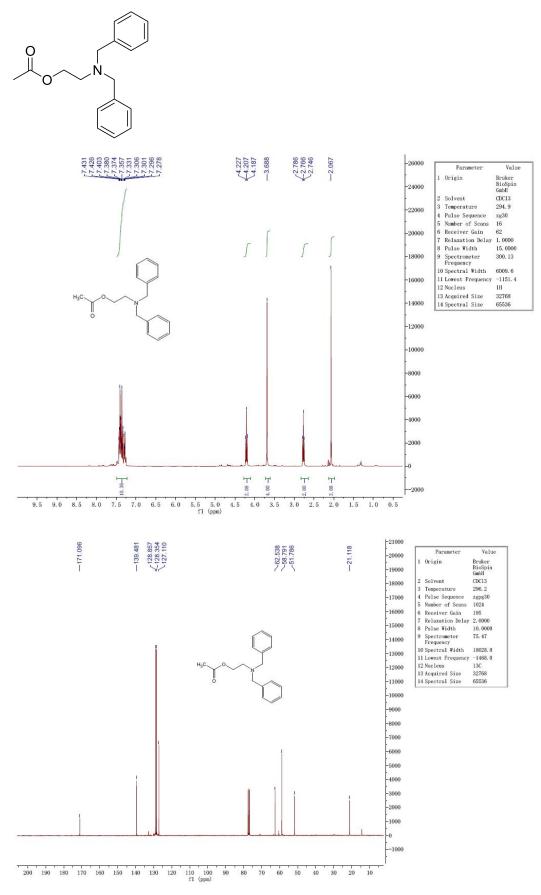
3-((6-methylpyridin-2-yl)methyl)thiazolidin-2-one (5j)


Yellow oil, yield = 77%, 80 mg, ¹H NMR (400 MHz, CDCl₃): δ = 7.56 (t, 1H, *J* = 7.6 Hz), 7.10-7.06 (m, 2H), 4.57 (s, 2H), 3.67 (t, 2H, *J* = 7.2 Hz), 3.27 (t, 2H, *J* = 7.6 Hz), 2.53 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.5, 158.3, 155.5, 137.4, 122.4, 119.1, 50.5, 48.7, 25.8, 24.5. HRMS (EI): *m/z* calcd for C₁₀H₁₃ON₂S [M+H]⁺ 209.0743, found 209.0742.

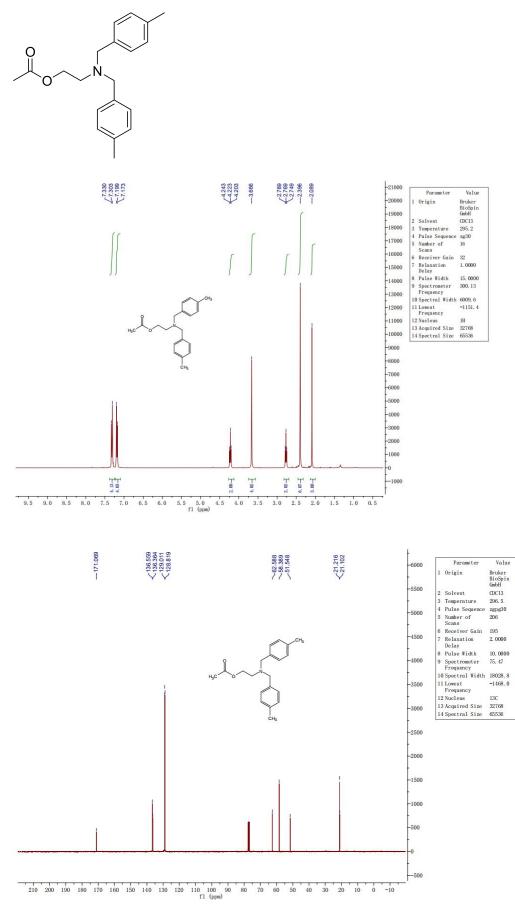
3-((5-chlorothiophen-2-yl)methyl)thiazolidin-2-one (5k)

Light yellow solid, yield = 50%, 58 mg, ¹H NMR (400 MHz, CDCl₃): δ = 6.87-6.62 (m, 2H), 4.53 (s, 2H), 3.59 (t, 2H, *J* = 7.2 Hz), 3.26 (t, 2H, *J* = 7.6 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 172.4, 137.2, 130.3, 126.6, 126.0, 47.9, 43.5, 25.6. HRMS (EI): *m/z* calcd for C₈H₉ONClS₂ [M+H]⁺ 233.9814, found 233.9825.

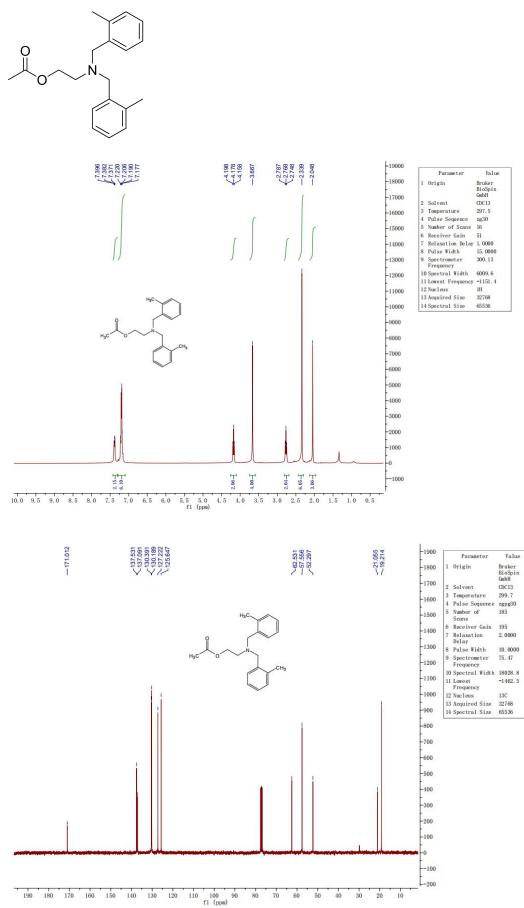
2-(dibenzylamino)ethanol (6)

