Electronic Supporting Information

KO^{t} Bu Promoted Selective Ring-Opening N-alkylation of 2-Oxazolines to Access 2-Aminoethyl Acetates and N -Substituted Thiazolidinones
Qiao Lin, ${ }^{1}$ Shiling Zhang, ${ }^{1}$ and Bin $\mathrm{Li}^{1 *}$
${ }^{1}$ School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China

Table of Contents

Characterization data of substrates
S11
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

General remarks

All reagents were obtained from commercial sources and used as received. Technical grade petroleum ether ($40-60^{\circ} \mathrm{C}$ bp.) and ethyl acetate were used for chromatography column.
${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} at ambient temperature on Bruker AVANCE I 300 or 400 spectrometers at 300.1 or 400.1 MHz , using the solvent as internal standard (7.26 ppm). ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 75 or 100 MHz and referenced to the internal solvent signals (central peak is 77.2 ppm). Chemical shift (δ) and coupling constants (J) are given in ppm and in Hz, respectively. The peak patterns are indicated as follows: s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet, and br. for broad.

GC analyses were performed with GC-14C (Shimadzu) equipped with a $30-\mathrm{m}$ capillary column (Supelco, SPB-5, fused silica capillary column, $30 \mathrm{M}^{*} 0.25 \mathrm{~mm} * 0.25 \mathrm{~mm}$ film thickness), was used with $\mathrm{N}_{2} /$ air as vector gas. GCMS were measured by GCMS-7890A-5975C (Agilent) with GC-7890A equipped with a $30-\mathrm{m}$ capillary column (HP-5ms, fused silica capillary column, $30 \mathrm{M}^{*} 0.25 \mathrm{~mm} * 0.25 \mathrm{~mm}$ film thickness), was used with helium as vector gas. HRMS were measured by MAT 95XP (Termol) (LCMS-IT-TOF).

The following GC conditions were used: initial temperature $80^{\circ} \mathrm{C}$, for 2 minutes, then rate $20^{\circ} \mathrm{C} / \mathrm{min}$. until $260^{\circ} \mathrm{C}$ and $260^{\circ} \mathrm{C}$ for 20 minutes.

General procedure for $\mathrm{KO}^{t} \mathrm{Bu}$ catalyzed selective ring-opening N -alkylation of 2-oxazolines with benzyl bromides

$\mathrm{KO}^{\prime} \mathrm{Bu}(0.5 \mathrm{mmol}, 56 \mathrm{mg})$, 2-oxazoline (0.5 mmol), benzyl bromide (1.0 mmol) and DMC (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at $50{ }^{\circ} \mathrm{C}$. After 16 h , the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

General procedure for $\mathrm{KO}^{t} \mathrm{Bu}$ catalyzed selective ring-opening N -alkylation of 2-oxazolines with benzyl chlorides

$\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(0.5 \mathrm{mmol}, 56 \mathrm{mg}), \mathrm{I}_{2}(0.5 \mathrm{mmol}, 127 \mathrm{mg})$, 2-oxazoline (0.5 mmol), benzyl chloride (1.0 mmol) and DMC (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at $80^{\circ} \mathrm{C}$. After 16 h , the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

General procedure for $\mathrm{KO}^{t} \mathrm{Bu} / \mathbf{I}_{2}$ promoted selective N -alkylation of 2-oxazolines of thiazolidin-2-one derivatives

$\mathrm{KO}^{t} \mathrm{Bu}(1 \mathrm{mmol}, 112 \mathrm{mg})$, $\mathrm{I}_{2}(1 \mathrm{mmol}, 254 \mathrm{mg}), 2-($ methylthio $)-4,5$-dihydrothiazole (0.5 $\mathrm{mmol})$, benzyl halide (1.0 mmol) and DMC $(2 \mathrm{~mL})$ were introduced in a tube, equipped with magnetic stirring bar and was stirred at $80^{\circ} \mathrm{C}$. After 16 h , the conversion of the
reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

Gram scale procedure for synthesis of 2-(dibenzylamino)ethyl acetate (3a)

$\mathrm{KO}^{\prime} \mathrm{Bu}(10 \mathrm{mmol}, 1.12 \mathrm{~g}$), 2-methyl-2-oxazole ($10 \mathrm{mmol}, 0.85 \mathrm{~mL}$), benzyl bromide (20 $\mathrm{mmol}, 2.38 \mathrm{~mL})$ and $\mathrm{DMC}(10 \mathrm{~mL})$ were introduced in a tube, equipped with magnetic stirring bar and was stirred at $50^{\circ} \mathrm{C}$. After 16 h , the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent, and was isolated as a light yellow oil in 2.38 g (84\%).

