Supporting information for

Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy- α-L-arabinose

Lukáš Kerner and Paul Kosma*

University of Natural Resources and Life Sciences-Vienna, Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria

Email: paul.kosma@boku.ac.at

* Corresponding author

Experimental procedures, characterization data of new compounds and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of compounds $4,6,8-17$.

Contents

General Methods S2
Experimental procedures and physico-chemical characterization S2
References for Supporting Information S11
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra S12

General Methods

Solvents and reagents were purchased from commercial suppliers and used as provided without further purification unless stated otherwise. Solvents (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF) were dried over activated $4 \AA$ molecular sieves. Cation exchange resin DOWEX $50 \mathrm{H}^{+}$was regenerated by consecutive washing with $\mathrm{HCl}(3 \mathrm{M})$, water and dry MeOH . If not indicated otherwise, concentration of organic solutions was performed under reduced pressure at $<40^{\circ} \mathrm{C}$. Optical rotation was measured with an Anton Paar MCP100 Polarimeter at $20^{\circ} \mathrm{C}$. Reactions were followed by thin layer chromatography using Merck plates: generally on $5 \times 10 \mathrm{~cm}$, layer thickness 0.25 mm , Silica Gel $60 \mathrm{~F}_{254}$; alternatively on HPTLC plates with 2.5 cm concentration zone (Merck). Spots were visualized with UV (254 nm) and/or anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}$ staining. Preparative chromatography was performed using silica gel ($0.040-0.063$ mm) or a flash-purification system (Interchim, PuriFlash 4125). NMR spectra were recorded with a Bruker Avance III 600 instrument (${ }^{1} \mathrm{H}$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 151 MHz and ${ }^{31} \mathrm{P}$ at 243 MHz) using standard Bruker NMR software. Chemical shifts are given in ppm down-field from SiMe_{4} using the residual peak of $\mathrm{CDCl}_{3}\left(7.26\right.$ for ${ }^{1} \mathrm{H}$ and 77.00 for ${ }^{13} \mathrm{C}$), $\mathrm{CD}_{3} \mathrm{OD}\left(3.31\right.$ for ${ }^{1} \mathrm{H}$ and 49.86 for $\left.{ }^{13} \mathrm{C}\right)$ or $\mathrm{D}_{2} \mathrm{O}\left(0.00\right.$ for ${ }^{1} \mathrm{H}$, external calibration to 2,2-dimethyl-2-silapentane-5-sulfonic acid), 67.40 for ${ }^{13} \mathrm{C}$ (external calibration to 1,4-dioxane in $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and orthophosphoric acid $(\delta=0)$ for ${ }^{31} \mathrm{P}$. Assignments for octyl signals are labeled with '. Numbering of phosphonate compounds was based on the nomenclature as hexit-1-yl derivatives. HR MS ESITOF data were obtained on a Waters Micromass Q-TOF Ultima Global instrument.

General conditions for hydrogenation of 9, 13 and 15:

Hydrogenation was carried out in a ThalesNano H-Cube® reactor under the following conditions: flowrate $0.5 \mathrm{~mL} / \mathrm{min}$, cartridge length 30 mm , catalyst $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, temperature $50{ }^{\circ} \mathrm{C}$, nominal H_{2} pressure 50 bar. The starting material (typically 10 mg) was dissolved in $5-10 \mathrm{~mL}$ of a $1: 1 \mathrm{MeOH}-\mathrm{AcOH}$ mixture and was run in loop for 2-3 h. After this time, the crude mixture was concentrated in vacuo, filtered over a syringe filter $(0.45 \mu \mathrm{~m}, \mathrm{MeOH})$ and concentrated to dryness. All products were purified on a semi-preparative Merck SeQuant® ZIC®-HILIC ($250 \times 10 \mathrm{~mm}$) HPLC column ($\mathrm{MeCN} \rightarrow 1: 1 \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 8 \mathrm{~mL} / \mathrm{min}$).

NaH (60\% in mineral oil, $444 \mathrm{mg}, 11.1 \mathrm{mmol}, 2.1$ eq.) was suspended in dry DMF (10 mL) and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of $1^{1}(1 \mathrm{~g}, 5.29 \mathrm{mmol})$ in dry DMF $(20 \mathrm{~mL})$ was added dropwise under an inert atmosphere and stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 30 min . Next, benzyl bromide ($1.32 \mathrm{~mL}, 11.1 \mathrm{mmol}, 2.1 \mathrm{eq}$.) was added dropwise, the reaction mixture was allowed to reach rt and stirring was continued for 22 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ under cooling, which was followed by extraction with EtOAc ($3 \times 20 \mathrm{~mL}$). Combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude material was flash-chromatographed on silica gel (MePh $\rightarrow 1: 1 \mathrm{MePh}$ EtOAc) to give 1.536 g (79%) of 2 as colorless oil, which solidified upon cooling. Physical and spectroscopic data were in agreement with literature. ${ }^{2}$

Oxidation of 4-azido-2,3-di-O-benzyl-4-deoxy-L-arabinopyranose (3)