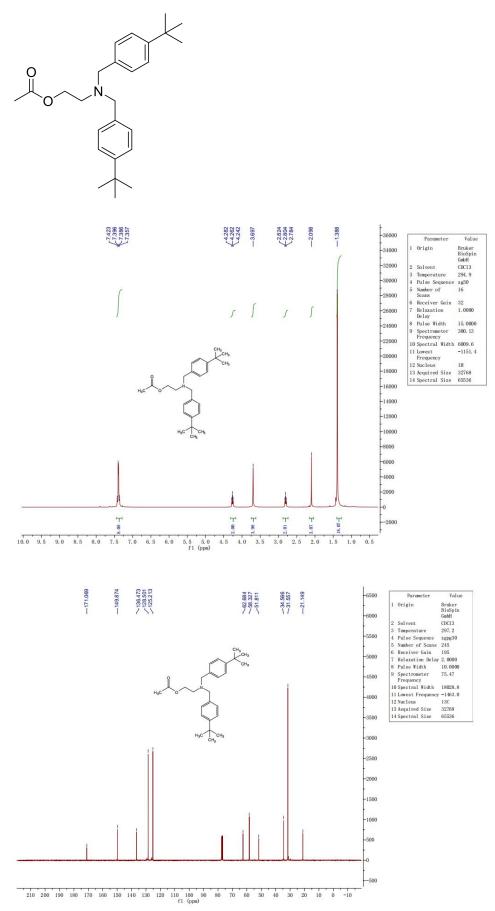


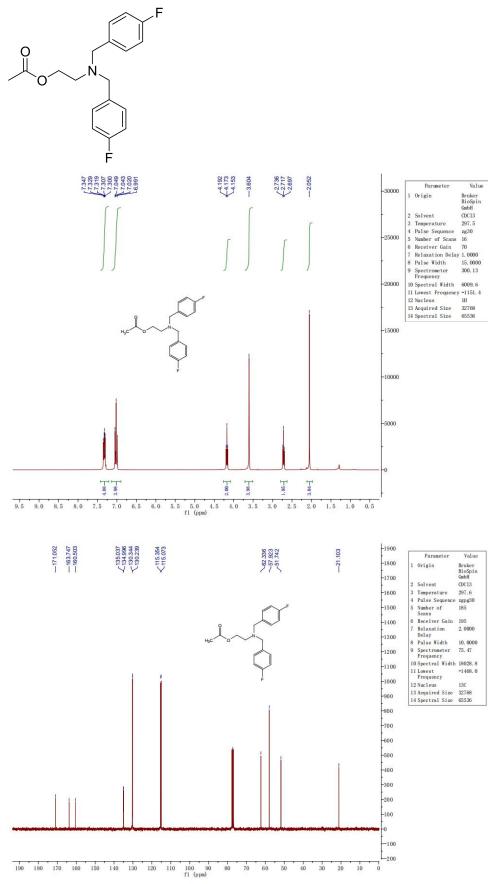
Light yellow oil, yield = 88%, 106 mg, ¹H NMR (500 MHz, CDCl₃): δ = 7.39-7.29 (m, 10H), 3.67 (s, 4H), 3.62 (t, 2H, *J* = 5.5 Hz), 2.70 (t, 2H, *J* = 5.5 Hz), 2.47 (brs, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 138.9, 129.1, 128.6, 127.4, 58.6, 58.3, 54.8. HRMS (EI): *m/z* calcd for C₁₆H₂₀NO [M+H]⁺ 242.1539, found 242.1531.

