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1. Materials and methods 

Reagents and solvents: Reagents and solvents were purchased in the highest grade of purity 

available. Dry solvents were purchased from Sigma-Aldrich (Taufkirchen, Germany). Technical 

solvents were distilled before use. HPLC-grade solvents have been used for photoswitching 

and kinetics studies. For column chromatography, distilled solvents have been utilized.  

Solvents for the NMR measurements were supplied by Deuterio (Kastellaun, Germany) or 

Eurisotop (Saarbrücken, Germany). 

Chromatography: TLC was performed on 0.25 mm silica-gel 60 F plates with a 254 nm 

fluorescence indicator from Merck (Darmstadt, Germany). The substance detection took place 

by light with wavelengths of 254 nm and 360 nm. Non-UV-active substances have been 

visualized by the following TLC stains: ninhydrin solution (1.5 g ninhydrin, 3 mL acetic acid in 

100 mL n-butanol) or potassium permanganate solution (3.0 g KMnO4, 20 g K2CO3 and 2.5 mL 

NaOH (10%) in 400 mL water) and gentle heating afterwards.  

Flash column chromatography was performed using silica-gel of the type Geduran® Si 60 (40–

63 μm mesh ASTM) purchased from Merck (Darmstadt, Germany). Columns were packed with 

wet silica gel and the samples were loaded as a concentrated solution or as a silica pad. 

NMR spectroscopy: 1H, 13C, and 19F NMR spectra were recorded on 300 or 400 MHz 

spectrometers; 13C NMR spectra were obtained on 101 or 75 MHz instruments. 1H chemical 

shifts (δ) are reported in parts per million (ppm) relative to DMSO-d6 (δ= 2.50 ppm), CD3OD 

(δ= 3.31 ppm), CDCl3 (δ= 7.26 ppm), or CD3CN (δ= 1.94 ppm) as internal references. 13C δ are 

reported in ppm with DMSO-d6 (δ= 77.67 ppm), CD3CN (δ= 118.26, 1.32 ppm) as internal 

references. 19F NMR spectra were measured without any internal standard to qualitatively 

confirm the structure and purity of the desired product.  

MS/HRMS: Electron spray ionization mass spectrometry (ESI-MS) and high-resolution ESI 

(HRMS) were performed on a maXis or MicroTOF spectrometer from Bruker (Bremen 

Germany). 

UV–vis spectroscopy: UV–vis absorption spectroscopy was performed on a Specord S600 or 

Jasco V-670 in quartz cuvettes (path 1.00 cm) at a controlled temperature of 20 °C. Molar 

extinction coefficients (ε) were determined by fitting the slope of absorbance dependency to 

the concentration taken from at least three separate dilutions. Photoisomerization was 
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measured under 365 (at concentration 12.5 μM) or 445 nm (at concentration 50 μM) 

irradiation at 25% or 10% intensity. 

2. Synthesis 

2.1 General procedure 1 to synthesize 3-(2-phenylhydrazono)pentane-2,4-

diones 

 

The synthesis was adopted from Weston et al.1 The starting compound (10.74 mmol, 1.0 equiv) 

was dissolved in AcOH (16.1 mL) and HCl (12 M, 2.5 mL) and in water dissolved NaNO2 (0.89 g, 

12.9 mmol, 1.3 equiv) was added after cooling to 0 °C. The mixture was stirred for 45 minutes 

and then added dropwise to a solution of pentane-2,4-dione (1.4 mL, 14.0 mmol, 1.3 equiv) 

and NaOAc (2.64 g, 32.22 mmol, 3.0 equiv) in water (6.4 mL) and EtOH (10.7 mL). After stirring 

for 1 hour the solution was vacuum filtrated to collect the yellow solid. It was washed with 

water, water/EtOH 1:1, and hexane and dried in vacuo. 

3-(2-Phenylhydrazono)pentane-2,4-dione 

Yield: 0.85 g (4.15 mmol, 38 %). 1H NMR (400 MHz, DMSO−d6): δ 

(ppm) = 14.05 (s, 1H), 7.59 – 7.54 (m, 2H), 7.46  7.39 (m, 2H), 7.22 – 

7.16 (m, 1H), 2.44 (s, 6H). 13C NMR (101 MHz, DMSO−d6): δ (ppm) = 196.5, 141.8, 133.3, 129.6, 

125.4, 116.3, 31.2, 26.5. MS(EI) m/z: 205.1 [M+H]+, 227.1 [M+Na]+. The spectral data are in 

accordance with the literature.2,3 

3-(2-(4-Fluorophenyl)hydrazono)pentane-2,4-dione 

Yield: 2.16 g (9.71 mmol, 90 %). 1H NMR (400 MHz, DMSO−d6): δ 

(ppm) = 14.03 (s, 1H), 7.65 – 7.59 (m, 2H), 7.30– 7.23 (m, 2H), 2.43 

(s, 6H). 13C NMR (101 MHz, DMSO−d6): δ (ppm) = 196.4, 160.9, 158.5, 

138.5, 138.4, 133.3, 118.2, 118.1, 116.4, 116.2, 31.0, 26.4.  19F NMR (282 MHz, DMSO-d6): δ 
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(ppm) = -117.4. MS(EI) m/z: 223.1 [M+H]+, 245.1 [M+Na]+. The spectral data are in accordance 

with the literature.3 

3-(2-(4-Hydroxyphenyl)hydrazono)pentane-2,4-dione 

Yield: 0.60 g (2.72 mmol, 25 %). 1H NMR (300 MHz, DMSO−d6): δ 

(ppm) = 14.49 (s, 1H), 9.65 (s, 1H), 7.46 – 7.40 (m, 2H), 6.87 – 6.79 

(m, 2H), 2.45 (s, 3H), 2.37 (s, 3H). 13C NMR (75 MHz, DMSO−d6): δ 

(ppm) = 196.0, 155.9, 133.7, 132.1, 118.1, 116.1, 31.1, 26.4. MS(EI) m/z: 243.1 [M+Na]+. The 

spectral data are in accordance with the literature.3 

3-(2-(4-Bromophenyl)hydrazono)pentane-2,4-dione 

Yield: 2.57 g (9.09 mmol, 85 %) 1H NMR (400 MHz, CDCl3): δ (ppm) = 

14.65 (s, 1H), 7.52 – 7.48 (m, 2H), 7.27 (d, J = 7.0 Hz, 2H), 2.59 (s, 3H), 

2.47 (s, 3H). 13C NMR (101 MHz, CDCl3): δ (ppm) = 198.3, 197.0, 

140.8, 133.6, 132.8, 118.7, 117.8, 31.8, 26.7. MS(EI) m/z: 283.0, 285.0 [M+Na]+. The spectral 

data are in accordance with the literature.3  

3-(2-(p-Tolyl)hydrazono)pentane-2,4-dione 

Yield: 1.74 g (7.98 mmol, 74 %). 1H NMR (400 MHz, DMSO−d6): 

δ (ppm) = 14.17 (s, 1H), 7.48 – 7.44 (m, 2H), 7.26 – 7.21 (m, 2H), 2.43 

(s, 6H), 2.30 (s, 3H). 13C NMR (101 MHz, DMSO−d6): δ (ppm) = 196.3, 

139.4, 134.9, 132.9, 130.0, 116.3, 31.1, 26.3, 20.5. MS(EI) m/z: 219.1 [M+H]+, 241.1 [M+Na]+. 

The spectral data are in accordance with the literature.2,3 

3-(2-(4-Iodophenyl)hydrazono)pentane-2,4-dione 

Yield: 3.15 g (9.56 mmol, 89 %). 1H NMR (400 MHz, DMSO−d6): δ 

(ppm) = 13.81 (s, 1H), 7.76 – 7.71 (m, 2H), 7.41 – 7.37 (m, 2H), 2.43 

(s, 6H). 13C NMR (101 MHz, DMSO−d6): δ (ppm) = 196.8, 141.8, 

138.1, 133.8, 118.4, 89.3, 31.2, 26.3. MS(EI) m/z: 331.0 [M+H]+. The spectral data are in 

accordance with the literature.3 
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3-(2-(4-(Trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione 

Yield: 2.76 g (10,16 mmol, 95 %). 1H NMR (300 MHz, CDCl3): δ (ppm) 

= 14.58 (s, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 2.62 (s, 

3H), 2.50 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) = 198.6, 197.1, 

144.4, 134.3, 127.7, 127.1, 127.1, 116.1, 31.9, 26.8. 19F NMR (282 MHz, CDCl3): δ (ppm) = -