Methyl glycoside 2 ($100 \mathrm{mg}, 0.27 \mathrm{mmol}$) was dissolved in a solution of $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (5 $\mathrm{mg}, 0.02 \mathrm{mmol}, 0.07 \mathrm{eq}$.$) in 1 \mathrm{~mL}$ of glacial AcOH and the mixture was warmed to 70 ${ }^{\circ} \mathrm{C}$. Diluted aq $\mathrm{HCl}(5 \mathrm{M}, 0.16 \mathrm{~mL}, 0.81 \mathrm{mmol})$ was added dropwise and the resulting solution was stirred at $70{ }^{\circ} \mathrm{C}$ for 3 h and then for 70 h at rt . The reaction mixture was made neutral by adding a satd aq solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with EtOAc (3 x 3 mL). Combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and flash-chromatographed on silica gel ($4: 1 \mathrm{MePh}-\mathrm{EtOAc} \rightarrow$ EtOAc) to afford 3 as an oil which solidified upon standing. Yield: 58 mg (60%). NMR data matched published data. ${ }^{2}$ The anomeric mixture was directly used without further separation. Lactol 3 ($1.22 \mathrm{~g}, 3.43 \mathrm{mmol}$) was dissolved in DMSO (10 mL) followed by dropwise addition of acetic anhydride ($8 \mathrm{~mL}, 85 \mathrm{mmol}$) under an inert atmosphere. The solution was stirred at rt overnight (22 h) and concentrated in vacuo at $50^{\circ} \mathrm{C}$. DMSO was removed by lyophilization and drying under high vacuum (<1 mbar) to give 4 (4-azido-2,3-di-O-benzyl-4-deoxy-L-arabinonic acid 1,5-lactone) as unstable brownish oil. Yield: $1.11 \mathrm{~g}(92 \%)$. $\mathrm{R}_{\mathrm{f}}=0.67(4: 1 \mathrm{MePh}-E t O A c) ;[\alpha]_{\mathrm{D}}{ }^{20}+87\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.34-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz})$ and $4.68(\mathrm{~d}, 1$ $\left.\mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz})$ and $4.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.334$ (dd, $\left.1 \mathrm{H}, J_{5 \mathrm{a}, 5 \mathrm{~b}}=11.9 \mathrm{~Hz}, J_{5 \mathrm{a}, 4}=5.2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}\right), 4.25\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,3}=7.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.21$ (dd, $1 \mathrm{H}, \mathrm{J}_{5 \mathrm{a}, 5 \mathrm{~b}}=11.9, J_{5 \mathrm{~b}, 4}=3.4 \mathrm{~Hz} \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), 4.04 (dt, $1 \mathrm{H}, \mathrm{H}-4$), 3.99 (dd, $1 \mathrm{H}, J_{3,4}$ $\left.=3.1, J_{3,2}=7.3 \mathrm{~Hz}, \mathrm{H}-3\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 168.52$ (C-1), 136.94 (d.i., Cq, C-Ar), 128.59 (d.i.), 128.48 (d.i.), 128.40 (d.i.), 128.20,128.16 and 127.85 (d.i., C-Ar), 77.58
$(\mathrm{C}-3), 76.16(\mathrm{C}-2), 74.67\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.11\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.86(\mathrm{C}-5)$ and $56.47(\mathrm{C}-4)$. HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: 354.1448, found 354.1444.

Dimethyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy- β-L-arabino-

 hexulopyranosyl)phosphonate (6)Dimethyl methyl phosphonate 5 ($0.40 \mathrm{~mL}, 3.68 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) was dissolved under$ an inert atmosphere in dry THF (5 mL) in a flame-pre-dried Schlenk flask and then cooled to $-70^{\circ} \mathrm{C}$. Subsequently, 1.6 M solution of n-BuLi in hexanes $(2.30 \mathrm{~mL}, 3.68$ mmol, 1.3 eq.) was added dropwise into the flask and stirred for 30 min at $-70^{\circ} \mathrm{C}$. A pre-cooled solution of lactone $4(1.0 \mathrm{~g}, 2.83 \mathrm{mmol})$ in dry THF (5 mL) was added dropwise during 20 min , the resulting mixture was stirred at $-70^{\circ} \mathrm{C}$ for 1 h and then left to reach rt overnight (17 h). The reaction was quenched by adding $\mathrm{MeOH}(2 \mathrm{~mL})$ and the solution was concentrated in vacuo. The crude residue was flashchromatographed on silica gel (2:1 MePh-EtOAc \rightarrow EtOAc) to give $773 \mathrm{mg}(57 \%)$ of 6 as off-yellow syrup. $\mathrm{R}_{\mathrm{f}}=0.15$ (2:1 MePh-EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}-14$ (c 1.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.41-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.80(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz})$ and $4.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.76\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.17\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{4,5}=3.7\right.$ $\left.\mathrm{Hz}, J_{3,4}=9.5 \mathrm{~Hz}, \mathrm{H}-4\right), 4.06$ (dd, $1 \mathrm{H}, J_{6 \mathrm{a}, 5}=1.7 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 3.91 (ddd, $1 \mathrm{H}, \mathrm{H}-5), 3.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{Me}, \mathrm{P}}=11.2 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.64\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{Me}, \mathrm{P}}=11.1 \mathrm{~Hz}\right.$, $\left.\mathrm{POCH}_{3}\right), 3.59\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{~b}, 5}=1.7 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4,3}=9.5\right.$ $\mathrm{Hz}, \mathrm{H}-3), 2.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{CH} 2 \mathrm{a}, \mathrm{P}}=17.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{a}, \mathrm{CH} 2 \mathrm{~b}}=15.2 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{a}\right)$ and $1.71(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{CH} 2 \mathrm{~b}, \mathrm{P}}=18.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{a}, \mathrm{CH} 2 \mathrm{~b}}=15.2 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{~b}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 137.86$ and 137.74 (Cq, C-Ar), 128.74 (d.i.), 128.54 (d.i.), 128.46 (d.i.),128.00,127.96 and 127.93 (d.i., C-Ar), 97.41 (d, $J_{C, P}=8.6 \mathrm{~Hz}, \mathrm{C}-2$), 78.92 (d, $J_{\mathrm{C}, \mathrm{P}}=14.1 \mathrm{~Hz}, \mathrm{C}-3$), 78.49 (d, $\mathrm{J}_{\mathrm{C}, \mathrm{P}}$ $=4.4 \mathrm{~Hz}, \mathrm{C}-4), 75.36\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.76\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.21(\mathrm{C}-6), 60.44(\mathrm{C}-5), 53.30(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{P}}=5.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 51.88\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 32.31\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=134.5 \mathrm{~Hz}, \mathrm{C}-\right.$ 1); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31.27$. HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}$: 478.1738, found 478.1735.

Dimethyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-arabino-hex-1-enit-1-yl)phosphonate (8)

A solution of $6(400 \mathrm{mg}, 0.84 \mathrm{mmol})$ in dry DCM (15 mL) was cooled to $0^{\circ} \mathrm{C}$. Dry pyridine ($3.38 \mathrm{~mL}, 41.88 \mathrm{mmol}$) was added dropwise under an inert atmosphere, followed by addition of methyl oxalyl chloride ($0.77 \mathrm{~mL}, 8.38 \mathrm{mmol}, 10 \mathrm{eq}$.) , which
resulted in immediate formation of a white precipitate. The suspension was stirred for 1 h at $0-5^{\circ} \mathrm{C}$, and then at rt for 23 h . The reaction mixture was diluted with DCM (15 mL) and treated with satd aq NaHCO_{3} solution (20 mL) under cooling. The phases were separated and the aqueous portion was extracted with DCM ($2 \times 15 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by flash-chromatography on silica gel (1:1 MePh-EtOAc \rightarrow EtOAc) to afford 8 as light brown oil. Yield: 286 mg (74\%); $\mathrm{R}_{\mathrm{f}}=0.11$ (1:1 MePh-EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}+54$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.35-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=\mathrm{CH}, 2=0.8$ $\left.\mathrm{Hz}, J_{=C H, P}=12.6 \mathrm{~Hz},=C H\right), 4.72$ and $4.69\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69$ and 4.61 (d, each $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.17\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=5.6 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=11.2\right.$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}$), 4.10 (br d, $1 \mathrm{H}, J_{4,3}=7.1 \mathrm{~Hz}, \mathrm{H}-3$), 3.98 (dt, $1 \mathrm{H}, \mathrm{J}_{4,5}=3.2 \mathrm{~Hz}, \mathrm{H}-5$), 3.95 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{~b}, 5}=3.3 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $3.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,3}=7.1 \mathrm{~Hz}, J_{5,4}=3.2\right.$ $\mathrm{Hz}, \mathrm{H}-4)$, $3.72\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{Me}, \mathrm{P}}=3.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right)$ and $3.70\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{Me}, \mathrm{P}}=3.4 \mathrm{~Hz}\right.$, $\left.\mathrm{POCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 165.91\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.6 \mathrm{~Hz},=\mathrm{CH}\right), 137.14$ and $137.02(\mathrm{Cq}$, C-Ar), 128.55 (d.i.), 128.17, 128.07, 127.93 (d.i.) and 127.87 (d.i., Ar-C), 97.37 (d, $\left.J_{\mathrm{C}, \mathrm{P}}=189.5 \mathrm{~Hz}, \mathrm{C}-2\right), 78.46(\mathrm{C}-4), 75.90\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=14.1 \mathrm{~Hz}, \mathrm{C}-3\right), 73.15\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $73.04\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.91(\mathrm{C}-6), 56.93(\mathrm{C}-5), 52.48\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 52.15(\mathrm{~d}$, $\left.J_{C, P}=5.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 19.05. HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}: 460.1632$, found 460.1639 .
Alternatively, 8 was prepared using TFAA:
Compound 6 ($58 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in dry THF (1.5 mL) and cooled to $0^{\circ} \mathrm{C}$. Dry pyridine ($98 \mu \mathrm{~L}, 1.21 \mathrm{mmol}$) was added dropwise under an inert atmosphere, followed by trifluoroacetic anhydride ($0.51 \mathrm{~mL}, 3.64 \mathrm{mmol}, 30 \mathrm{eq}$.). After stirring at $0-5^{\circ} \mathrm{C}$ for 90 min , the reaction mixture was allowed to reach rt and kept at this temperature for 27 h . Satd aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added under cooling, which was followed by extraction with EtOAc ($3 \times 5 \mathrm{~mL}$). Combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified as described above to give $36 \mathrm{mg}(57 \%)$ of 8 as turbid colorless oil.

Methyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-arabino-hex-1-enit-1yl)phosphonate (9)

Exo-glycal 8 ($312 \mathrm{mg}, 0.68 \mathrm{mmol}$) and $\mathrm{NaI}(204 \mathrm{mg}, 1.36 \mathrm{mmol}, 2$ eq.) were mixed with dry acetone $(5 \mathrm{~mL})$. Under atmospheric pressure, the solution was concentrated at $70^{\circ} \mathrm{C}$ to such an extent that stirring was still effective ($\sim 1 \mathrm{~h}$). The reaction vessel
was then equipped with a septum and a balloon filled with Ar and the thick slurry was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. The suspension was concentrated in vacuo and the residue was flash-chromatographed on silica gel (MePh-MeOH 2:1 \rightarrow 1:2) to furnish 9 as yellow amorphous solid. Yield: 298 mg (98%), $\mathrm{R}_{\mathrm{f}}=0.39$ (1:1 $\left.\mathrm{MePh}-\mathrm{MeOH}\right)$. $[\alpha]_{\mathrm{D}}{ }^{20}+32\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.37-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.29(\mathrm{~d}, 1$ $\mathrm{H}, J_{=\text {сн, }, ~}=10.1 \mathrm{~Hz},=\mathrm{CH}$), 4.74 and $4.62\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.69 (d, $2 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.14-4.11 (m, $2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-3$), 4.09 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=5.6$ $\mathrm{Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 3.91 (dd, $1 \mathrm{H}, J_{3,4}=7.1 \mathrm{~Hz}, J_{5,4}=3.3 \mathrm{~Hz} \mathrm{H}-4$), 3.90 (dd, 1 $\mathrm{H}, \mathrm{J}_{6 \mathrm{~b}, 5}=3.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 3.51 (d, $3 \mathrm{H}, \mathrm{J}_{\mathrm{Me}, \mathrm{P}}=11.2 \mathrm{~Hz}, \mathrm{POCH}_{3}$); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 163.01 (=CH), 140.11 and 140.08 (Cq, C-Ar), 130.27 and 130.26 (3 C), 129.92, 129.86 (d.i.), 129.73, and 129.66 (Ar-C), 105.55 (d, $J_{C, P}=176.3 \mathrm{~Hz}, \mathrm{C}-2$), 81.35 (C4), 78.41 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=12.9 \mathrm{~Hz}, \mathrm{C}-3$), $74.75\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.38\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.59(\mathrm{C}-6), 59.56$ (C-5), $52.82\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.1 \mathrm{~Hz}, \mathrm{POCH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 10.95$. HRMS (ESI) m / z $\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}: 446.1475$, found 446.1482 .

Methyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-erythro-hex-2-enit-1yl)phosphonate (10)

Exo-glycal 9 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and mixed with 1 M aq. NaOH solution ($\sim 5.5 \mathrm{~mL}$). The resulting suspension was stirred at $60-70^{\circ} \mathrm{C}$ for 75 h. The reaction mixture was then concentrated in vacuo, filtered over Celite $\left(\mathrm{CHCl}_{3}\right)$ and the filtrate was concentrated. Yield: 40 mg (80%, crude) of 10 as brownish syrup. $\mathrm{R}_{\mathrm{f}}=0.28\left(2: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$. The crude material was repeatedly purified on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}=2: 1 \rightarrow 1: 1\right) .[\alpha]_{\mathrm{D}}{ }^{20}-48(\mathrm{c} 0.4, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 7.38-7.24 (m, $10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 4.83 and $4.74\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.73$ (s, 2 H, CH ${ }_{2} \mathrm{Ph}$), 4.45 (app t, $1 \mathrm{H}, J_{5,4}=3.8 \mathrm{~Hz}, \mathrm{H}-4$), 4.03 (ddd, $1 \mathrm{H}, J_{6 \mathrm{a}, 4}=1.0 \mathrm{~Hz}$, $\left.J_{6 \mathrm{a}, 5}=3.5 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.96\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{~b}, 5}=J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.83$ (dt, $1 \mathrm{H}, \mathrm{H}-5), 3.55\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{Me}, \mathrm{P}}=10.7 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, J=$ $20.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 2.55$ (dd, $1 \mathrm{H}, J=14.8 \mathrm{~Hz}, J=20.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $146.48\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12.5 \mathrm{~Hz}, \mathrm{C}-2\right), 140.55$ and $140.00(\mathrm{Cq}, \mathrm{C}-\mathrm{Ar}), 133.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.6\right.$ $\mathrm{Hz}, \mathrm{C}-3$), 130.24 (d.i.), 130.22 (d.i.), 130.19 (d.i.), 130.08 (d.i.), 129.76 and 129.59 (Ar-C), $76.15\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.94\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.00(\mathrm{C}-4), 65.34(\mathrm{C}-6), 58.85(\mathrm{C}-5), 53.28$ ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=5.9 \mathrm{~Hz}, \mathrm{POCH}_{3}$), 29.11 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=134.2 \mathrm{~Hz}, \mathrm{C}-1$); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 17.97. HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}: 446.1475$, found 446.1474.

Methyl (2,6-anhydro-5-amino-1,5-dideoxy-L-mannit-1-yl) phosphonic acid (11)

Hydrogenation of 9 ($30 \mathrm{mg}, 0.067 \mathrm{mmol}$) was carried out as described under general conditions to give 2.5 mg (15\%) of 11 as colorless oil after HILIC purification; [$\alpha]_{D}{ }^{20}$ +32 (c 0.25, MeOH); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 3.87$ (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=1.1 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=13.6 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{a}$), 3.77 (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=9.5 \mathrm{~Hz}, J_{5,4}=4.7 \mathrm{~Hz}, \mathrm{H}-4$), 3.62 (dd, $1 \mathrm{H}, J_{6 \mathrm{~b}, 5}=1.2 \mathrm{~Hz}$, $J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 3.51 (br d, $1 \mathrm{H}, \mathrm{H}-5$), $3.395\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{Me}, \mathrm{P}}=10.4 \mathrm{~Hz}, \mathrm{POCH}_{3}\right.$), 3.325 (ddd, $1 \mathrm{H}, J_{2,3}=9.7 \mathrm{~Hz}, J_{2,1 \mathrm{a}}=1.5 \mathrm{~Hz}, \mathrm{H}-2$) $3.25\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{4,3}=9.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 3), 2.02 (ddd, $1 \mathrm{H}, J_{1 \mathrm{a}, \mathrm{P}}=18.4 \mathrm{~Hz}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=15.6 \mathrm{~Hz}, J_{1 \mathrm{a}, 12}=2.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$), 1.68 (dt, 1 $\left.\mathrm{H}, J_{1 \mathrm{~b}, \mathrm{P}}=15.5 \mathrm{~Hz}, J_{1 \mathrm{~b}, 2}=9.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 77.92\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.6 \mathrm{~Hz}, \mathrm{C}-\right.$ 2), 71.96 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=13.4 \mathrm{~Hz}, \mathrm{C}-3$), 70.69 (C-4), 66.62 (C-6), 53.19 (C-5), 52.04 (d, $\mathrm{J}_{\mathrm{C}, \mathrm{P}}$ $=5.5 \mathrm{~Hz}, \mathrm{POCH}_{3}$), and $29.17\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=135.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 24.81$. HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}: 242.0788$, found 242.0786.