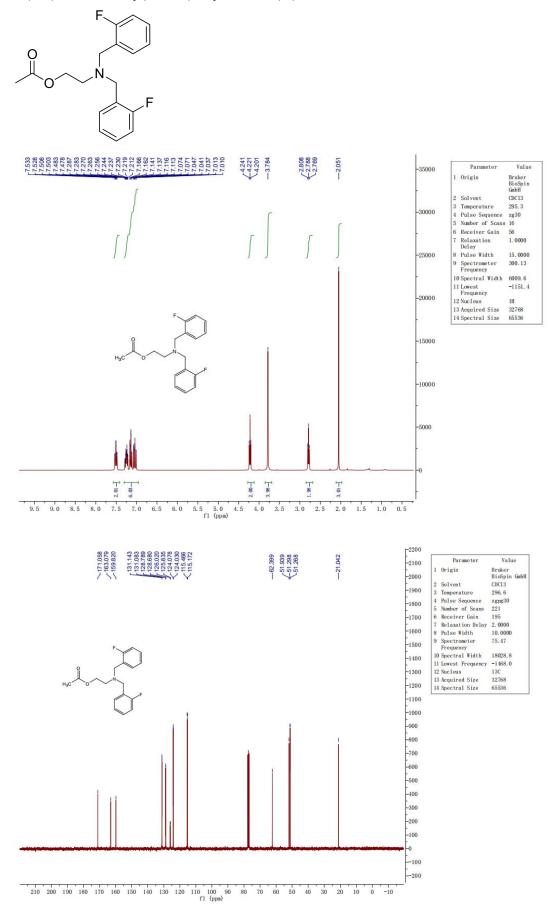

References

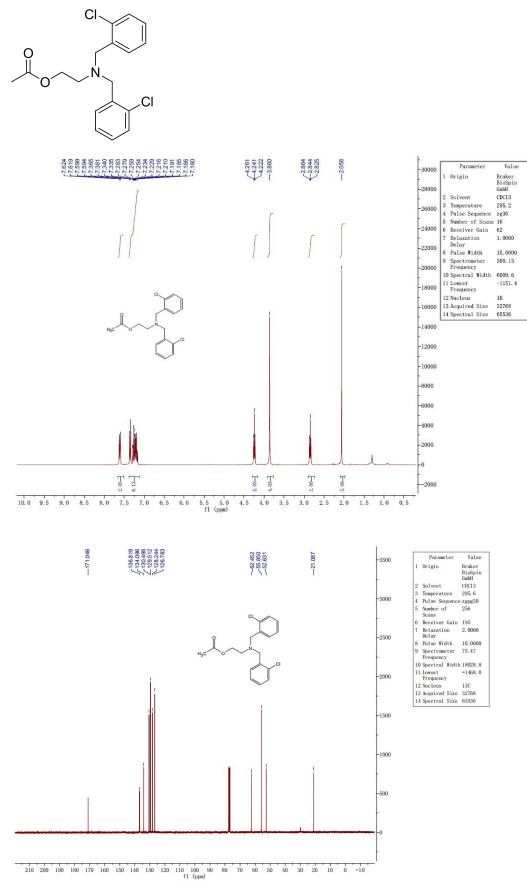
1. Mahy, W.; Plucinski, P.; Jover, J.; Frost, C. G. Angew. Chem. Int. Ed. 2015, 54, 10944.

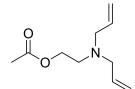

2-(dibenzylamino)ethyl acetate (3a)

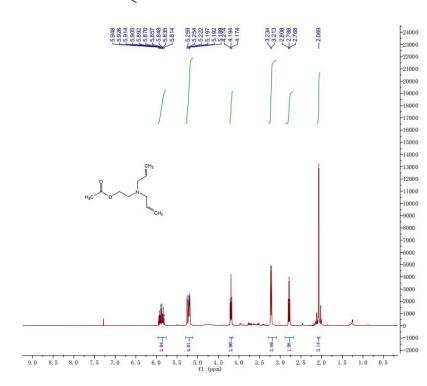

2-(bis(4-methylbenzyl)amino)ethyl acetate (3b)


2-(bis(2-methylbenzyl)amino)ethyl acetate (3c)

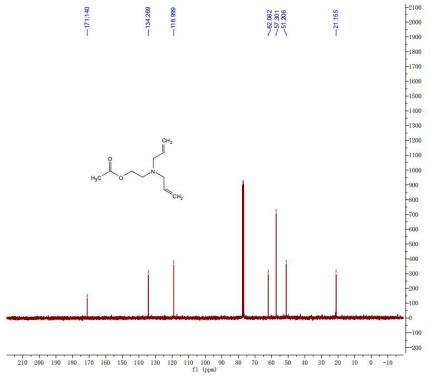

2-(bis(4-(tert-butyl)benzyl)amino)ethyl acetate (3d)


2-(bis(4-fluorobenzyl)amino)ethyl acetate (3e)

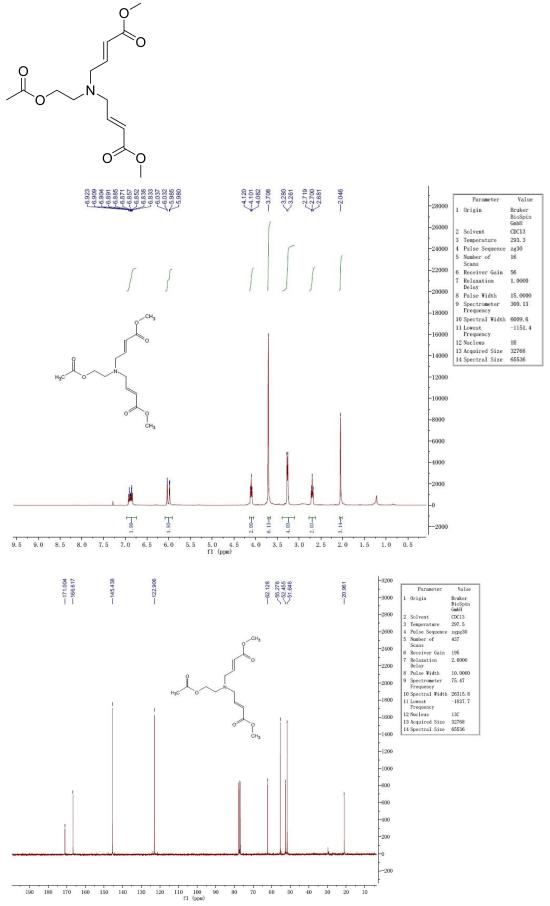

2-(bis(2-fluorobenzyl)amino)ethyl acetate (3f)