66.54. The spectral data are in accordance with the literature.2,3 

3-(2-(4-Chlorophenyl)hydrazono)pentane-2,4-dione 

Yield: 2.17 g (9.10 mmol, 85 %). 1H NMR (400 MHz, DMSO−d6): δ 

(ppm) = 13.84 (s, 1H), 7.62 – 7.57 (m, 2H), 7.49 – 7.43 (m, 2H), 2.43 

(s, 6H). 13C NMR (101 MHz, DMSO−d6): δ (ppm) = 196.5, 140.9, 

133.8, 129.4, 129.0, 117.9, 31.2, 26.4. MS(EI) m/z: 239.06 [M+H]+, 261.04 [M+Na]+. The 

spectral data are in accordance with the literature. 3 

4-(2-(2,4-Dioxopentan-3-ylidene)hydrazineyl)benzonitrile 

Yield: 1.24 g (5.39 mmol, 50 %). 1H NMR (300 MHz, DMSO−d6): δ 

(ppm) = 13.39 (s, 1H), 7.88 – 7.81 (m, 2H), 7.73 – 7.66 (m, 2H), 2.47 

(s, 3H), 2.42 (s, 3H). 13C NMR (75 MHz, DMSO−d6): δ (ppm) = 197.6, 

196.5, 145.9, 135.8, 133.8, 119.0, 116.4, 106.1, 31.3, 26.3. MS(EI) m/z: 252.1 [M+Na]+. The 

spectral data are in accordance with the literature.2 

3-(2-(4-Methoxyphenyl)hydrazono)pentane-2,4-dione 

Yield: 0.55 g (2.36 mmol, 22 %). 1H NMR (300 MHz, DMSO−d6): 

δ (ppm) = 14.36 (s, 1H), 7.58 – 7.51 (m, 2H), 7.05 – 6.97 (m, 2H), 

3.77 (s, 3H), 2.48 – 2.35 (m, 6H). 13C NMR (75 MHz, DMSO−d6): 

δ (ppm) = 196.1, 157.4, 135.2, 132.5, 117.9, 114.9, 55.4, 31.1, 26.4. MS(EI) m/z: 

257.1 [M+Na]+. The spectral data are in accordance with the literature.2,3  

3-(2-(4-Nitrophenyl)hydrazono)pentane-2,4-dione 

Yield: 1.61 g (6.47 mmol, 60%). 1H NMR (400 MHz, CD2Cl2): δ 

(ppm) = 14.43 (s, 1H), 8.36 – 8.16 (m, 2H), 7.73 – 7.43 (m, 2H), 2.59 

(s, 3H), 2.49 (s, 3H). (s, 3H. 13C NMR (101 MHz, CD2Cl2): (ppm) = 
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199.0, 197.1, 147.3, 144.8, 135.5, 126.0, 116.2, 31.9, 26.8. MS(EI) m/z: 272.1 [M+Na]+. The 

spectral data are in accordance with the literature.2,3 

2.2 General procedure 2 to synthesize 1,3-dimethyl-arylazopyrazoles 

 

The synthesis was adopted from Patel et al.4 The 3-(2-phenylhydrazono)pentane-2,4-dione 

(0.5 mmol, 1 equiv) was dissolved in EtOH (7 mL) and then the hydrazine 

hydrate/methylhydrazine (0.5 mmol, 1 equiv) was added. The solution was refluxed for 4 

hours, and the solvent was removed in vacuo. 

(E)-3,5-Dimethyl-4-(phenyldiazenyl)-1H-pyrazole 

Yield: 101,5 mg (quant.) 1H NMR (400 MHz, CDCl3) δ (ppm) = 7.74 

– 7.69 (m, 2H), 7.54 – 7.48(m, 2H), 7.44 – 7.40 (m, 1H), 2.6 (s, 6H). 

13C NMR (101 MHz, CDCl3): δ (ppm) = 153.7, 141.7, 134.9, 129.7, 

129.1, 122.0, 12.3. MS(EI) m/z: 201.1 [M+H]+, 223.1 [M+Na]+. The spectral data are in 

accordance with the literature.5 

(E)-1,3,5-Trimethyl-4-(phenyldiazenyl)-1H-pyrazole 

Yield: 88.0mg (0.41 mmol, 82 %). 1H NMR (400 MHz, DMSO-d6): δ 

(ppm) = 7.75 - 7.70 (m, 2H), 7.54 - 7.48 (m, 2H), 7.46 - 7.39 (m, 1H), 

3.74 (s, 3H), 2.55 (s, 3H), 2.37 (s, 3H). 13C NMR (101 MHz, DMSO-d6): 

δ (ppm) = 153.0, 140.3, 139.6, 134.4, 129.5, 129.2, 121.4, 36.0, 13.8, 9.5. MS(EI) m/z: 215.13 

[M+H]+, 237.11 [M+Na]+. The spectral data are in accordance with the literature.1 

(E)-4-((4-Fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole 

Yield: 111.4mg (quant.). 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 

12.84 (s, 1H), 7.80 - 7.73 (m, 2H), 7.36 - 7.29 (m, 2H), 2.44 (s, 6H). 
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13C NMR (101 MHz, DMSO-d6): δ (ppm) = 163.8, 161.3, 149.8, 134.0, 123.4, 123.3, 116.1, 

115.9, 13.7, 10.0. MS(EI) m/z: 219.10 [M+H]+, 241.08 [M+Na]+. The spectral data are in 

accordance with the literature.5,6 

(E)-4-((4-Fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole 

Yield: 157.7mg (quant.). 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 

7.78 (dd, J = 9.2, 5.3 Hz, 2H), 7.34 (t, J = 8.9 Hz, 2H), 3.74 (s, 3H), 2.54 

(s, 3H), 2.36 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ (ppm) = 161.0, 

149.7, 140.3, 139.7, 123.3, 116.2, 115.9, 36.0, 13.8, 9.5. 19F NMR (282 MHz, DMSO-d6): δ 

(ppm) = -112.4. MS(EI) m/z: 233.12 [M+H]+, 255,10 [M+Na]+. 

(E)-4-((3,5-Dimethyl-1H-pyrazol-4-yl)diazenyl)phenol 

Yield: 105.1mg (0.49 mmol, 98 %). 1H NMR (300 MHz, DMSO-d6): δ 

(ppm) 12.67 (s, 1H), 9.91 (s, 1H), 7.65 – 7.56 (m, 2H), 6.92 – 6.83 

(m, 2H), 2.48 – 2.34 (m, 6H). 13C NMR (75 MHz, DMSO-d6): 

δ (ppm) = 159.1, 146.1, 133.7, 123.1, 115.6, 31.1, 26.4. MS(EI) m/z: 217.1 [M+H]+, 215.1 [M-

H]−. The spectral data are in accordance with the literature.6  

(E)-4-((1,3,5-Trimethyl-1H-pyrazol-4-yl)diazenyl)phenol 

Yield: 75.5mg (0.33 mmol, 66 %). 1H NMR (300 MHz, DMSO-d6): 

δ (ppm) = 9.93 (s, 1H), 7.65 - 7.57 (m, 2H), 6.90 - 6.83 (m, 2H), 3.71 

(s, 3H), 2.51 (s, 3H), 2.34 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 

(ppm) = 196.0, 159.1, 155.9, 146.1, 139.9, 138.2, 134.0, 123.2, 118.1, 116.14, 115.6, 35.9, 31.1, 

13.7, 9.4. MS(EI) m/z: 231.1 [M+H]+, 253.1 [M+Na]+. The spectral data are in accordance with 

the literature.7  

(E)-4-((4-Bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole 

Yield: 144.0mg (0.49 mmol, 98 %). 1H NMR (300 MHz, DMSO-d6): 

δ (ppm) = 12.89 (s, 1H), 7.71 - 7.62 (m, 4H), 2.43 (d, J = 7.3 Hz, 

6H). 13C NMR (75 MHz, DMSO-d6): δ (ppm) = 196.5, 151.9, 141.4, 

134.2, 132.3, 123.3, 122.4, 13.6, 10.1. MS(EI) m/z: 279.0 [M+H]+, 281.0 [M+H]+. The spectral 

data are in accordance with the literature.5,6  
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(E)-4-((4-Bromophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole 

Yield: 147.6mg (quant.). 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 

7.73 - 7.64 (m, 4H), 3.74 (s, 3H), 2.54 (s, 3H), 2.36 (s, 3H). 13C NMR 

(75 MHz, DMSO-d6): δ (ppm) = 151.9, 140.5, 140.1, 134.4, 132.2, 

123.3, 122.4, 36.0, 13.8, 9.5. MS(EI) m/z: 293.0 [M+H]+, 295.0 [M+H]+, 315.0 [M+Na]+, 317.0 

[M+Na]+. 