Methyl, octyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-arabino-hex-1-enit-1-yl)phosphonate (12) and Methyl, octyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-erythro-hex-2-enit-1-yl)phosphonate (14)

Method A

Phosphonate 9 ($85 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($373 \mathrm{mg}, 1.15 \mathrm{mmol}$) were suspended in dry DMF (2 mL) and warmed to $80^{\circ} \mathrm{C}$ under an inert atmosphere. Then octyl bromide ($99 \mu \mathrm{~L}, 0.57 \mathrm{mmol}, 3 \mathrm{eq}$) was added dropwise and the suspension was stirred for 2 h at $80^{\circ} \mathrm{C}$: The crude mixture was allowed to cool down and was concentrated under reduced pressure. The residue was suspended in MeOH , mixed with silica gel ($\sim 2 \mathrm{~g}$), concentrated in vacuo $\left(40^{\circ} \mathrm{C}\right)$ and the solid material was placed on top of a silica gel column and eluted with $\mathrm{MePh} \rightarrow \mathrm{EtOAc}$, which gave 59 mg (55 $\%)$ of 14 and $33 \mathrm{mg}(31 \%)$ of $\mathbf{1 2}$ as yellow oils.

Method B

Phosphonate 9 ($100 \mathrm{mg}, 0.225 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(439 \mathrm{mg}, 1.374 \mathrm{mmol}, 6$ eq.) were suspended in dry DMF (2.8 mL) and reacted with octyl bromide ($116 \mu \mathrm{~L}, 0.674 \mathrm{mmol}$) as described above. The mixture was brought to rt , concentrated under reduced pressure and directly flash-chromatographed on silica gel (MePh \rightarrow EtOAc) to afford 21 mg (17%) of 14 and 76 mg (61%) of 12 as off-yellow syrups. Resolution of diastereomers of 12 and 14 was achieved on a semi-preparative YMC Pack Sil 06 ($250 \times 20 \mathrm{~mm}$) HPLC column (MePh \rightarrow EtOAc, $25 \mathrm{~mL} / \mathrm{min}$) to give 14a as transparent oil, $\mathrm{R}_{\mathrm{f}}=0.60(\mathrm{EtOAc}) ;[a]_{\mathrm{D}}{ }^{20}-50\left(c 0.95, \mathrm{CHCl}_{3}\right)$ followed by $\mathbf{1 4 b}$ as
tranparent oil, $\mathrm{R}_{\mathrm{f}}=0.56(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{20}-450\left(c 1.16, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.38-7.27 (m, $10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 4.845 and $4.75\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72$ and $4.68\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.28$ (app t, $\left.1 \mathrm{H}, J_{5,4}=3.9 \mathrm{~Hz}, \mathrm{H}-4\right)$, 4.05 (d, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 4.01$ (q, $2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-1$ 'a, H-1'b of 14a), 4.00 (q, 2 H , $J=7.0 \mathrm{~Hz}, \mathrm{H}-1$ 'a, $\mathrm{H}-1$ 'b of $\mathbf{1 4 b}$), $3.73\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{Me}, \mathrm{P}}=11.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right.$ of $\mathbf{1 4 b}$), 3.70 (d, $3 \mathrm{H}, J_{\mathrm{Me}, \mathrm{P}}=11.0 \mathrm{~Hz}, \mathrm{POCH}_{3}$ of 14a), 3.69 (ddd, $1 \mathrm{H}, \mathrm{J}_{5,4}=3.9 \mathrm{~Hz}, \mathrm{H}-5$), 2.915 (dd, $1 \mathrm{H}, J=15.1 \mathrm{~Hz}, J=21.3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 2.71$ (dd, $1 \mathrm{H}, J=15.1 \mathrm{~Hz}, J=21.2 \mathrm{~Hz}, \mathrm{H}-$ 1b), 1.66-160 (m, $2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-2$ 'a, H-2'b), 1.34-1.26 (m, 10 H , octyl signals H$\left.3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}, \mathrm{H}-7^{\prime}\right)$ and $0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ for 14a: $\delta 141.16\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12.9 \mathrm{~Hz}, \mathrm{C}-2\right), 137.86$ and $137.23(\mathrm{Cq}, \mathrm{C}-\mathrm{Ar}), 133.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $11.7 \mathrm{~Hz}, \mathrm{C}-3$), 128.47 (d.i.), 128.41 (d.i.), 128.03 (d.i.), 128.01, 127.92 (d.i.) and 127.83 ($\mathrm{Ar}-\mathrm{C}$), 74.51 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz}, 2-\mathrm{OCH}_{2} \mathrm{Ph}$), $73.21\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.48(\mathrm{C}-4) 66.36$ (d, $\left.J_{C, P}=6.5 \mathrm{~Hz}, \mathrm{C}-1{ }^{\prime}\right), 63.23(\mathrm{C}-6), 56.82(\mathrm{C}-5), 52.52\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right)$, 31.76 (C-6'), 30.51 ($d, J_{C, P}=6.4 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 29.18 and 29.12 (C-4', C-5'), 26.22 ($d, J_{C, P}$ $=139.6 \mathrm{~Hz}, \mathrm{C}-1), 25.46\left(\mathrm{C}-3^{\prime}\right), 22.61\left(\mathrm{C}-7^{\prime}\right)$ and $14.05\left(\mathrm{C}-8^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$ for 14b: $\delta 141.13$ ($d, J_{C, P}=13.0 \mathrm{~Hz}, \mathrm{C}-2$), 137.86 and 137.22 (Cq, C-Ar), $133.30\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}\right.$ $=11.9 \mathrm{~Hz}, \mathrm{C}-3$), 128.46 (d.i.), 128.41 (d.i.), 128.03 (d.i.), 128.02, 127.93 (d.i.) and 127.83 ($\mathrm{Ar}-\mathrm{C}$), $74.49\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz}, 2-\mathrm{OCH}_{2} \mathrm{Ph}\right.$), $73.20\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.41(\mathrm{C}-4), 66.21$ ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}-1$ '), $63.25(\mathrm{C}-6), 56.80(\mathrm{C}-5), 52.70\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right)$, 31.76 (C-6'), 30.48 ($d, J_{C, P}=5.8 \mathrm{~Hz}, \mathrm{C}-2^{\prime}$), 29.16 and 29.12 (C-4', C-5'), 26.26 (d, J $\mathrm{J}_{\mathrm{C}, \mathrm{P}}$ $=139.6 \mathrm{~Hz}, \mathrm{C}-1$), $25.45\left(\mathrm{C}-3^{\prime}\right), 22.61\left(\mathrm{C}-7^{\prime}\right)$ and $14.06\left(\mathrm{C}-8^{\prime}\right){ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 25.65 (14b) and 25.62 (14a). HRMS (ESI) $m / z\left[M+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$: 558.2727 , found 558.2734 for 14a; found 558.2740 for 14b.