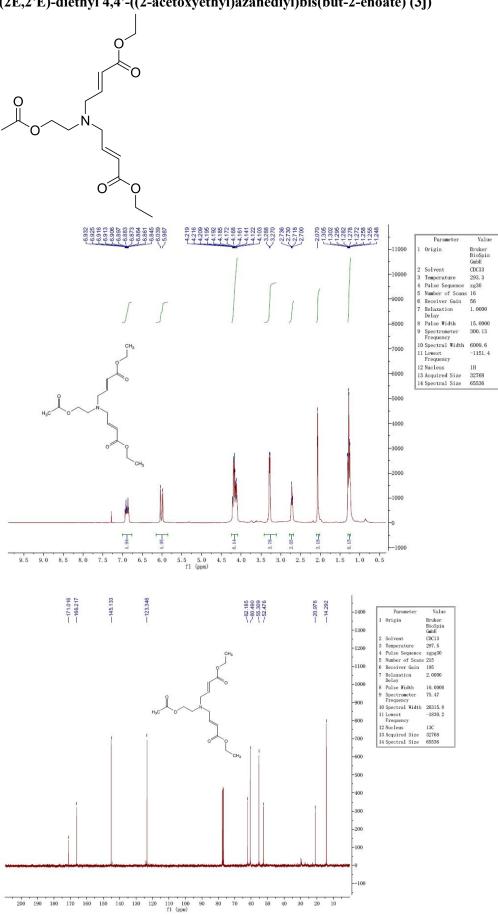


2-(bis(2-chlorobenzyl)amino)ethyl acetate (3g)

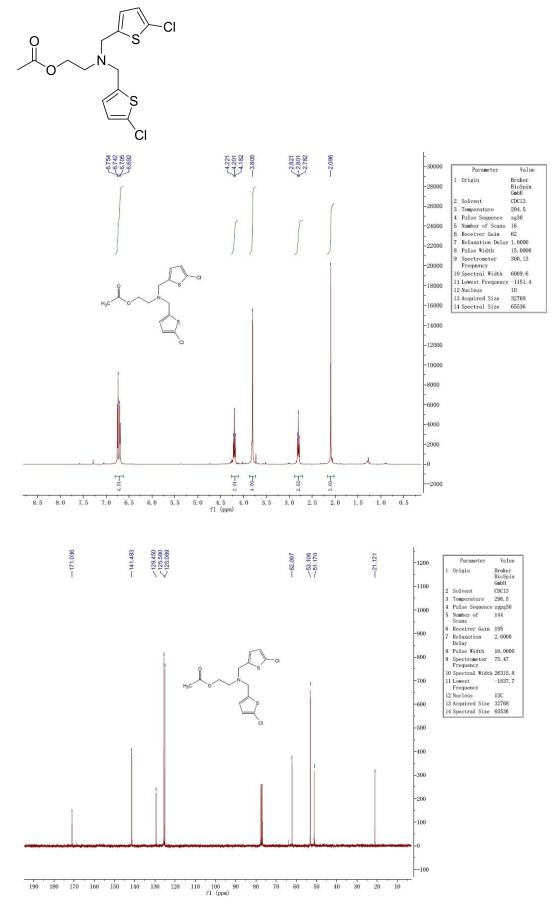


2-(diallylamino)ethyl acetate (3h)

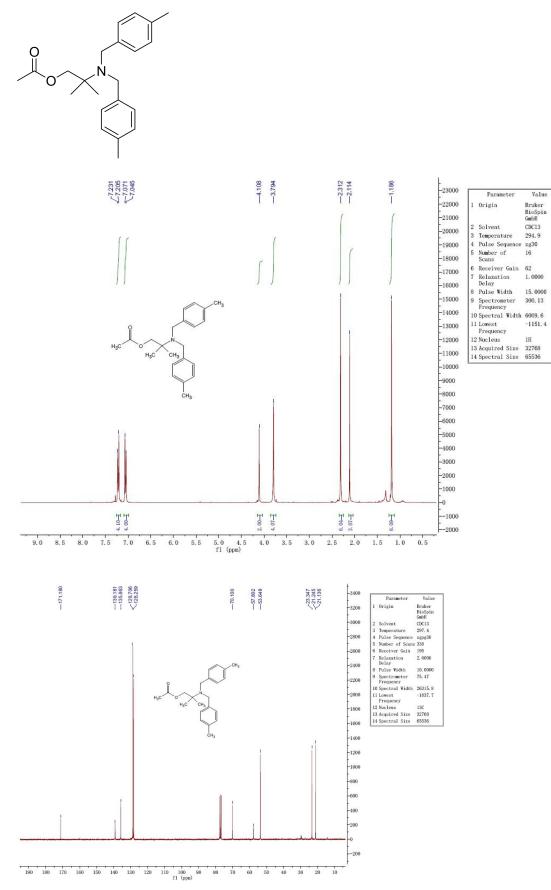



	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.1
4	Pulse Sequence	zg30
5	Number of Scans	16
6	Receiver Gain	96
	Relaxation Delay	1.0000
8	Pulse Width	15.0000
	Spectrometer Frequency	300.13
10	Spectral Width	6009.6
11	Lowest Frequency	-1151.4
12	Nucleus	1H
13	Acquired Size	32768
14	Spectral Size	65536