Procedure for synthesis of 2-(dibenzylamino)ethanol (6)

$\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.0 \mathrm{mmol}, 112 \mathrm{mg}$), 2-(dibenzylamino)ethyl acetate (0.5 mmol , $142 \mu \mathrm{~L}$), and methanol (2 mL) were introduced in a tube, equipped with magnetic stirring bar and was stirred at room temperature. After 24 h , the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent, and was isolated as a light yellow oil in 106 mg (88\%).

Characterization data of substrates

2-(dibenzylamino)ethyl acetate (3a)

Light yellow oil, yield $=80 \%, 113 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.28(\mathrm{~m}, 10 \mathrm{H})$, $4.21(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,139.5,128.9,128.4,127.1,62.5,58.8,51.8,21.1$. HRMS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 284.1645$, found 284.1640.

2-(bis(4-methylbenzyl)amino)ethyl acetate (3b)

Organge oil, yield $=85 \%, 132 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $7.18(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.22(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.67(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.40(\mathrm{~s}$, $6 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,136.6,136.4,129.0,128.8,62.6$, 58.4, 51.5, 21.2, 21.1. HRMS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 312.1958$, found 312.1966.

2-(bis(2-methylbenzyl)amino)ethyl acetate (3c)

Light yellow oil, yield $=73 \%, 113 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.18(\mathrm{~m}, 6 \mathrm{H}), 4.18(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.67(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.34(\mathrm{~s}, 6 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,137.5,137.1,130.4,130.2,127.2$, 125.6, 62.5, 57.6, 52.3, 21.1, 19.2. HRMS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 312.1958$, found 312.1952 .

2-(bis(4-(tert-butyl)benzyl)amino)ethyl acetate (3d)

Light yellow oil, yield $=78 \%, 154 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42-7.36(\mathrm{~m}, 8 \mathrm{H})$, $4.26(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 2.80(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,149.9,136.5,128.5,125.2,62.7,58.3,51.8,34.6$, 31.6, 21.1. HRMS (EI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 396.2897$, found 396.2902.

2-(bis(4-fluorobenzyl)amino)ethyl acetate (3e)

Brown oil, yield $=79 \%, 126 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.99$ $(\mathrm{m}, 4 \mathrm{H}), 4.17(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.60(\mathrm{~s}, 4 \mathrm{H}), 2.72(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,160.5\left(\mathrm{~d}, J_{C F}=243.3 \mathrm{~Hz}\right), 135.0\left(\mathrm{~d}, J_{C F}=3.075 \mathrm{~Hz}^{2}\right), 130.2$ $\left(\mathrm{d}, J_{C F}=7.875 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{C F}=21.075 \mathrm{~Hz}^{2}\right), 62.3,57.9,51.7,21.1$. HRMS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 320.1457$, found 320.1451.

2-(bis(2-fluorobenzyl)amino)ethyl acetate (3f)

Light yellow oil, yield $=72 \%, 115 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.01 (m, 6H), $4.22(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 2.79(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.05(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,159.8\left(\mathrm{~d}, J_{C F}=244.4 \mathrm{~Hz}^{2}\right), 131.1\left(\mathrm{~d}, J_{C F}=4.5 \mathrm{H}_{\mathrm{z}}\right)$, $128.7\left(\mathrm{~d}, J_{C F}=8.175 \mathrm{~Hz}\right), 125.8\left(\mathrm{~d}, J_{C F}=13.875 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C F}=3.6 \mathrm{~Hz}\right), 115.2\left(\mathrm{~d}, J_{C F}=\right.$ 22.05 Hz), 62.4, $51.9,51.3\left(\mathrm{~d}, J_{C F}=2.25 \mathrm{~Hz}\right.$, 21.0. HRMS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 342.1276$, found 342.1279 .

2-(bis(2-chlorobenzyl)amino)ethyl acetate (3g)

Light yellow oil, yield $=70 \%, 123 \mathrm{mg},{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.62-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.16 (m, 6H), $4.24(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 2.84(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0,136.8,134.1,130.5,129.5,128.2,126.8,62.5,55.9$, 52.6, 21.1. HRMS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 352.0866$, found 352.0861 .