Continued elution of the column afforded 12a as transparent oil, $\mathrm{R}_{\mathrm{f}}=0.34$ (EtOAc); $[a]_{\mathrm{D}}{ }^{20}+40\left(c 1.12, \mathrm{CHCl}_{3}\right.$, $)$ and 12b $\mathrm{R}_{\mathrm{f}}=0.34(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{20}+42\left(c 1.20, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=\mathrm{CH}, \mathrm{P}=12.5 \mathrm{~Hz},=\mathrm{CH}$ of 12b), 5.19 (d, $1 \mathrm{H}, J_{=C H, P}=12.4 \mathrm{~Hz},=\mathrm{CH}$ of 12b), 4.70 (br s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.69 and $4.59\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=5.7 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=11.1\right.$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}$), 4.09 (br d, $1 \mathrm{H}, \mathrm{J}_{3,4}=7.0 \mathrm{~Hz}, \mathrm{H}-3$), 4.01-3.97 (m, 3 H, H-4, H-1'a, H-1'b), 3.95 (dd, $1 \mathrm{H}, J_{6 \mathrm{~b}, 5}=3.4 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ of 12 a), 3.93 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{~b}, 5}=3.5$ $\mathrm{Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ of 12b), $3.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,3}=7.0 \mathrm{~Hz}, J_{5,4}=3.1 \mathrm{~Hz}, \mathrm{H}-4\right.$ of 12a), 3.86 (dd, $1 \mathrm{H}, J_{4,3}=7.1 \mathrm{~Hz}, J_{5,4}=3.3 \mathrm{~Hz}, \mathrm{H}-4$ of 12b), 3.71 (d, $3 \mathrm{H}, J_{\mathrm{Me}, \mathrm{P}}=11.4$ $\mathrm{Hz}, \mathrm{POCH}_{3}$ of 12a), $3.70\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{Me}, \mathrm{P}}=11.3 \mathrm{~Hz}, \mathrm{POCH}_{3}\right.$ of $\left.\mathbf{1 2 b}\right), 1.64(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=$ 6.8 Hz, H-2'a, H-2'b), 1.36-1.24 (m, 10 H , octyl signals H-3‘, H-4', H-5‘, H-6‘, H-7')
and $0.88\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-8{ }^{〔}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for 12a: $\delta 165.40(=\mathrm{CH})$, 137.17 and 137.07 (Cq, C-Ar), 128.56 (d.i.), 128.17, 128.07, 127.93 (d.i.) and 127.87 (d.i., Ar-C), $98.78\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=188.7 \mathrm{~Hz}, \mathrm{C}-2\right)$, $78.41(\mathrm{C}-4), 75.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.7 \mathrm{~Hz}, \mathrm{C}-3\right)$, $73.04\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.03\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.78(\mathrm{C}-6), 65.72\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.7 \mathrm{~Hz}, \mathrm{C}-1^{\prime}\right) 56.86(\mathrm{C}-$ 5), $52.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 31.77\left(\mathrm{C}-6{ }^{\prime}\right), 30.50\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 29.18$ and 29.15 (C-4‘, C-5‘), 25.55 (C-3'), 22.62 (C-7‘) and 14.06 (C-8‘); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) for 12b: $\delta 165.47$ (=CH), 137.18 and 137.07 (Cq, C-Ar), 128.56, 128.55, 128.16, 128.07, 127.93 (d.i.) and 127.88 (d.i., Ar-C), 98.16 (d, $J_{C, P}=188.9 \mathrm{~Hz}, \mathrm{C}-2$), 78.49 (C-4), 75.89 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=14.1 \mathrm{~Hz}, \mathrm{C}-3$), $73.11\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.04\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.83(\mathrm{C}-6)$, $65.99\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.1 \mathrm{~Hz}, \mathrm{C}-1{ }^{\prime}\right) 56.96(\mathrm{C}-5), 52.07\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 31.77$ (C6^{\prime}), 30.51 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}-3^{〔}$), 29.18 and 29.15 (C-4', C-5'), 25.55 (C-3'), 22.62 (C7^{\prime}) and $14.06\left(\mathrm{C}-8^{\prime}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.53$ (12b) and 17.52 (12a). HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$: 558.2727, found 558.2739 for 12a; found 558.2740 for $\mathbf{1 2 b}$.

Octyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-arabino-hex-1-enit-1yl)phosphonate (13)