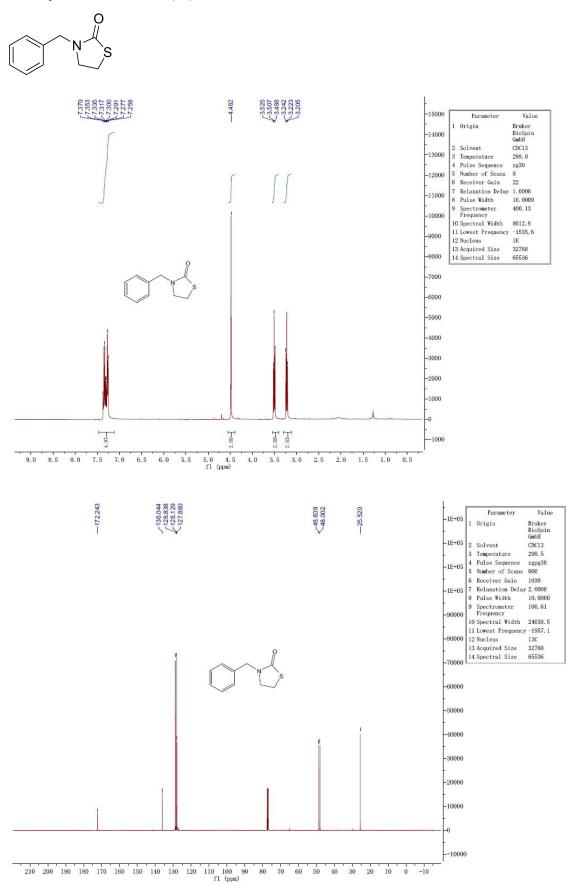
	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.5
4	Pulse Sequence	zgpg30
5	Number of Scans	259
6	Receiver Gain	195
7	Relaxation Delay	2.0000
8	Pulse Width	10.0000
9	Spectrometer Frequency	75.47
10	Spectral Width	18028.8
11	Lowest Frequency	-1468.0
12	Nucleus	13C
13	Acquired Size	32768
14	Spectral Size	65536

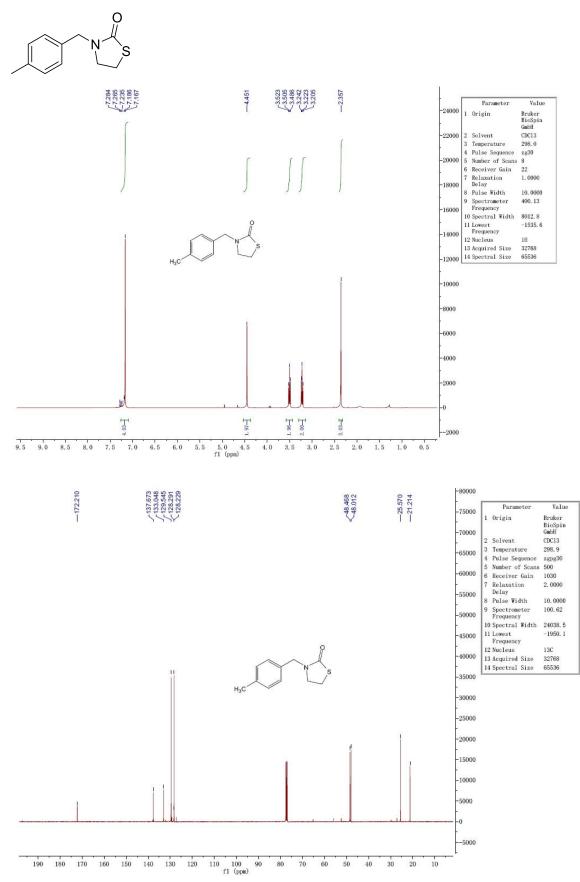


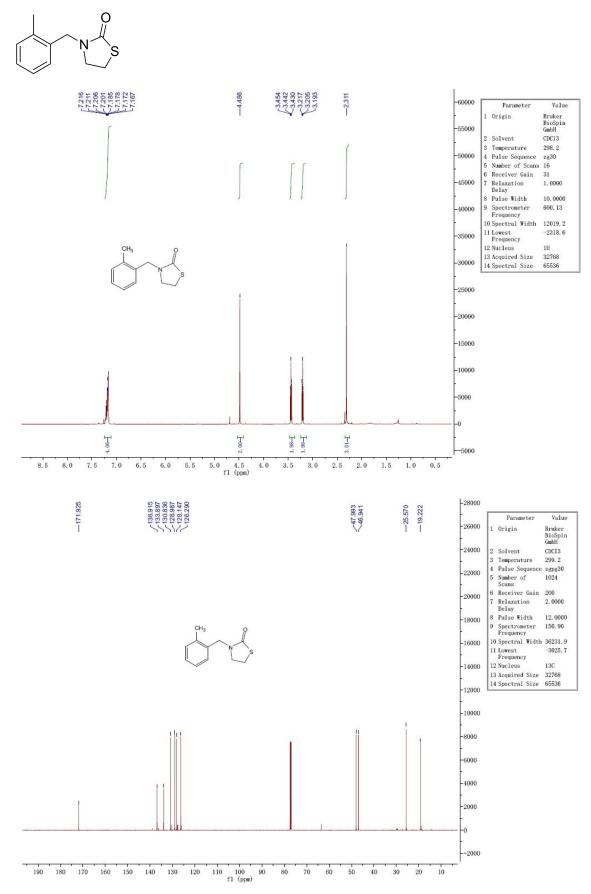
(2E,2'E)-dimethyl 4,4'-((2-acetoxyethyl)azanediyl)bis(but-2-enoate) (3i)

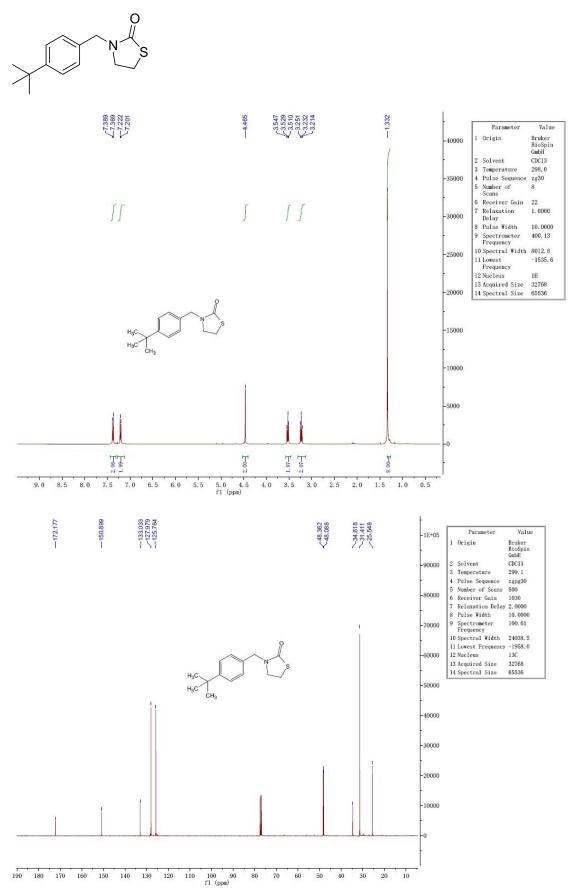


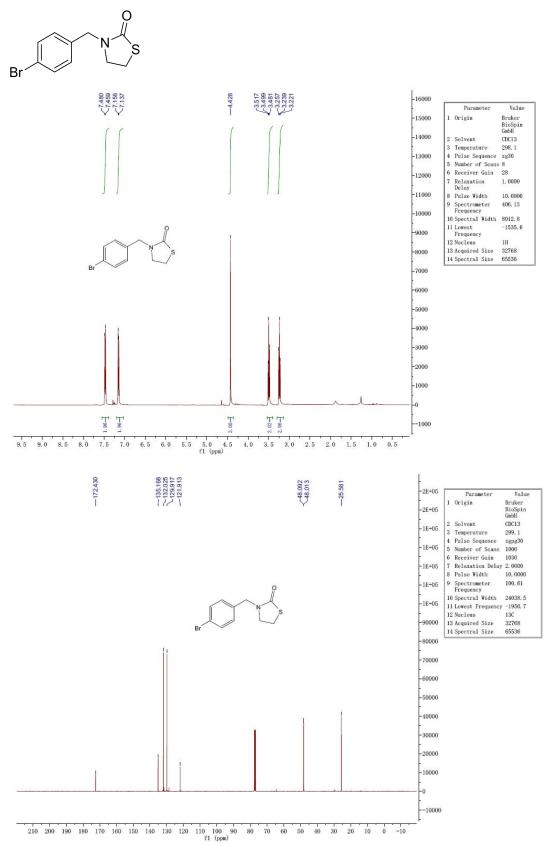
(2E,2'E)-diethyl 4,4'-((2-acetoxyethyl)azanediyl)bis(but-2-enoate) (3j)

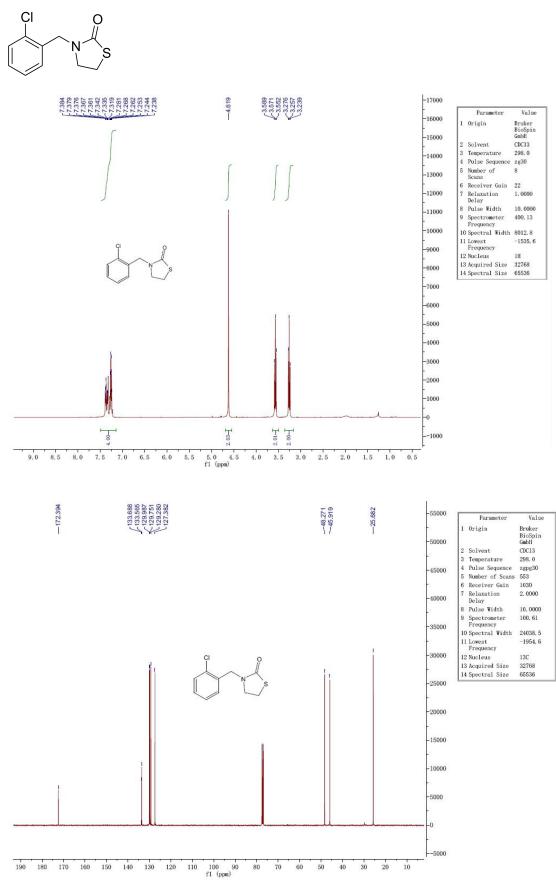

2-(bis((5-chlorothiophen-2-yl)methyl)amino)ethyl acetate (3k)

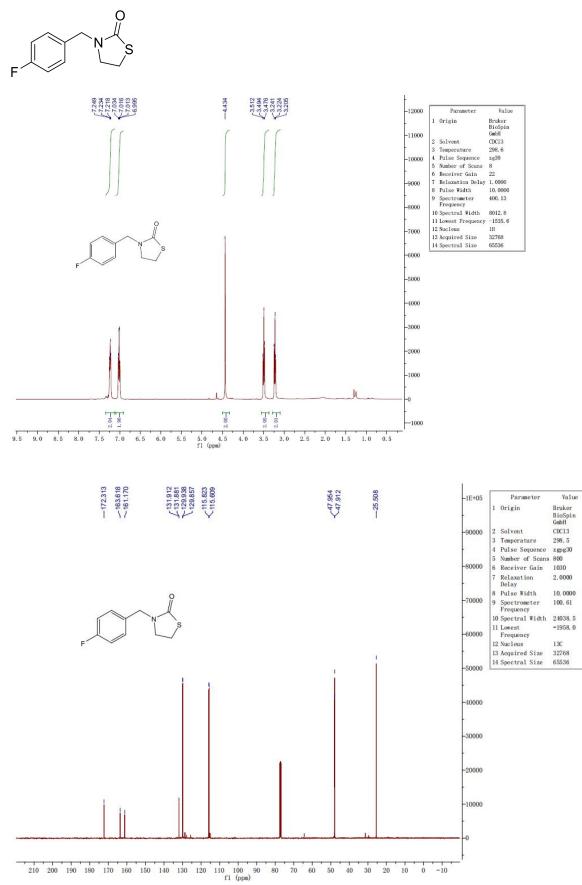

2-(bis(4-methylbenzyl)amino)-2-methylpropyl acetate (3l)

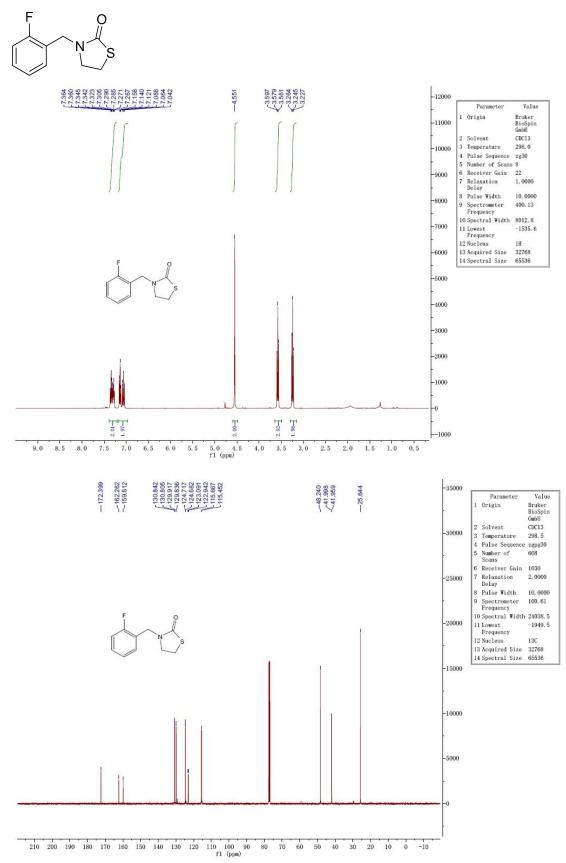

3-benzylthiazolidin-2-one (5a)

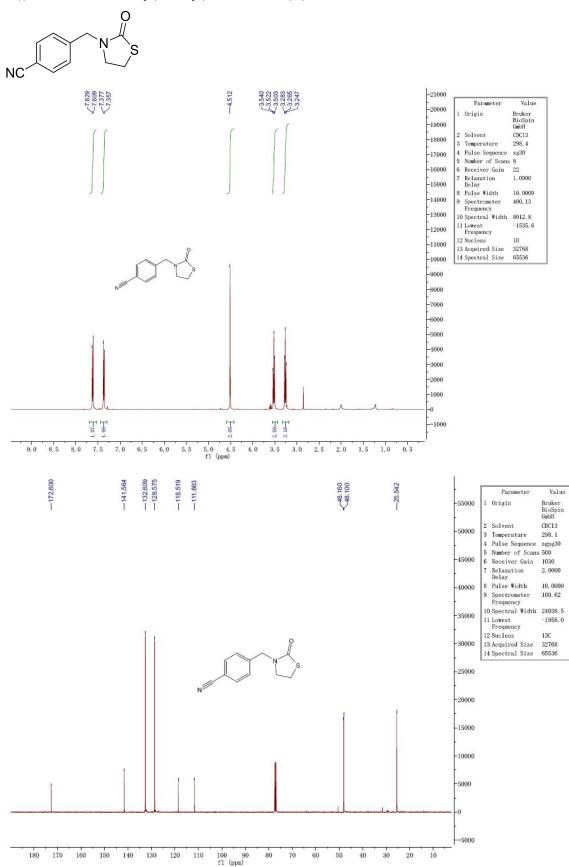



3-(2-methylbenzyl)thiazolidin-2-one (5c)


3-(4-(tert-butyl)benzyl)thiazolidin-2-one (5d)

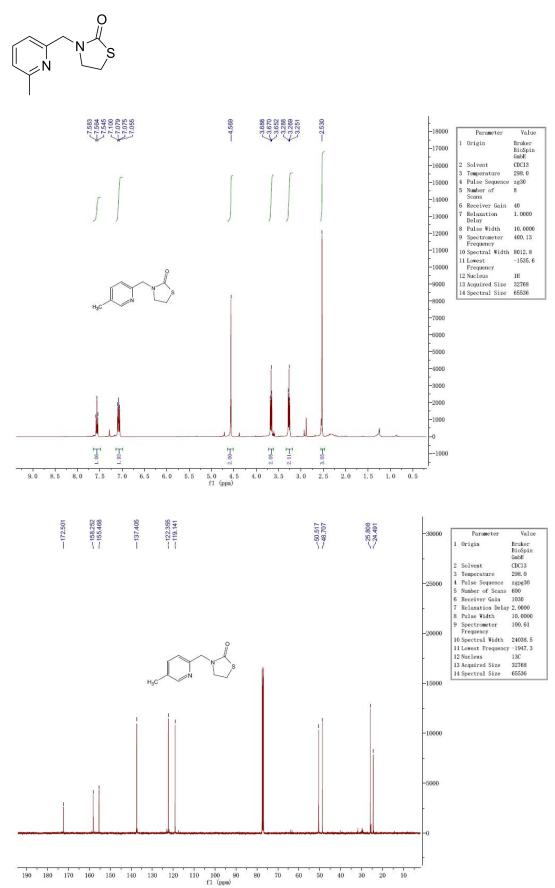

3-(4-bromobenzyl)thiazolidin-2-one (5e)

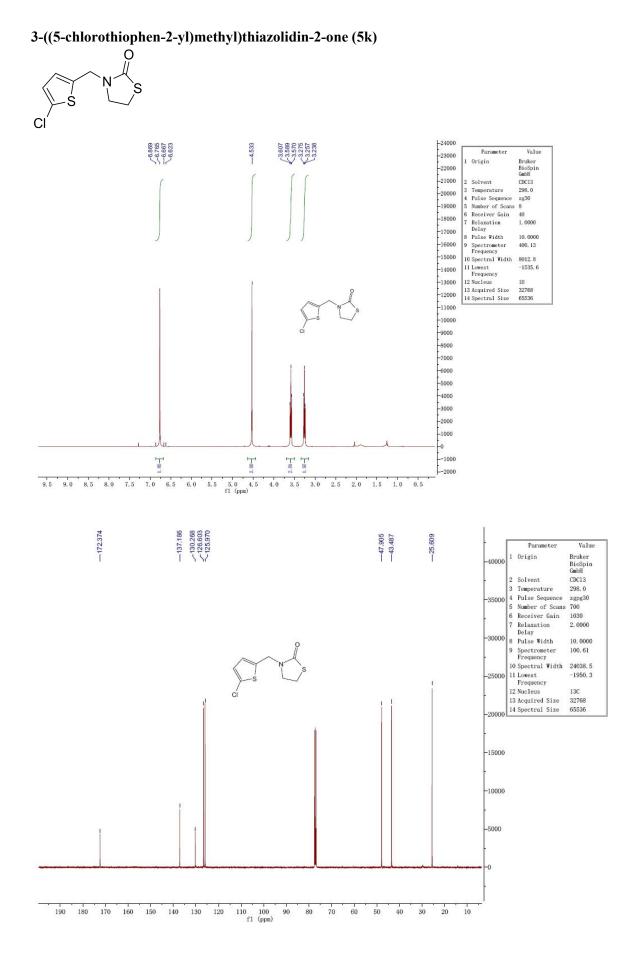

3-(2-chlorobenzyl)thiazolidin-2-one (5f)

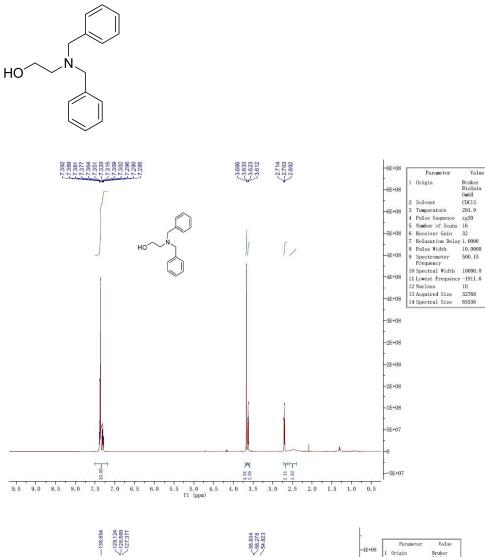


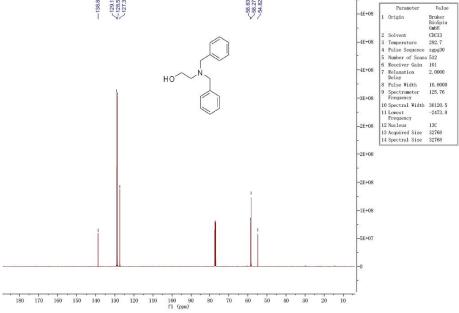
3-(4-fluorobenzyl)thiazolidin-2-one (5g)




3-(2-fluorobenzyl)thiazolidin-2-one (5h)




4-((2-oxothiazolidin-3-yl)methyl)benzonitrile (5i)



2-(dibenzylamino)ethanol (6)