2-(diallylamino)ethyl acetate (3h)

Light yellow oil, yield $=69 \%, 63 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.95-5.81(\mathrm{~m}, 2 \mathrm{H})$, 5.26-5.19 (m, 4H), 4.19 (t, 2H, $J=6.0 \mathrm{~Hz}$), $3.22(\mathrm{~d}, 4 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.79(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,134.3,119.0,62.1,57.3,51.2,21.2$. HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$184.1332, found 184.1339.
(2E,2'E)-dimethyl 4,4'-((2-acetoxyethyl)azanediyl)bis(but-2-enoate) (3i)

Light red oil, yield $=71 \%, 106 \mathrm{mg},{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.92-6.83(\mathrm{~m}, 2 \mathrm{H})$, 6.04-5.98 (m, 2H), $4.10(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.27(\mathrm{~d}, 4 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.70(\mathrm{t}, 2 \mathrm{H}, J$ $=5.7 \mathrm{~Hz}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0,166.6,145.4,122.9,62.1$, 55.3, 52.5, 51.6, 21.0. HRMS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 300.1442$, found 300.1448 .

Brown oil, yield $=58 \%, 95 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~d}$, $2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.22-4.10(\mathrm{~m}, 6 \mathrm{H}), 3.28(\mathrm{~d}, 4 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.74-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 1.31-1.25 (m, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,166.2,145.1,123.3,62.2,60.5$, 55.3, 52.5, 21.0, 14.3. HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 328.1755$, found 328.1757.

2-(bis((5-chlorothiophen-2-yl)methyl)amino)ethyl acetate (3k)

Brown oil, yield $=66 \%, 120 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.75-6.69(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{t}$, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.81(\mathrm{~s}, 4 \mathrm{H}), 2.80(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta=171.0,141.5,129.5,125.6,125.1,62.1,53.1,51.2,21.1$. HRMS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 363.9994$, found 363.9997.

2-(bis(4-methylbenzyl)amino)-2-methylpropyl acetate (31)

Yellow oil, yield $=72 \%, 122 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.06(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.2,139.2,135.9,128.7,128.3,70.1,57.8,53.6,23.3$, 21.2, 21.1. HRMS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 340.2271$, found 340.2274.

3-benzylthiazolidin-2-one ${ }^{1}$ (5a)

Light yellow oil, yield $=83 \%, 80 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.26(\mathrm{~m}, 5 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=172.2,136.0,128.8,128.1,127.9,48.6,48.0,25.5$. HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+}$194.0634, found 194.0639.

3-(4-methylbenzyl)thiazolidin-2-one (5b)

Yellow oil, yield $=82 \%, 85 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28-7.17(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~s}$, $2 \mathrm{H}), 3.51(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=172.2,137.7,133.0,129.5,128.3,128.2,48.5,48.0,25.6,21.2$. HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+}$208.0791, found 208.0796.

3-(2-methylbenzyl)thiazolidin-2-one (5c)

Colorless solid, yield $=86 \%, 89 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.17(\mathrm{~m}, 4 \mathrm{H})$, $4.49(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.21(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.9,136.9,133.9,130.8,129.0,128.1,126.3,48.0,46.9,25.6,19.2$. HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+}$208.0791, found 208.0792.

3-(4-(tert-butyl)benzyl)thiazolidin-2-one (5d)

Colorless solid, yield $=90 \%, 112 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.21(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.23(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.33(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}): $\delta=172.2,150.9,133.0,128.0,125.8,48.4,48.1,34.6$, 31.4, 25.5. HRMS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+} 250.1260$, found 250.1262.

3-(4-bromobenzyl)thiazolidin-2-one (5e)

Colorless oil, yield $=71 \%, 96 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$), $7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.24(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,135.2,132.0,129.9,121.9,48.1,48.0,25.6$. HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ONBrS}[\mathrm{M}+\mathrm{H}]^{+} 271.9739$, found 271.9742.

3-(2-chlorobenzyl)thiazolidin-2-one (5f)

Yellow oil, yield $=63 \%, 72 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.24(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{~s}$, 2 H), $3.57(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.26(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 172.4, 133.7, 133.6, 130.0, 129.8, 129.3, 127.4, 48.3, 45.9, 25.7. HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ONClS}[\mathrm{M}+\mathrm{H}]^{+}$228.0244, found 228.0246.

3-(4-fluorobenzyl)thiazolidin-2-one (5g)

Yellow oil, yield $=74 \%, 78 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.3,161.2\left(\mathrm{~d}, J_{C F}=244.8 \mathrm{~Hz}_{\mathrm{z}}\right), 131.9\left(\mathrm{~d}, J_{C F}=3.1 \mathrm{~Hz}_{\mathrm{z}}\right), 129.9\left(\mathrm{~d}, J_{C F}=8.1\right.$ $\left.\mathrm{H}_{\mathrm{z}}\right), 115.6\left(\mathrm{~d}, J_{C F}=21.4 \mathrm{~Hz}_{\mathrm{z}}\right), 48.0,47.9,25.5 . \mathrm{HRMS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ONFS}[\mathrm{M}+\mathrm{H}]^{+}$ 212.0540 , found 212.0538 .