Dry acetone (2 mL) was added to exo-glycal $12(75 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{NaI}(81 \mathrm{mg}$, 0.54 mmol, 4 eq.). The suspension was concentrated at $70{ }^{\circ} \mathrm{C}$ at atmospheric pressure to such an extent that stirring was still effective ($\sim 30 \mathrm{~min}$). The reaction vessel was then equipped with a septum and a balloon filled with Ar and the thick slurry was stirred at $55^{\circ} \mathrm{C}$ overnight (19 h). Then another portion of Nal was added ($40 \mathrm{mg}, 0.27 \mathrm{mmol}, 2$ eq.) and stirring was continued for additional 47 h . The suspension was concentrated in vacuo and subjected to flash-chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 9: 1 \rightarrow 1: 1\right)$ to give $60 \mathrm{mg}(82 \%)$ of 13 as yellow oil. $\mathrm{R}_{\mathrm{f}}=0.17$ (EtOAc); $[\alpha]_{D}{ }^{20}+31$ (c 1.2, MeOH); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.36-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $5.29\left(\mathrm{~d}, 1 \mathrm{H}, J_{=\mathrm{CH}, \mathrm{P}}=10.0 \mathrm{~Hz},=\mathrm{CH}\right), 4.73$ and $4.69(2 \mathrm{~d}$, each $1 \mathrm{H}, J=11.6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.68 and $4.61\left(2 \mathrm{~d}\right.$, each $1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.13-4.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$, $\mathrm{H}-3), 4.08$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=5.9 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=11.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.93\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=7.1 \mathrm{~Hz}\right.$, $\left.J_{5,4}=3.2 \mathrm{~Hz}, \mathrm{H}-4\right), 3.91$ (dd, $\left.1 \mathrm{H}, J_{6 \mathrm{~b}, 5}=3.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.77$ (dt, J=6.5 Hz, H-1'a, H1'b), 1.55 (m, $2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-2$ 'a, H-2'b), 1.35-1.24 (m, 10 H , octyl signals H-3', H$\left.4^{\prime}, \mathrm{H}^{\prime} 5^{\prime}, \mathrm{H}-6^{\prime}, \mathrm{H}-7^{\prime}\right)$ and $0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 162.70$ (by HMBC, C-2), 140.11 and 140.06 (Cq, C-Ar), 130.28 and 130.26 (3 C), 129.94 (d.i.), 129.83 (d.i.), 129.75, and 129.67 (Ar-C), 105.9 (by HMBC, C-1), 81.18 (C-4),
$78.40\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12.8 \mathrm{~Hz}, \mathrm{C}-3\right), 74.60\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.39\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.42(\mathrm{C}-6), 66.41(\mathrm{C}-$ $\left.1^{〔}\right), 59.30$ (C-5), 33.87 (C-6‘), 32.91 (C-2'), 31.35 and 31.31 (C-4', C-5‘), 27.89 (C-3'), $24.58\left(\mathrm{C}-7^{\prime}\right)$ and $15.28\left(\mathrm{C}-8^{\prime}\right) ;{ }^{31} \mathrm{P}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): δ 9.06. HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}: 544.2571$, found 544.2577.

Octyl (2,6-anhydro-5-azido-3,4-di-O-benzyl-1,5-dideoxy-L-erythro-hex-2-enit-1yl)phosphonate (15)

Dry acetone (1 mL) was added to endo-glycal $14(22 \mathrm{mg}, 0.039 \mathrm{mmol})$ and $\mathrm{NaI}(24$ $\mathrm{mg}, 0.158 \mathrm{mmol}, 4 \mathrm{eq}$.$) . The suspension was concentrated at atmospheric pressure$ so that stirring was still effective and the resulting slurry was stirred at $60{ }^{\circ} \mathrm{C}$ overnight (16 h) under Ar. Then another portion of Nal was added ($24 \mathrm{mg}, 0.158$ mmol, 4 eq.) and stirring was continued for additional 28 h . The reaction mixture was concentrated in vacuo and flash-chromatographed on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}=9: 1\right.$ $\rightarrow 1: 1$) to afford 15 as off-yellow syrup. Yield: $16 \mathrm{mg}(75 \%) ; R_{f}=0.25$ (EtOAc); $[\alpha]_{D}{ }^{20}$ $-50\left(\mathrm{c} 0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.24(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 4.85$ and 4.75 (2 d, each $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.73$ and $4.70\left(2 \mathrm{~d}\right.$, each $\left.1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.28 (br t, $1 \mathrm{H}, \mathrm{H}-4$), 4.02 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=3.2 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), $3.96(\mathrm{t}, 1 \mathrm{H}$, $J_{6 \mathrm{~b}, 5}=J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 3.85-3.81 (m, $3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-1$ 'a, H-1'b), 1.68-1.58 (m, 2 $\mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-2$ 'a, H-2'b), 1.33-1.22 (m, 10 H , octyl signals H-3‘, H-4', H-5‘, H-6‘, $\mathrm{H}-7^{`}$) and $0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-8^{〔}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 146.53\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.0\right.$ $\mathrm{Hz}, \mathrm{C}-2$), 140.56 and 139.94 (Cq, C-Ar), 133.96 (d, $J_{\mathrm{C}, \mathrm{P}}=9.6 \mathrm{~Hz}, \mathrm{C}-3$), 130.25 (d.i.), 130.20 (d.i.), 130.19 (d.i.), 130.03 (d.i.), 129.80 and 129.59 (Ar-C), $76.13\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 74.96 ($\mathrm{CH}_{2} \mathrm{Ph}$), 73.01 ($\mathrm{C}-4$), 66.84 ($\mathrm{C}-1{ }^{\prime}$), 65.36 (C-6), 58.90 (C-5), 33.87 (C-6‘), 32.97 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}-2^{`}$), 31.38 and 31.32 (C-4‘, C-5'), 29.6 (C-1 by HSQC), 27.84 (C-3'), 24.58 (C-7‘), 15.29 (C-8‘); ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): δ 16.19. HRMS (ESI) m / z $\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}: 544.2571$, found 544.2579.