(E)-3,5-Dimethyl-4-(p-tolyldiazenyl)-1H-pyrazole 

Yield: 113.9mg (quant.). 1H NMR (300 MHz, DMSO-d6): δ (ppm) = 

12.79 (s, 1H), 7.65 - 7.60 (m, 2H), 7.33 - .28 (m, 2H), 2.44 (s, 6H), 

2.36 (s, 3H), 2.30 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ (ppm) = 

151.0, 139.2, 134.0, 129.7, 121.3, 20.9, 20.5. MS(EI) m/z: 215.13 [M+H]+, 237.11 [M+Na]+. The 

spectral data are in accordance with the literature. 5,6 

(E)-1,3,5-Trimethyl-4-(p-tolyldiazenyl)-1H-pyrazole 

Yield: 126.2mg (quant.). 1H NMR (300 MHz, DMSO−d6): δ (ppm) = 

7.63 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.7Hz, 2H), 3.73 (s, 3H), 2.53 (s, 

3H), 2.36 (s, 6H). 13C NMR (75 MHz, DMSO-d6): δ (ppm) = 151.0, 

140.2, 139.3, 130.0, 129.7, 121.3, 116.3, 35.9, 20.9, 13.7, 9.4. MS(EI) m/z: 229.1 [M+H]+, 251.1 

[M+Na]+. The spectral data are in accordance with the literature.1 

(E)-4-((4-Iodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole 

Yield: 166.5mg (0.35 mmol, 70 %). 1H NMR (400 MHz, DMSO-d6): δ 

(ppm) = 12.89 (s, 1H), 7.90 - 7.84 (m, 2H), 7.53 - 7.48 (m, 2H), 2.49 

(s, 3H), 2.39 (d, J = 5.9 Hz, 3H). 13C NMR (101 MHz, DMSO−d6): δ 

(ppm) = 196.3, 152.4, 138.0, 123.4, 95.8, 26.4, 10.1. MS(EI) m/z: 327.0 [M+H]+. The spectral 

data are in accordance with the literature.8 

(E)-4-((4-Iodophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole 

Yield: 168.3mg (0.49 mmol, 98 %). 1H NMR (300 MHz, DMSO-d6): δ 

(ppm) = 7.91 - 7.82 (m, 2H), 7.56 - 7.47 (m, 2H), 3.73 (s, 3H), 2.53 (s, 

3H), 2.35 (s, 3H). 13C NMR (75 MHz, DMSO−d6): δ (ppm) = 152.3, 
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140.5, 140.0, 138.0, 134.4, 123.4, 95.9, 36.0, 13.8, 9.5. MS(EI) m/z: 341.0 [M+H]+, 363.0 

[M+Na]+. The spectral data are in accordance with the literature.9,10  

(E)-3,5-Dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole 

Yield: 125.3mg (0.34 mmol, 68 %). 1H NMR (400 MHz, DMSO-d6): δ 

(ppm) = 12.99 (s, 1H), 7.89 - 7.82 (m, 4H), 2.45 (s, 6H). 13C NMR (101 

MHz, DMSO−d6): δ (ppm) = 155.3, 134.6, 126.4, 126.4, 121.9, 116.4.  

19F NMR (282 MHz, DMSO−d6): δ (ppm) = -60.77. MS(EI) m/z: 269.1 [M+H]+. The spectral data 

are in accordance with the literature.6 

(E)-1,3,5-Trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole 

Yield: 130.3mg (0.46 mmol, 92%). 1H NMR (300 MHz, DMSO-d6): 

δ (ppm) = 7.87 (d, J = 1.8 Hz, 4H), 3.75 (s, 3H), 2.57 (s, 3H), 2.38 (s, 

3H). 13C NMR (75 MHz, DMSO−d6): δ (ppm) = 155.3, 140.8, 134.8, 

126.4, 121.9, 36.0, 13.8, 9.5. 19F NMR (282 MHz, CDCl3): δ (ppm) = -62.34. MS(EI) m/z: 283.1 

[M+H]+. 

(E)-4-((4-Chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole 

Yield: 118.6mg (quant.). 1H NMR (300 MHz, DMSO−d6): δ (ppm) = 

12.89 (s, 1H), 7.75 - 7.71 (m, 2H), 7.58 - 7.53 (m, 2H), 2.43 (s, 6H). 

13C NMR (75 MHz, DMSO−d6): δ (ppm) = 151.6, 134.2, 133.7, 129.4, 

129.3, 123.0, 117.9. MS(EI) m/z: 235.1 [M+H]+. The spectral data are in accordance with the 

literature.6 

(E)-4-((4-Chlorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole 

Yield: 123.6mg (quant.). 1H NMR (300 MHz, DMSO−d6): δ (ppm) = 

7.76 - 7.70 (m, 2H), 7.59 - 7.52 (m, 2H), 3.73 (s, 3H), 2.54 (s, 3H), 

2.36 (s, 3H). 13C NMR (75 MHz, DMSO−d6): δ (ppm) = 151.6, 140.5, 

140.0, 134.4, 133.7, 129.2, 123.0, 117.9, 36.0, 13.8, 9.5. MS(EI) m/z: 249.1 [M+H]+, 271.1 

[M+Na]+. 
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(E)-4-((3,5-Dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile 

Yield: 114.9mg (quant.). 1H NMR (400 MHz, DMSO−d6): δ (ppm) = 

13.03 (s, 1H), 7.98 - 7.92 (m, 2H), 7.86 - 7.79 (m, 2H), 2.45 (s, 6H). 

13C NMR (101 MHz, DMSO−d6): δ (ppm) = 155.3, 134.8, 133.8, 

133.6, 122.1, 111.1, 106.0, 30.9, 25.9. MS(EI) m/z: 226.1 [M+H]+, 248.1 [M+Na]+. The spectral 

data are in accordance with the literature.2  

(E)-4-((1,3,5-Trimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile 

Yield: 121.0mg (quant.). 1H NMR (300 MHz, CDCl3): δ (ppm) = 

7.86 - 7.80 (m, 2H), 7.76 - 7.71 (m, 2H), 3.79 (s, 3H), 2.59 (s, 3H), 

2.48 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) = 155.9, 143.0, 

140.5, 135.8, 133.2, 122.5, 119.0, 116.4, 112.1, 36.3, 14.1, 10.2. MS(EI) m/z: 240.1 [M+H]+, 

262.1 [M+Na]+. 

(E)-4-((4-Methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazole 

Yield: 115.3mg (quant.). 1H NMR (300 MHz, DMSO−d6): δ (ppm) = 

12.73 (s, 1H), 7.70 (d, J = 9.0 Hz, 2H), 7.04 (dd, J  = 9.1, 2.3 Hz, 2H), 

3.82 (s, 3H), 2.38 (s, 6H). 13C NMR (75 MHz, DMSO−d6): δ (ppm) = 

160.4, 147.2, 133.8, 122.9, 117.9, 114.9, 114.3, 55.4, 13.7, 10.0. MS(EI) m/z: 231.1 [M+H]+. 

The spectral data are in accordance with the literature.5 

(E)-4-((4-Methoxyphenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole 

Yield: 122.2mg (quant.). 1H NMR (300 MHz, DMSO−d6): δ (ppm) 

= 7.74 - 7.67 (m, 2H), 7.04 (dd, J = 9.1, 2.2 Hz, 2H), 3.82 (s, 3H), 

3.72 (s, 3H), 2.52 (s, 3H), 2.35 (s, 3H). 13C NMR (75 MHz, 

DMSO−d6): δ (ppm) = 196.1, 160.4, 147.1, 140.1, 138.6, 123.0, 114.3, 55.5, 35.9, 13.7, 9.4. 

MS(EI) m/z: 245.1 [M+H]+, 267.1 [M+Na]+. The spectral data are in accordance with the 

literature.4 

(E)-3,5-Dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole 

Yield: 116.3mg (0.47 mmol, 94 %). 1H NMR (400 MHz, 

DMSO-d6): δ (ppm) = 13.07 (s, 1H), 8.38 - 8.32 (m, 2H), 

7.91 - 7.86 (m, 2H), 2.47 (s, 6H). 13C NMR (101 MHz, DMSO-d6): 
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δ (ppm) = 156.7, 147.0, 135.1, 124.9, 122.2, 30.7. MS(EI) m/z: 246.1 [M+H]+. The spectral data 

are in accordance with the literature.5,6 

(E)-1,3,5-Trimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole 

Yield: 129.5mg (quant.). 1H NMR (400 MHz, DMSO−d6): δ (ppm) 

= 8.36 - .31 (m, 2H), 7.91 - 7.86 (m, 2H), 3.75 (s, 3H), 2.57 (s, 3H), 

2.38 (s, 3H). 13C NMR (101 MHz, DMSO−d6): δ (ppm) = 156.6, 

147.0, 141.5, 141.0, 135.2, 124.9, 122.2, 36.1, 13.9, 9.6. MS(EI) m/z: 260.1 [M+H]+, 282.1 

[M+Na]+. The spectral data are in accordance with the literature.4 

2.3 General procedure 3 to synthesize (E)-1-(4-(diazenyl-3,5-dimethyl-1H-

pyrazol-1-yl)ethan-1-one 

A solution of acetyl chloride (0.5 mol L−1, 2.5 equiv) in DCM was added to the ice-cooled 

solution of (E)-3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole derivative (1.0 equiv), 

NaHCO3 (2.5 equiv) in DCM (0.045 mol L−1), and the reaction mixture was stirred for 16 hours 

under N2 atmosphere. Then, 5 mL of water was added, and the resulting solution was extracted 

(3 × 50 mL) with brine and (3 × 50 mL) DCM. The organic layer was separated, dried using 

Na2SO4, and concentrated under reduced pressure. The crude was purified via FCC (silica gel) 

to yield the desired product. 

 

(E)-1-(4-((4-Nitrophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one 

Synthetized according General procedure 3. 0.020 g of (E)-3,5-

dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole was used. 

Mobile phase: 20 % ethyl acetate in pentane. Yellow solid (0.020 

g, 85%). Mp.: 155.3−157.4 °C 1H NMR (400 MHz, CD2Cl2) δ 8.39 – 

8.26 (m, 2H), 8.00 – 7.86 (m, 2H), 2.94 (s, 3H), 2.69 (s, 3H), 2.49 (s, 3H). 13C NMR (101 MHz, 

CD2Cl2) δ 172.1, 156.9, 148.7, 147.3, 145.0, 138.4, 125.1, 123.1, 23.6, 15.5, 12.5. HRMS(ESI) 

m/z: [M]+ calcd. for C13H14N5O3Na+ 310.0911; found 310.0911.  IR (ATR): 𝜈 (cm-1) 2355, 2335, 

1980, 1730, 1574, 1517, 1335, 1289, 872, 772, 593. 
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(E)-1-(4-((4-Iodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one 

Synthetized according General procedure 3. 0.020 g of (E)-3,5-

dimethyl-4-((4-iodophenyl)diazenyl)-1H-pyrazole was used. 

Mobile phase: 15 % ethyl acetate in pentane. Yellow solid 

(0.014 g, 61%). Mp.: 146.3−148.2 °C. 1H NMR (400 MHz, CD2Cl2) δ 7.95 – 7.77 (m, 2H), 7.58 

(dq, J = 9.2, 3.0 Hz, 2H), 2.90 (s, 3H), 2.68 (s, 3H), 2.47 (s, 3H). 13C NMR (101 MHz, CD2Cl2) δ 

172.1, 153.0, 145.7, 145.2, 138.7, 138.0, 124.2, 97.0, 23.6, 15.4, 12.5. HRMS(ESI) m/z: [M]+ 

calcd. for C13H13IN4ONa+ 391.0026; found 391.0026. IR (ATR): 𝜈 (cm-1) 2914, 2846, 1738, 1577, 

1370, 1334, 1031, 1000, 960, 889, 776, 589. 

 

(E)-4-((1-Acetyl-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile 

Synthetized according General procedure 3. 0.020 g of (E)-4-

((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrilewas used. 

Mobile phase: 10 % ethyl acetate in pentane. Yellow solid 

(0.016 g, 67%). Mp.: 177.7−180.1 °C. 1H NMR (400 MHz, CD2Cl2) δ 7.93 – 7.87 (m, 2H), 7.82 – 

7.74 (m, 2H), 2.93 (s, 3H), 2.68 (s, 3H), 2.48 (s, 3H). 13C NMR (101 MHz, CD2Cl2) δ 172.1, 155.6, 

146.9, 145.1, 138.3, 133.6, 123.0, 118.9, 113.7, 23.6, 15.4, 12.5. HRMS (ESI) m/z: [M]+ calcd. 

for C14H13N5ONa+ 290.1012; found 290.1012. IR (ATR): 𝜈 (cm-1) 2227, 1739, 1369, 1340,1286, 

959,851, 695, 689, 593. 

 

(E)-1-(4-((4-Methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one  

Synthetized according General procedure 3. 0.020 g of (E)-3,5-

dimethyl-4-((4-methoxyphenyl)diazenyl)-1H-pyrazole was 

used. Mobile phase: 15 % ethyl acetate in pentane. Yellow solid 

(0.020 g, 84%). Mp.: 145.3−146.0 °C. 1H NMR (400 MHz, CD2Cl2) δ 7.87 – 7.76 (m, 2H), 7.06 – 

6.94 (m, 2H), 3.87 (s, 3H), 2.89 (s, 3H), 2.67 (s, 3H), 2.48 (s, 3H). 13C NMR (101 MHz, CD2Cl2) δ 

172.1, 162.1, 148.0, 145.4, 144.0, 137.8, 124.2, 114.5, 56.0, 23.6, 15.3, 12.4. HR-MS (ESI) m/z: 

[M]+ calcd. for C14H17N4O2
+ 273.1346; found 273.1346. IR (ATR): 𝜈 (cm-1) 2960, 2918, 2831, 

1736, 1593, 1343, 1244, 1028, 838, 587, 533. 
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(E)-1-(4-((4-Chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one  

Synthesized according to General procedure 3. 0.010 g of (E)-

3,5-dimethyl-4-((4-chlorophenyl)diazenyl)-1H-pyrazole was 

used. Mobile phase: 10 % ethyl acetate in pentane. Yellow solid 

(0.0067 g, 57%). Mp.: 76.8−78.7 °C. 1H NMR (400 MHz, CD2Cl2) δ 7.91 – 7.77 (m, 2H), 7.63 – 

7.46 (m, 2H), 2.95 (s, 3H), 2.72 (s, 3H), 2.52 (s, 3H). 13C NMR (101 MHz, CD2Cl2) δ 172.1, 152.1, 

145.4 (d, J = 3.6 Hz), 137.9, 136.4, 129.6, 123.8, 23.6, 15.4, 12.5. HR-MS (ESI): m/z: [M]+ calcd. 

for C13H13ClN4ONa+ 299.0670; found 299.0670. IR (ATR): 𝜈 (cm-1) 1667, 1506, 1406, 1389, 1085, 

1081, 830, 773, 583, 522. The spectral data are in accordance with the literature.11 

 

((E)-1-(4-((4-Bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one  

Synthetised according to General procedure 3. 0.010 g of (E)-

3,5-dimethyl-4-((4-bromophenyl)diazenyl)-1H-pyrazole was 

used. Mobile phase: 10 % ethyl acetate in pentane. Yellow solid 

(0.015 g, 65%). Mp.: 70.8−73.4 °C. 1H NMR (300 MHz, CD3CN) δ 7.80 – 7.73 (m, 2H), 7.72 – 

7.66 (m, 2H), 2.88 (s, 3H), 2.63 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, CD2Cl2) δ 172.2, 152.5, 

145.6, 145.2, 132.6, 124.8, 124.1, 23.6, 15.4, 12.5. HR-MS (ESI): m/z: [M]+ calcd. for 

C13H13BrN4NaO+ 343.0165; found 343.0171. IR (ATR): 𝜈 (cm-1) 2920, 2359, 2340, 1734.66, 

1373, 1164, 1062, 1059, 827, 776. 

 

(E)-1-(4-((4-Hydroxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one  

Synthetised according to General procedure 3. 0.021 g of (E)-

3,5-dimethyl-4-((4-hydroxyphenyl)diazenyl)-1H-pyrazole was 

used. Mobile phase: 10 % ethyl acetate in pentane. Yellow solid 

(0.019 g, 92%). Mp.: 185.1−187.0 °C. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.17 (s, 1H), 7.70 

(d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 2.81 (s, 3H), 2.62 (s, 3H), 2.41 (s, 3H). 13C NMR (125 

MHz, DMSO-d6): δ (ppm) 171.4, 160.4, 145.9, 144.0, 142.6, 136.7, 124.0, 115.9, 23.2, 14.9, 

12.0. HR-MS (ESI): calc. for: C13H14N4O2H: 259.1190, found.: 259.1183. IR (ATR): 𝜈 (cm-1) 3210, 

2918, 1701, 1588, 1380, 1332, 1199, 1139, 841, 809.  
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(E)-1-(3,5-Dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one 

Synthetised according to General procedure 3. 0.020 g of (E)-

3,5-dimethyl-4-((4-methylphenyl)diazenyl)-1H-pyrazole was 

used. Mobile phase: 20 % ethyl acetate in pentane. Yellow solid 

(0.021 g, 84%). Mp.: 119.4 – 120.2 °C. 1H NMR (400 MHz, CDCl3): δ (ppm) 7.75 – 7.71 (m, 2H), 

7.31 – 7.26 (m, 2H), 2.93 (s, 3H), 2.71 (s, 3H), 2.50 (s, 3H), 2.42 (s, 3H). 13C NMR (125 MHz, 

CDCl3): δ (ppm) 172.0, 151.5, 145.5, 144.4, 141.1, 137.8, 129.8, 122.3, 23.6, 21.6, 15.3, 12.5. 

HR-MS (ESI): calc. for: C14H16N4OH: 257.1397, found.: 257.1389. IR (ATR): 𝜈 (cm-1) 2924, 1733, 

1582, 1369, 1335, 1283, 962, 821, 739, 590. The spectral data are in accordance with the 

literature.11 

 

(E)-1-(3,5-Dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one 

Synthetized according to general procedure 3. 0.02 g of (E)-3,5-

dimethyl-4-(phenyldiazenyl)-1H-pyrazole was used. Mobile 

phase: 20 % ethyl acetate in pentane. Yellow solid (16 mg, 

66%). Mp.: 103.2 – 103.9 °C. 1H NMR (400 MHz, CDCl3): δ (ppm) 7.85 – 7.80 (m, 2H), 

7.52 – 7.46 (m, 2H), 7.46 – 7.40 (m, 1H), 2.94 (s, 3H), 2.71 (s, 3H), 2.51 (s, 3H). 13C NMR (125 

MHz, CDCl3): δ (ppm) 172.0, 153.3, 145.4, 144.9, 137.8, 130.6, 129.2, 122.3, 23.6, 15.3, 12.5. 

HR-MS (ESI): calc. for: C13H14N4OH: 243.1240, found.: 243.1240. IR (ATR): 𝜈 (cm-1) 2924, 1733, 

1571, 1394, 1372, 1346, 1289, 769, 694, 673. 

 

(E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)-diazenyl)-

1H-pyrazol-1-yl)ethan-1-one 

Synthesized according to general procedure 3. 0.021 g of (E)-

3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-

pyrazole was used. Mobile phase: 20 % ethyl acetate in pentane. Orange solid (19.7 mg, 95%). 

Mp.: 112.8 – 113.4 °C. 1H NMR (400 MHz, CDCl3): δ (ppm) 7.90 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 

8.3 Hz, 2H), 2.95 (s, 3H), 2.72 (s, 3H), 2.51 (s, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.0, 

155.2, 146.1, 145.1, 137.9, 131.8 (q, J = 32.4 Hz), 126.4 (q, J = 3.8 Hz), 125.5, 122.5, 23.6, 12.4, 

12.5. 19F NMR (377 MHz, CDCl3): δ (ppm) -62.5. HR-MS (ESI): calc. for: C14H13F3N4OH: 

311.1114, found.: 311.1115. IR (ATR): 𝜈 (cm-1) 1747, 1372, 1337, 1321, 1278, 1167, 1116, 

1113, 1065, 596. 
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(E)-1-(3,5-Dimethyl-4-((4-(fluoro)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one 

Synthesized according to general procedure 3. 0.020 g of (E)-

4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole was 

used. Mobile phase: 20 % ethyl acetate in pentane. Orange 

solid (18.0 mg, 75%). %). Mp.: 114.7 – 115.3 °C. 1H NMR (400 MHz, CDCl3): δ (ppm) 7.83 (ddt, 

J = 7.1, 5.3, 2.5 Hz, 2H), 7.20 – 7.06 (m, 2H), 2.92 (s, 3H), 2.71 (s, 3H), 2.49 (s, 3H). 13C NMR 

(125 MHz, CDCl3): δ (ppm) 172.0, 165.4, 162.9, 149.9, 145.3, 137.6, 124.2, 116.2, 116.2, 116.0, 

23.5, 15.3, 12.4. 19F NMR (377 MHz, CDCl3): δ (ppm) -110.2 (tt, J = 8.2, 5.3 Hz). HR-MS (ESI): 

calc. for: C13H13FN4OH: 261.1146, found.: 261.1149. IR (ATR): 𝜈 (cm-1) 1733, 1380, 1366, 1346, 

1286, 1227, 846, 664, 590, 514. 

 

2.4 pH-Dependent stability of NAc-PAP-H 

A stock solution of NAc-PAP-H (1 mM) in MeOH was prepared in dark at room temperature at 

pH 2 and 12 (HCl as acid and NaOCH3 as a base). Both samples were stirred for 2 h and we 

observed full conversion to NH-PAP-H (detected on LC–MS; 95–5% water in CH3CN, 0.1% 

formic acid) in both cases as shown in Figure S1. 

We reperformed the experiment in MeCN with DBU (10−2 M), and we observed after 2 h full 

conversion to various products and NH-PAP-H. 

Already on the standard LC–MS trace, one can already observe a small appearance of the 

decomposition (NMR showed no impurities), since the mobile phase contained 0.1% of formic 

acid. 
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Figure S1: Chromatograph at 365 nm (maximum set to 1) of the pH stability experiments after 2 hours with the 

comparison of the starting material (NAc PAP-H). 
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3. Photochemical and photophysical studies 

Upon 365 nm irradiation, the solution undergoes a color change from pale yellow to dark 

yellow, corresponding to an increased absorption of the n–π* transition associated with the Z-

isomer, which can be observed by naked eye. The solution changes from pale to dark yellow. 

 

Figure S2: 0.5mM NAc-PAP-H on the right kept in the dark and on the left after 365 nm irradiation. 

3.1 Determination of photostationary state distribution by 1H NMR 

The NMR samples of NAc-PAPs were irradiated with 365 or 445 nm LED for 10 min, and then 

immediately 1H NMR spectra were recorded using a Bruker Advance III HD 300 at 25 °C. The 

PSS was determined by the integration of the E isomer and Z isomer signals. 

 

Figure S3: 1H NMR spectra of NAc-PAP-NO2- a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in 

CD3CN. 
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Figure S4: 1H NMR spectra of NAc-PAP-I. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCl3. 

 

Figure S5: 1H NMR spectra of NAc-PAP-CN. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in 

CD3CN. 
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Figure S6: 1H NMR spectra of NAc-PAP-Cl. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CD3CN. 

 

Figure S7: 1H NMR spectra of NAc-PAP-Br. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CD3CN. 
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Figure S8: 1H NMR spectra of NAc-PAP-OMe. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in 

CD3CN. 

 

Figure S9: 1H NMR spectra of NAc-PAP-Me. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCl3. 
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Figure S10: 1H NMR spectra of NAc-PAP-H. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCl3. 

 

Figure S11: 1H NMR spectra of NAc-PAP-CF3. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in 

CDCl3. 
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Figure S12: 1H NMR spectra of NAc-PAP-F. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCl3. 
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3.2 Cyclic irradiation to study fatigue resistance 

Photoswitching stability of NAc-PAP derivatives was investigated in CH3CN. For the forward 

E→Z-isomerization step, 365 nm light was used until the PSS was reached, whereas for the 

Z→E-isomerization, 445 nm light was used until reaching PSS. Both the irradiation steps were 

repeated 10 to 20 times. 
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Figure S13: Photoswitching cycles of NAc-PAP-NO2 in CH3CN at 25 °C. 
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Figure S14: Photoswitching cycles of NAc-PAP-I in CH3CN at 25 °C. 
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Figure S15: Photoswitching cycles of NAc-PAP-CN in CH3CN at 25 °C.
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Figure S16: Photoswitching cycles of NAc-PAP-OMe in CH3CN at 25 °C. 
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Figure S17: Photoswitching cycles of NAc-PAP-Cl in CH3CN at 25 °C. 
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Figure S18: Photoswitching cycles of NAc-PAP-Br in CH3CN at 25 °C. 
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Figure S19: Photoswitching cycles of NAc-PAP-CF3 in CH3CN at 25 °C. 
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Figure S20: Photoswitching cycles of NAc-PAP-F in CH3CN at 25 °C. 
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Figure S21: Photoswitching cycles of NAc-PAP-H in CH3CN at 25 °C. 
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Figure S22: Photoswitching cycles of NAc-PAP-Me in CH3CN at 25 °C. 
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Figure S23: Photoswitching cycles of NAc-PAP-OH in CH3CN at 25 °C.  
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3.3 Determination of molar extinction coefficients  

Molar extinction coefficients (ε) were determined by fitting the slope of absorbance 

dependency to the concentration taken from at least two separate dilutions at 12.5 µM, 

25 µM, 50 µM or 100 µM in CH3CN. The values were fitted linearly and the y-intercept was set 

to zero. 

3.3.1 Absorbance vs. concentrations of NAc-PAP derivatives 
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Figure S24: Absorbance at 327 nm dependency on concentration and the slopes of NAc-PAP-F in CH3CN at 12.5, 

25 and 50 µM. 
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Figure S25: Absorbance at 333 nm dependency on concentration and the slopes of NAc-PAP-CN in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S26: Absorbance at 333 nm dependency on concentration and the slopes of NAc-PAP-Cl in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S27: Absorbance at 324 nm dependency on concentration and the slopes of NAc-PAP-CF3 in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S28: Absorbance at 344 nm dependency on concentration and the slopes of NAc-PAP-Br in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S29: Absorbance at 327 nm dependency on concentration and the slopes of NAc-PAP-H in CH3CN at 12.5, 

25 and 50 µM. 
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Figure S30: Absorbance at 340 nm dependency on concentration and the slopes of NAc-PAP-I in CH3CN at 12.5, 

25 and 50 µM. 

10 15 20 25 30 35 40 45 50 55

0.2

0.4

0.6

0.8

1.0

1.2

A
3

3
3

n
m

c (mM)

Gleichung y = a + b*x

Zeichnen A333 (Me)

Gewichtung Keine Gewichtung

Schnittpunkt mit der Y-Achse 0 ± --

Steigung 0.0241 ± 4.28891E-4

Summe der Fehlerquadrate 0.01449

Pearson R 0.99874

R-Quadrat (COD) 0.99747

Kor. R-Quadrat 0.99716

 Data points

 Linear fit

 

Figure S31: Absorbance at 333 nm dependency on concentration and the slopes of NAc-PAP-Me in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S32: Absorbance at 345 nm dependency on concentration and the slopes of NAc-PAP-NO2 in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S33: Absorbance at 344 nm dependency on concentration and the slopes of NAc-PAP-OH in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S34: Absorbance at 344 nm dependency on concentration and the slopes of NAc-PAP-OMe in CH3CN at 

12.5, 25 and 50 µM. 
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3.3.2 Absorbance vs. concentrations of NMe-PAP derivatives 
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Figure S35: Absorbance at 343 nm dependency on concentration and the slopes of NMe-PAP-Br in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S36: Absorbance at 341 nm dependency on concentration and the slopes of NMe-PAP-CF3 in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S37: Absorbance at 341 nm dependency on concentration and the slopes of NMe-PAP-Cl in CH3CN at 25, 

50 and 100 µM. 
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Figure S38: Absorbance at 352 nm dependency on concentration and the slopes of NMe-PAP-CN in CH3CN at 

25, 50 and 100 µM. 
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Figure S39: Absorbance at 335 nm dependency on concentration and the slopes of NMe-PAP-F in CH3CN at 25, 

50 and 100 µM. 
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Figure S40: Absorbance at 337 nm dependency on concentration and the slopes of NMe-PAP-H in CH3CN at 25, 

50 and 100 µM. 
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Figure S41: Absorbance at 347 nm dependency on concentration and the slopes of NMe-PAP-I in CH3CN at 25, 

50 and 100 µM. 
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Figure S42: Absorbance at 338 nm dependency on concentration and the slopes of NMe-PAP-Me in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S43: Absorbance at 368 nm dependency on concentration and the slopes of NMe-PAP-NO2 in CH3CN at 

25, 50 and 100 µM. 
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Figure S44: Absorbance at 345 nm dependency on concentration and the slopes of NMe-PAP-OH in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S45: Absorbance at 345 nm dependency on concentration and the slopes of NMe-PAP-OMe in CH3CN at 

25, 50 and 100 µM. 
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3.3.3 Absorbance vs. concentrations of NH-PAP derivatives 
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Figure S46: Absorbance at 341 nm dependency on concentration and the slopes of NH-PAP-Br in CH3CN at 25, 

50 and 100 µM. 
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Figure S47: Absorbance at 335 nm dependency on concentration and the slopes of NH-PAP-CF3 in CH3CN at 

12.5, 25 and 50 µM. 
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Figure S48: Absorbance at 336 nm dependency on concentration and the slopes of NH-PAP-Cl in CH3CN at 30, 

60 and 90 µM. 

 

 

Figure S49: Absorbance at 361 nm dependency on concentration and the slopes of NH-PAP-CN in CH3CN at 25, 

50 and 100 µM. 
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Figure S50: Absorbance at 332 nm dependency on concentration and the slopes of NH-PAP-F in CH3CN at 25, 50 

and 100 µM. 
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Figure S51: Absorbance at 330 nm dependency on concentration and the slopes of NH-PAP-H in CH3CN at 12.5, 

25 and 50 µM. 
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Figure S52: Absorbance at 324 nm dependency on concentration and the slopes of NH-PAP-I in CH3CN at 12.5, 

25 and 50 µM. 
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Figure S53: Absorbance at 336 nm dependency on concentration and the slopes of NH-PAP-Me in CH3CN at 25, 

50 and 100 µM. 
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Figure S54: Absorbance at 361 nm dependency on concentration and the slopes of NH-PAP-NO2 in CH3CN at 25, 

50 and 100 µM. 
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Figure S55: Absorbance at 342 nm dependency on concentration and the slopes of NH-PAP-OH in CH3CN at 25, 

50 and 100 µM. 
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Figure S56: Absorbance at 344 nm dependency on concentration and the slopes of NH-PAP-OMe in CH3CN at 

25, 50 and 100 µM.  
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3.4 Chemical actinometry 

A modification of a standard protocol was applied for the determination of the photon flux.12 

An aqueous H2SO4 solution (50 mM) containing freshly recrystallized K3[Fe(C2O4)3] (41 mM, 2 

mL, 1 cm quartz cuvette) was irradiated at 20 °C for a given period in the dark with a 365 nm 

then 445 nm LED. The solution was then diluted with 1.0 mL of an aqueous H2SO4 solution 

(0.5 M) containing phenanthroline (1 g/L) and NaOAc (122.5 g/L) and left to react for 10 min. 

The absorption at λ = 510 nm was measured and compared to an identically prepared non-

irradiated sample. The concentration of [Fe(phenanthroline)3]2+ complex was calculated using 

its molar absorptivity (ε = 11 100 M−1 cm−1) and considering the dilution. The quantity of Fe2+ 

ions expressed in mol was plotted versus time (expressed in seconds) and the slope, obtained 

by linear fitting the data points to the equation y = ax +b, equals the rate of formation of the 

Fe2+ ion at the given wavelength. This rate can be converted into the photon flux (I) by dividing 

it by the quantum yield of [Fe(phenanthroline)3]2+ complex (Φ365nm = 1.29, Φ445nm = 1.06) at 

365 or 445 nm and by the probability of photon absorption at 365 nm of the Fe3+ complex 

(approximated to 1 as we were working in the total absorption regime). The obtained photon 

flux values for 365 nm and 445 nm are listed in Table S1. 

Table S1: Determined photon flux values for 365 nm and 445 nm. 

λ / nm I / 10−5 mE s−1. 

365 2.38 

445 6.43 

 

3.5 Determination of quantum yields 

The quantum yield of the photochemical isomerization of PAP compounds is determined using 

the initial slope method. Photoisomerization was measured under 365 (at concentration 12.5 

μM) or 445 nm (at concentration 50 μM) irradiation at 25% or 10% intensity, the natural 

logarithm of the absorbance was plotted as a function of time. By applying equation 1,12 the 

quantum yield of the light-induced isomerization of PAP compounds can be calculated. 

 𝛷 =  
−𝑘[𝑋]t0

𝑉

𝐼 (1 − 10𝐴(t0,𝜆))
 (1) 
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Where 𝛷 is the quantum yield; −𝑘 is the reaction rate; [𝑋]t0
 is the concentration of the PAP 

compounds in the dark state (e.g. >>99% trans-isomer), 𝑉 is the volume, 𝐼 is the photon flux 

and 𝐴(t0, 𝜆) is the absorption value before irradiation at 365 nm or 445 nm respectively. By 

applying first-order kinetics, −𝑘 can be derived from the slope of the linear fit to the plot of 

the natural logarithm of absorbance as a function of time. 

3.5.1 Irradiation of NAc-PAP derivatives and evaluation of the kinetic traces 

 

Figure S57: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-Me (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-Me. 

 

Figure S58: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-Me (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-Me. 
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Figure S59: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-OMe (37.5 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-OMe. 

 

Figure S60: Time-resolved UV–vis absorption spectra of NAc-PAP-OMe (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-OMe. 

 

Figure S61: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-OH (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-OH. 
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Figure S62: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-OH (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-OH. 

 

Figure S63: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-NO2 (37.5 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-NO2. 

 

Figure S64: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-NO2 (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-NO2. 
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Figure S65: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-I (37.5 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-I. 

 

Figure S66: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-I (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-I. 

 

Figure S67: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-H (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-H. 
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Figure S68: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-H (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-H. 

 

Figure S69: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-F (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-F. 

 

Figure S70: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-F (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-F. 
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Figure S71: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-CF3 (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-CF3. 

 

Figure S72: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-CF3 (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-CF3. 

 

Figure S73: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-CN (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-CN. 
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Figure S74: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-CN (12.5 µM in CH3CN) upon 365 nm 
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 
maximum of NAc-PAP-CN. 

 

Figure S75: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-Cl (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-Cl. 

 

Figure S76: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-Cl (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-Cl. 
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Figure S77: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-Br (50 µM in CH3CN) upon 445 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-Br. 

 

Figure S78: Left: Time-resolved UV–vis absorption spectra of NAc-PAP-Br (12.5 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NAc-PAP-Br. 
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3.5.2 Irradiation of NH-PAP derivatives and evaluation of the kinetic traces 

 

Figure S79: Left: Time-resolved UV–vis absorption spectra of NH-PAP-OMe (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-OMe. 

 

Figure S80: Left: Time-resolved UV–vis absorption spectra of NH-PAP-OH (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-OH. 
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Figure S81: Left: Time-resolved UV–vis absorption spectra of NH-PAP-NO2 (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-NO2. 

 

Figure S82: Left: Time-resolved UV–vis absorption spectra of NH-PAP-Me (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-Me. 

 

Figure S83: Left: Time-resolved UV–vis absorption spectra of NH-PAP-I (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-I. 
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Figure S84: Left: Time-resolved UV–vis absorption spectra of NH-PAP-H (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-H. 

 

Figure S85: Left: Time-resolved UV–vis absorption spectra of NH-PAP-F (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-F. 

 

Figure S86: Left: Time-resolved UV–vis absorption spectra of NH-PAP-CN (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-CN. 
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Figure S87: Left: Time-resolved UV–vis absorption spectra of NH-PAP-Cl (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-Cl. 

 

Figure S88: Left: Time-resolved UV–vis absorption spectra of NH-PAP-CF3 (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-CF3. 

 

Figure S89: Left: Time-resolved UV–vis absorption spectra of NH-PAP-Br (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NH-PAP-Br. 
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3.5.3 Irradiation of NMe-PAP derivatives and evaluation of the kinetic traces 

 

Figure S90: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-OMe (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-OMe.  

 

Figure S91: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-I (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-I. 
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Figure S92: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-Me (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-Me. 

 

Figure S93: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-OH (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-OH. 

 

Figure S94: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-CN (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-CN. 
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Figure S95: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-F (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-F. 

 

Figure S96: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-H (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-H. 

 

Figure S97: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-CF3 (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-CF3. 
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Figure S98: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-Cl (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-Cl. 

 

Figure S99: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-Br (25 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-Br. 

 

Figure S100: Left: Time-resolved UV–vis absorption spectra of NMe-PAP-NO2 (50 µM in CH3CN) upon 365 nm 

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption 

maximum of NMe-PAP-NO2.  
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3.6 Determination of thermal half-lives  

Determination of the thermal half-lives 𝜏1 2⁄  of the metastable Z isomers were recorded as 

follows. A freshly prepared solution of the NAc-PAPs of interest in CH3CN was irradiated at 

365 nm until reaching the PSS365nm and immediately moved to a Jasco V-670 spectrometer for 

thermal back Z–E isomerization in the dark at 30 °C. Then, a first-order rate constant −𝑘 for 

the thermal back Z→E isomerization reaction was obtained using equation 2. 

 ln (
𝐴t

𝐴0
) = ln (

𝐴∞ − 𝐴0

𝐴∞ − 𝐴t
) = −𝑘𝑡 (2) 

Where 𝐴∞ is the absorbance at 𝜆max before irradiation (e.g. >>99 % trans-Isomer); 𝐴0 is the 

absorbance at 𝜆max at PSS365nm and 𝐴t is the absorbance at 𝜆max at a certain time.  

The linearized data is shown in black, the fit is shown in red. 

From −𝑘 the half-live 𝜏1 2⁄  can be calculated as shown in equation 3. 

 𝜏1 2⁄ =  
ln(2)

𝑘
 (3) 

0 1000 2000 3000 4000 5000 6000

0.0

0.5

1.0

1.5

2.0

2.5

ln
[(

A
∞
-A

0
)/

(A
∞
-A

t)
]

Time (min)

Equation y = a + b*x

Plot Ln(Br)

Weight No Weighting

Intercept -0,00286 ± 0,00213

Slope 2,48024E-4 ± 4,61314E-6

Residual Sum of Squares 2.092E-4

Pearson's r 0.99793

R-Square (COD) 0.99587

Adj. R-Square 0.99552

 Data points

 Linear fit

 

Figure S101: Thermal Z-E isomerization of NAc-PAP-Br in CH3CN at 30 °C. 
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Figure S102: Thermal Z-E isomerization of NAc-PAP-CF3 in CH3CN at 30 °C. 
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Figure S103: Thermal Z-E isomerization of NAc-PAP-Cl in CH3CN at 30 °C. 
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Figure S104: Thermal Z-E isomerization of NAc-PAP-CN in CH3CN at 30 °C. 
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Figure S105: Thermal Z-E isomerization of NAc-PAP-F in CH3CN at 30 °C. 
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Figure S106: Thermal Z-E isomerization of NAc-PAP-H in CH3CN at 30 °C. 
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Figure S107: Thermal Z-E isomerization of NAc-PAP-I in CH3CN at 30 °C. 
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Figure S108: Thermal Z-E isomerization of NAc-PAP-Me in CH3CN at 30 °C. 
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Figure S109: Thermal Z-E isomerization of NAc-PAP-NO2 in CH3CN at 30 °C. 
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Figure S110: Thermal Z-E isomerization of NAc-PAP-OH in CH3CN at 30 °C. 
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Figure S111: Thermal Z-E isomerization of NAc-PAP-OMe in CH3CN at 30 °C. 

 

3.7 Hammett correlation of thermal half-lives of NAc-PAP derivatives 

The correlation of thermal relaxation with the R-substituent parameters resulted in the 

Hammett plot, depicted in Figure S112. We found the best correlation using the Hammett 

substitution constant σ resulting in two linear fits (OH was treated as exception due to the 

possible presence of a tautomerism mechanism). 
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Figure S112: Hammett plot of thermal relaxation for NAc-PAP derivatives. 
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To get a deeper insight into the nature of those, two representative compounds were chosen 

(NAc-PAP-CN and NAc-PAP-OMe) and their Z→E thermal relaxation was measured at different 

temperatures in toluene. Three measurements were conducted at every temperature and 

were then fitted to the linearized form of the Eyring equation: 

𝑙𝑛
𝑘

𝑇

 

=
−𝛥𝐻‡

𝑅𝑇
 + 𝑙𝑛

𝑘𝐵

ℎ
+

𝛥𝑆‡

𝑅
 (4) 

where ΔH‡ is activation enthalpy, ΔS‡ is activation entropy, R is the universal gas constant, T 

is the temperature, k the kinetic constant, h is the Planck constant, and kB is the Boltzmann 

constant. By numerically fitting the data using the package lift as implemented in Python3, it 

is possible to obtain the standard errors on the slope and intercept and directly the standard 

errors on ΔH‡ (𝜎Δ𝐻) and ΔS‡ 𝜎Δ𝑆 by multiplying these values with R. Using the covariance 

matrix obtained from the fit, it is possible to numerically obtain the correlation between ΔH‡ 

and ΔS‡ (𝜌Δ𝐻Δ𝑆) which resulted to be close to 1 for both CN- (0.9979) and MeO- (0.9995) 

derivatives. This correlation can be used to obtain the error on the Gibbs free energy of 

activation, ΔG‡, by exploiting the formula 

𝜎∆𝐺 =  √𝜎∆𝐻
2 +  𝑇2 + 𝜎∆𝑆

2 − 2𝑇𝜌∆𝐻∆𝑆𝜎∆𝐻𝜎∆𝑆  (5) 

associated with the canonical form of the Eyring equation 

𝛥𝐺‡ 
= 𝛥𝐻‡ − 𝑇𝛥𝑆‡ (6) 

Table S2 provides an overview of the measured rates and the resulting thermodynamic 

parameters and Table S3 of the results of the Eyring analysis of the data set. 
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Table S2: Thermal relaxation rates (recorded in min−1) of NAc-PAP-CN and NAc-PAP-OMe in 

toluene at different temperatures. 

Temperatures / °C CN OMe 

20 0.0008 0.0008 0.0008 0.0001 0.0001 0.0001 

35 0.0057 0.0054 0.0056 0.0008 0.0007 0.0008 

50 0.0251 0.0240 0.0266 0.0040 0.0037 0.0040 

65 0.1248 0.1312 0.1280 0.0188 0.0190 0.0179 

80 0.5870 0.5390 0.5330 0.0677 0.0705 0.0715 

 

Table S3: Eyring analysis of the measurements in Table S2. 

 NAc-PAP-CN NAc-PAP-OMe 
ΔG‡ / kJ/mol 99.1 ± 0.07a 104.3 ± 0.1a 
ΔH‡ / kJ/mol 90.0 ± 0.7 93.0 ± 1.0 

ΔS‡ / J/(mol K) -30.0 ± 2.0 -39.0 ± 4.0 

 

3.7.1 Thermal relaxation of NAc-PAP-CN at different temperatures 
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Figure S113: Thermal relaxation absorbance trace of the NAc-PAP-CN at 20 °C in toluene. 
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Figure S114: Thermal relaxation absorbance trace of the NAc-PAP-CN at 35 °C in toluene. 
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Figure S115: Thermal relaxation absorbance trace of the NAc-PAP-CN at 50 °C in toluene. 



S64 
 

0 5 10 15 20 25 30 35

0

100

200

300

ln
[(

A
∞
-A

0
)/

(A
-A

t)
]

Time (min)

Equation y = a + b*x

Plot 1 2 3

Weight No Weighting

Intercept 0,9986 ± 4,13404E-4 0,99147 ± 0,00234 0,99945 ± 3,39318E-4

Slope 0,12484 ± 6,03071E-4 0,13122 ± 0,00171 0,12802 ± 7,6272E-4

Residual Sum of Squares 9.19338E-6 2.94374E-4 2.66632E-6

Pearson's r 0.99985 0.9989 0.99986

R-Square (COD) 0.9997 0.99781 0.99972

Adj. R-Square 0.99967 0.99764 0.99968

65°C 

 Sample 1

 Sample 2

 Sample 3

 Linear fit 1

 Linear fit 2

 Linear fit 3

 

Figure S116: Thermal relaxation absorbance trace of the NAc-PAP-CN at 65 °C in toluene. 
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Figure S117: Thermal relaxation absorbance trace of the NAc-PAP-CN at 80 °C in toluene. 
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 3.7.2 Thermal relaxation of NAc-PAP-OMe at different temperatures 
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Figure S118: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 20 °C in toluene. 
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Figure S119: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 35 °C in toluene. 
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Figure S120: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 50 °C in toluene. 
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Figure S121: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 65 °C in toluene. 
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Figure S122: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 80 °C in toluene. 
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4. NMR Spectra 

 

Figure S123: 1H NMR spectrum of 3-(2-phenylhydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S124: 13C NMR spectrum of 3-(2-phenylhydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S125: 1H NMR spectrum of 3-(2-(4-fluorophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S126: 19F NMR spectrum of 3-(2-(4-fluorophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S127: 13C NMR spectrum of 3-(2-(4-fluorophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S128: 1H NMR spectrum of 3-(2-(4-hydroxyphenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S129: 13C NMR spectrum of 3-(2-(4-hydroxyphenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S130: 1H NMR spectrum of 3-(2-(4-bromophenyl)hydrazono)pentane-2,4-dione in CDCl3. 
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Figure S131: 13C NMR spectrum of 3-(2-(4-bromophenyl)hydrazono)pentane-2,4-dione in CDCl3. 
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Figure S132: 1H NMR spectrum of 3-(2-(p-tolyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S133: 13C NMR spectrum of 3-(2-(p-tolyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S134: 1H NMR spectrum of 3-(2-(4-iodophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S135: 13C NMR spectrum of 3-(2-(4-iodophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S136: 1H NMR spectrum of 3-(2-(4-(trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione in CDCl3. 
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Figure S137: 19F NMR spectrum of 3-(2-(4-(trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S138: 13C NMR spectrum of 3-(2-(4-(trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione in CDCl3. 
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Figure S139: 1H NMR spectrum of 3-(2-(4-chlorophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S140: 13C NMR spectrum of 3-(2-(4-chlorophenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 
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Figure S141: 1H NMR spectrum of 4-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile in DMSO-d6. 
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Figure S142: 13C NMR spectrum of 4-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile in DMSO-d6. 
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Figure S143: 1H NMR spectrum of 3-(2-(4-methoxyphenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 



S89 
 

 

Figure S144: 13C NMR spectrum of 3-(2-(4-methoxyphenyl)hydrazono)pentane-2,4-dione in DMSO-d6. 



S90 
 

 

Figure S145: 1H NMR spectrum of 3-(2-(4-nitrophenyl)hydrazono)pentane-2,4-dione in CD2Cl2. 
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Figure S146: 13C NMR spectrum of 3-(2-(4-nitrophenyl)hydrazono)pentane-2,4-dione in CD2Cl2. 
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Figure S147: 1H NMR spectrum of (E)-3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazole in CDCl3. 



S93 
 

 

Figure S148: 13C NMR spectrum of (E)-3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazole in CDCl3. 
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Figure S149: 1H NMR spectrum of (E)-1,3,5-trimethyl-4-(phenyldiazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S150: 13C NMR spectrum of (E)-1,3,5-trimethyl-4-(phenyldiazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S151:1H NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-3,5-dimethyl)-1H-pyrazole in CD2Cl2. 
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Figure S152: 19F NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-3,5-dimethyl)-1H-pyrazole in DMSO-d6. 
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Figure S153: 13C NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-3,5-dimethyl)-1H-pyrazole in DMSO-d6. 
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Figure S154: 1H NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure S155: 19F NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 



S101 
 

 

Figure S156: 13C NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure S157: 1H NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-d6. 
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Figure S158: 13C NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-d6. 
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Figure S159: 1H NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-d6. 
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Figure S160: 13C NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-d6. 
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Figure S161: 1H NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S162: 13C NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S163: 1H NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure S164: 13C NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure S165: 1H NMR spectrum (E)-3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S166: 13C  NMR spectrum of (E)-3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S167: 1H  NMR spectrum of (E)-1,3,5-trimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S168: 13C  NMR spectrum of (E)-1,3,5-trimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S169: 1H  NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S170: 13C  NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S171: 1H  NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure 172: 13C  NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 



S118 
 

 

Figure S173: 1H  NMR spectrum of (E)-3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S174: 19F  NMR spectrum of (E)-3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S175: 13C  NMR spectrum of (E)-3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S176: 1H  NMR spectrum of (E)-1,3,5-trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S177: 19F  NMR spectrum of (E)-1,3,5-trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-d6. 



S123 
 

 

Figure S178: 13C  NMR spectrum of (E)-1,3,5-trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S179: 1H  NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S180: 13C  NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S181: 1H  NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-1,3,5-triimethyl-1H-pyrazole in DMSO-d6. 
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Figure S182: 13C  NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-1,3,5-triimethyl-1H-pyrazole in DMSO-d6. 
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Figure S183: 1H  NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in DMSO-d6. 
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Figure S184: 13C  NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in DMSO-d6. 
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Figure S185: 1H  NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CDCl3. 
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Figure S186: 13C  NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CDCl3. 
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Figure S187: 1H  NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S188: 13C  NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-d6. 
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Figure S189: 1H  NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure S190: 13C  NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-d6. 
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Figure S191: 1H  NMR spectrum of (E)-3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S192: 13C  NMR spectrum of (E)-3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S193: 1H  NMR spectrum of (E)-1,3,5-trimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S194: 13C  NMR spectrum of (E)-1,3,5-trimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-d6. 
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Figure S195: 1H  NMR spectrum of (E)-4-((1-acetyl-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CD2Cl2. Asterisk denotes grease. 
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Figure S196: 13C  NMR spectrum of (E)-4-((1-acetyl-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CD2Cl2. Asterisk denotes grease. 
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Figure S197: 1H  NMR spectrum of (E)-1-(4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD2Cl2.  
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Figure S198: 13C  NMR spectrum of (E)-1-(4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD2Cl2.  
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Figure S199: 1H  NMR spectrum of (E)-1-(4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD2Cl2. 
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Figure S200: 13C  NMR spectrum of (E)-1-(4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD2Cl2. 
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Figure S201: 1H  NMR spectrum of (E)-1-(4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD2Cl2. 
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Figure S202: 13C  NMR spectrum of (E)-1-(4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD2Cl2. Asterisks denote grease. 
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Figure S203: 1H  NMR spectrum of (E)-1-(3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S204: 13C  NMR spectrum of (E)-1-(3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S205: 1H  NMR spectrum of (E)-1-(3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S206: 13C  NMR spectrum of (E)-1-(3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S207: 1H  NMR spectrum of (E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S208: 19F  NMR spectrum of (E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S209: 13C  NMR spectrum of (E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S210: 1H  NMR spectrum of (E)-1-(4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S211: 19F  NMR spectrum of (E)-1-(4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S212: 13C  NMR spectrum of (E)-1-(4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CDCl3. 
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Figure S213: 1H  NMR spectrum of (E)-1-(4-((4-hydroxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in DMSO-d6. 
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Figure S214: 13C  NMR spectrum of (E)-1-(4-((4-hydroxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in DMSO-d6.
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