3-(2-fluorobenzyl)thiazolidin-2-one (5h)

Yellow oil, yield $=83 \%, 87 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.04$ $(\mathrm{m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.4,159.8\left(\mathrm{~d}, J_{C F}=246.5 \mathrm{H}_{\mathrm{z}}\right), 130.8\left(\mathrm{~d}, J_{C F}=3.7 \mathrm{~Hz}^{2}\right), 129.8\left(\mathrm{~d}, J_{C F}=8.1\right.$ $\left.\mathrm{H}_{\mathrm{z}}\right), 124.7\left(\mathrm{~d}, J_{C F}=3.5 \mathrm{~Hz}^{2}\right), 122.9\left(\mathrm{~d}, J_{C F}=15.0 \mathrm{~Hz}_{\mathrm{Z}}\right), 115.5\left(\mathrm{~d}, J_{C F}=21.6 \mathrm{H}_{\mathrm{z}}\right), 48.2,41.9\left(\mathrm{~d}, J_{C F}\right.$ $=3.9 \mathrm{~Hz}$), 25.6. $\mathrm{HRMS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ONFS}[\mathrm{M}+\mathrm{H}]^{+} 212.0540$, found 212.0539 .

4-((2-oxothiazolidin-3-yl)methyl)benzonitrile (5i)

Light yellow solid, yield $=80 \%, 87 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.27(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6,141.6,132.6,128.6,118.5,111.7,48.2,48.1,25.5$. HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ON} 2 \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$219.0587, found 219.0589.

3-((6-methylpyridin-2-yl)methyl)thiazolidin-2-one (5j)

Yellow oil, yield $=77 \%, 80 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.27(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.53(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,158.3,155.5,137.4,122.4,119.1,50.5,48.7,25.8$, 24.5. HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ON}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$209.0743, found 209.0742 .

3-((5-chlorothiophen-2-yl)methyl)thiazolidin-2-one (5k)

Light yellow solid, yield $=50 \%, 58 \mathrm{mg}$, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.87-6.62(\mathrm{~m}, 2 \mathrm{H})$, $4.53(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.26(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=172.4,137.2,130.3,126.6,126.0,47.9,43.5,25.6 . \operatorname{HRMS}$ (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ONClS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$233.9814, found 233.9825 .

2-(dibenzylamino)ethanol (6)

Light yellow oil, yield $=88 \%, 106 \mathrm{mg},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.29(\mathrm{~m}, 10 \mathrm{H})$, $3.67(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.70(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.47($ brs, 1 H$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,129.1,128.6,127.4,58.6,58.3,54.8$. HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 242.1539$, found 242.1531.

References

1. Mahy, W.; Plucinski, P.; Jover, J.; Frost, C. G. Angew. Chem. Int. Ed. 2015, 54, 10944.

2-(dibenzylamino)ethyl acetate (3a)

2-(bis(4-methylbenzyl)amino)ethyl acetate (3b)

2-(bis(2-methylbenzyl)amino)ethyl acetate (3c)

2-(bis(4-(tert-butyl)benzyl)amino)ethyl acetate (3d)

2-(bis(4-fluorobenzyl)amino)ethyl acetate (3e)

2-(bis(2-fluorobenzyl)amino)ethyl acetate (3f)

2-(bis(2-chlorobenzyl)amino)ethyl acetate (3g)

2-(diallylamino)ethyl acetate (3h)

(2E,2'E)-dimethyl 4,4'-((2-acetoxyethyl)azanediyl)bis(but-2-enoate) (3i)

2-(bis((5-chlorothiophen-2-yl)methyl)amino)ethyl acetate (3k)

2-(bis(4-methylbenzyl)amino)-2-methylpropyl acetate (3I)

(

3-benzylthiazolidin-2-one (5a)

3-(4-methylbenzyl)thiazolidin-2-one (5b)

3-(2-methylbenzyl)thiazolidin-2-one (5c)

3-(4-(tert-butyl)benzyl)thiazolidin-2-one (5d)

3-(4-bromobenzyl)thiazolidin-2-one (5e)

3-(2-chlorobenzyl)thiazolidin-2-one (5f)

3-(4-fluorobenzyl)thiazolidin-2-one (5g)

3-(2-fluorobenzyl)thiazolidin-2-one (5h)

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

4-((2-oxothiazolidin-3-yl)methyl)benzonitrile (5i)

3-((6-methylpyridin-2-yl)methyl)thiazolidin-2-one (5j)

3-((5-chlorothiophen-2-yl)methyl)thiazolidin-2-one (5k)

2-(dibenzylamino)ethanol (6)