Octyl (2,6-anhydro-5-amino-1,5-dideoxy-L-mannit-1-yl) phosphonic acid (16)

Hydrogenation of 13 ($13 \mathrm{mg}, 0.024 \mathrm{mmol}$) was carried out as described under general conditions to give 3.1 mg (38%) of 16 as colorless oil after HILIC purification; $[\alpha]_{\mathrm{D}}{ }^{20}+27(\mathrm{c} 0.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.88\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=1.6 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 56 \mathrm{~b}}=\right.$ $13.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 3.85 (q, $2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{POCH}_{2}$), $3.77-3.64$ (m, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-4$), 3.45-3.39 (m, 2 H, H-2, H-3), 3.28 (br, d, $1 \mathrm{H}, J_{5,4}=4.4 \mathrm{~Hz}, \mathrm{H}-5$), 2.09 (ddd, $1 \mathrm{H}, \mathrm{J}_{1 \mathrm{a}, \mathrm{P}}$ $\left.=17.6 \mathrm{~Hz}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=15.3 \mathrm{~Hz}, J_{1 \mathrm{a}, 2}=4.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 1.91\left(\mathrm{ddd}, 1 \mathrm{H}, J_{1 \mathrm{~b}, \mathrm{P}}=17.3 \mathrm{~Hz}, J_{1 \mathrm{~b}, 2}\right.$
$\left.=6.0 \mathrm{~Hz}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=15.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 1.64-1.59(\mathrm{~m}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-2 ' \mathrm{a}, \mathrm{H}-2 \mathrm{~b}), 1.41-$ 1.28 （m， 10 H ，octyl signals H－3＇，H－4＇，H－5‘，H－6‘，H－7 ${ }^{\prime}$ ）and $0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$ ， $\left.\mathrm{H}-8)^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 79.74\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}, \mathrm{C}-2\right), 74.30\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.8 \mathrm{~Hz}, \mathrm{C}-\right.$ 3）， 73.86 （C－4）， 69.09 （C－6）， 66.13 （ $d, J_{C, P}=5.6 \mathrm{~Hz}, \mathrm{C}-1$ ）， 54.49 （C－5）， 33.87 （C－6‘）， $32.76\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=134.0 \mathrm{~Hz}, \mathrm{C}-1\right)$ ， 33.04 and $33.00\left(\mathrm{C}-4^{〔}, \mathrm{C}-5^{〔}\right), 27.86\left(\mathrm{C}-3^{‘}\right), 24.57(\mathrm{C}-$ $7^{〔}$ ）and $15.26\left(\mathrm{C}-8^{\prime}\right) ;{ }^{31} \mathrm{P}$ NMR（ $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 21．56．HRMS（ESI） $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{P}: 340.1884$ ，found 340.1887 ．

Octyl（2，6－anhydro－5－amino－1，5－dideoxy－L－altrit－1－yl）phosphonic acid（17）

Hydrogenation of 15 （ $9 \mathrm{mg}, 0.017 \mathrm{mmol}$ ）was carried out as described under general conditions to give 2.3 mg （ 41% ）of 17 as white solid after HILIC purification；$[\alpha]_{D}{ }^{20}$ ＋43（c 0．2，MeOH）；${ }^{1} \mathrm{H}$ NMR（ $\mathrm{CD}_{3} \mathrm{OD}$ ）：$\delta 4.02$（br d， $\left.1 \mathrm{H}, \mathrm{H}-3\right), 4.01$（br d， $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=$ $\left.1.4 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.84\left(\mathrm{~m}, 3 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{POCH}_{2}, \mathrm{H}-4\right), 3.71$（br d， 1 $\left.\mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.68$（ddd， $1 \mathrm{H}, \mathrm{J}_{2, \mathrm{P}}=5.6 \mathrm{~Hz}, \mathrm{~J}_{2,1 \mathrm{a}}=8.3 \mathrm{~Hz}, J_{2,1 \mathrm{~b}}=5.3 \mathrm{~Hz}$ ， $\mathrm{H}-2), 3.32$（br d， $1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-5$ ）， 2.05 （ddd， $1 \mathrm{H}, J_{1 \mathrm{a}, \mathrm{P}}=16.9 \mathrm{~Hz}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=14.9$ $\left.\mathrm{Hz}, J_{1 \mathrm{a}, 2}=8.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 1.93$（ddd， $\left.1 \mathrm{H}, J_{1 \mathrm{~b}, \mathrm{P}}=18.4 \mathrm{~Hz}, J_{1 \mathrm{~b}, 2}=5.3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 1.64-$ 1.59 （ $\mathrm{m}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime} \mathrm{a}, \mathrm{H}-2^{\prime} \mathrm{b}$ ），1．40－1．30（m， 10 H ，octyl signals H－3＇，H－4＇， $\mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}, \mathrm{H}-7^{\prime}$ ）and $0.90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-8^{〔}\right) ;{ }^{13} \mathrm{C}$ NMR（ $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 78.44$（C－2）， $72.44\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.95 \mathrm{~Hz}, \mathrm{C}-3\right), 68.67(\mathrm{C}-4), 68.62(\mathrm{C}-6), 66.03\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.1 \mathrm{~Hz}, \mathrm{C}-1^{\prime}\right)$ ， $53.76(\mathrm{C}-5)$ ， $33.86\left(\mathrm{C}-6^{\prime}\right), 33.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 31.40\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=133.1 \mathrm{~Hz}\right.$ ， $\mathrm{CH}_{2} \mathrm{P}$ ）， 31.34 and 31.29 （ $\mathrm{C}-4^{〔}, \mathrm{C}-5^{〔}$ ）， 27.85 （C－3‘）， 24.56 （ $\mathrm{C}-7^{`}$ ）， 15.26 （ $\mathrm{C}-8^{〔}$ ）；${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 20．56．HRMS（ESI）$m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{P}: 340.1884$ ，found 340.1887.

References for Supporting information

1．B．Müller，M．Blaukopf，A．Hofinger，A．Zamyatina，H．Brade，P．Kosma，Synthesis 2010，3134－3151．

2．M．Blaukopf，B．Müller，A．Hofinger，P．Kosma，Eur．J．Org．Chem．2012，119－131．

Nons

11

 $\underbrace{\substack{0 \\ 0 \\ \sim}}$ $\underbrace{-2 \cdot}$

2s: $\angle 1-$

12a

N.

12b

13

12b

13

[^0]

100	50	0	-50	-100	-150	-200	ppm

14b

$\stackrel{セ}{\stackrel{セ}{\circ}}$

15

[^0]:

