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1. Materials and methods

Reagents and solvents: Reagents and solvents were purchased in the highest grade of purity
available. Dry solvents were purchased from Sigma-Aldrich (Taufkirchen, Germany). Technical
solvents were distilled before use. HPLC-grade solvents have been used for photoswitching
and kinetics studies. For column chromatography, distilled solvents have been utilized.
Solvents for the NMR measurements were supplied by Deuterio (Kastellaun, Germany) or

Eurisotop (Saarbriicken, Germany).

Chromatography: TLC was performed on 0.25 mm silica-gel 60 F plates with a 254 nm
fluorescence indicator from Merck (Darmstadt, Germany). The substance detection took place
by light with wavelengths of 254 nm and 360 nm. Non-UV-active substances have been
visualized by the following TLC stains: ninhydrin solution (1.5 g ninhydrin, 3 mL acetic acid in
100 mL n-butanol) or potassium permanganate solution (3.0 g KMnQy, 20 g K,CO3 and 2.5 mL
NaOH (10%) in 400 mL water) and gentle heating afterwards.

Flash column chromatography was performed using silica-gel of the type Geduran® Si 60 (40—
63 um mesh ASTM) purchased from Merck (Darmstadt, Germany). Columns were packed with

wet silica gel and the samples were loaded as a concentrated solution or as a silica pad.

NMR spectroscopy: 'H, 13C, and °F NMR spectra were recorded on 300 or 400 MHz
spectrometers; 13C NMR spectra were obtained on 101 or 75 MHz instruments. *H chemical
shifts (6) are reported in parts per million (ppm) relative to DMSO-ds (6= 2.50 ppm), CDsOD
(6=3.31 ppm), CDCls (6= 7.26 ppm), or CD3CN (6= 1.94 ppm) as internal references. 13C 6 are
reported in ppm with DMSO-dgs (6= 77.67 ppm), CD3sCN (6= 118.26, 1.32 ppm) as internal
references. °F NMR spectra were measured without any internal standard to qualitatively

confirm the structure and purity of the desired product.

MS/HRMS: Electron spray ionization mass spectrometry (ESI-MS) and high-resolution ESI
(HRMS) were performed on a maXis or MicroTOF spectrometer from Bruker (Bremen

Germany).

UV-vis spectroscopy: UV—vis absorption spectroscopy was performed on a Specord S600 or
Jasco V-670 in quartz cuvettes (path 1.00 cm) at a controlled temperature of 20 °C. Molar
extinction coefficients (g) were determined by fitting the slope of absorbance dependency to
the concentration taken from at least three separate dilutions. Photoisomerization was
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measured under 365 (at concentration 12.5 uM) or 445 nm (at concentration 50 uM)

irradiation at 25% or 10% intensity.

2. Synthesis

2.1 General procedure 1 to synthesize 3-(2-phenylhydrazono)pentane-2,4-

diones
NH 1. NaNO,, HCI, AcOH o
2 i ° H
/@/ 45 min, 0 °C N\N/ o
R 2. NaOAc, H,0, EtOH /©/
O O R
1h,rt

The synthesis was adopted from Weston et al.! The starting compound (10.74 mmol, 1.0 equiv)
was dissolved in AcOH (16.1 mL) and HCI (12 M, 2.5 mL) and in water dissolved NaNO; (0.89 g,
12.9 mmol, 1.3 equiv) was added after cooling to 0 °C. The mixture was stirred for 45 minutes
and then added dropwise to a solution of pentane-2,4-dione (1.4 mL, 14.0 mmol, 1.3 equiv)
and NaOAc (2.64 g, 32.22 mmol, 3.0 equiv) in water (6.4 mL) and EtOH (10.7 mL). After stirring
for 1 hour the solution was vacuum filtrated to collect the yellow solid. It was washed with

water, water/EtOH 1:1, and hexane and dried in vacuo.
3-(2-Phenylhydrazono)pentane-2,4-dione o

H
Yield: 0.85 g (4.15 mmol, 38 %). *H NMR (400 MHz, DMSO-dg): 6 N\Nj[fo
(ppm) = 14.05 (s, 1H), 7.59 —7.54 (m, 2H), 7.46 7.39 (m, 2H), 7.22 — H/©/
7.16 (m, 1H), 2.44 (s, 6H). 3C NMR (101 MHz, DMSO-dg): 6 (ppm) =196.5,141.8,133.3, 129.6,

125.4, 116.3, 31.2, 26.5. MS(El) m/z: 205.1 [M+H]*, 227.1 [M+Na]*. The spectral data are in

accordance with the literature.23

3-(2-(4-Fluorophenyl)hydrazono)pentane-2,4-dione

Yield: 2.16 g (9.71 mmol, 90 %). 'H NMR (400 MHz, DMSO~dg): & L, OF°
(ppm) = 14.03 (s, 1H), 7.65 — 7.59 (m, 2H), 7.30- 7.23 (m, 2H), 2.43 /@/N\N:/[fo
(s, 6H). 3C NMR (101 MHz, DMSO~de): 6 (ppm) = 196.4, 160.9, 158.5, F

138.5, 138.4, 133.3, 118.2, 118.1, 116.4, 116.2, 31.0, 26.4. 19F NMR (282 MHz, DMSO-ds): &
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(ppm) =-117.4. MS(El) m/z: 223.1 [M+H]*, 245.1 [M+Na]*. The spectral data are in accordance

with the literature.3
3-(2-(4-Hydroxyphenyl)hydrazono)pentane-2,4-dione

Yield: 0.60 g (2.72 mmol, 25 %). *H NMR (300 MHz, DMSO-dg): 6 H

(ppm) = 14.49 (s, 1H), 9.65 (s, 1H), 7.46 — 7.40 (m, 2H), 6.87 — 6.79 /©/N\N/ ©
(m, 2H), 2.45 (s, 3H), 2.37 (s, 3H). BCNMR (75 MHz, DMSO-d¢): 6 HO

(ppm) = 196.0, 155.9, 133.7, 132.1, 118.1, 116.1, 31.1, 26.4. MS(El) m/z: 243.1 [M+Na]*. The

spectral data are in accordance with the literature.3
3-(2-(4-Bromophenyl)hydrazono)pentane-2,4-dione

Yield: 2.57 g (9.09 mmol, 85 %) H NMR (400 MHz, CDCls3): 6 (ppm) = H
14.65 (s, 1H), 7.52 - 7.48 (m, 2H), 7.27 (d, ] =7.0 Hz, 2H), 2.59 (s, 3H), /©/N\N
2.47 (s, 3H). 3C NMR (101 MHz, CDCls): & (ppm) = 198.3, 197.0, Br

= (0]

140.8, 133.6, 132.8, 118.7, 117.8, 31.8, 26.7. MS(El) m/z: 283.0, 285.0 [M+Na]*. The spectral

data are in accordance with the literature.3

3-(2-(p-Tolyl)hydrazono)pentane-2,4-dione

(0]
Yield: 1.74 g (7.98 mmol, 74 %). 'H NMR (400 MHz, DMSO-dg): H
N. ~ (0]
6 (ppm)=14.17 (s, 1H),7.48 —7.44 (m, 2H),7.26 —7.21 (m, 2H), 2.43 /©/ N
(s,6H),2.30 (s, 3H). 3C NMR (101 MHz, DMSO-dg): 6 (ppm) =196.3, Me

139.4,134.9, 132.9,130.0, 116.3, 31.1, 26.3, 20.5. MS(El) m/z: 219.1 [M+H]*, 241.1 [M+Na]*.

The spectral data are in accordance with the literature.?3
3-(2-(4-lodophenyl)hydrazono)pentane-2,4-dione

Yield: 3.15 g (9.56 mmol, 89 %). 'H NMR (400 MHz, DMSO-ds): 6

(ppm) =13.81 (s, 1H), 7.76 = 7.71 (m, 2H), 7.41 - 7.37 (m, 2H), 2.43 /©/ °N
(s, 6H). 3CNMR (101 MHz, DMSO-ds): & (ppm) = 196.8, 141.8, |

138.1, 133.8, 118.4, 89.3, 31.2, 26.3. MS(EI) m/z: 331.0 [M+H]*. The spectral data are in

accordance with the literature.3
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3-(2-(4-(Trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione

o)
Yield: 2.76 g (10,16 mmol, 95 %). *H NMR (300 MHz, CDCls): 6 (ppm) H
N. ~ (0]
=14.58 (s, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.48 (d, ) = 8.4 Hz, 2H), 2.62 (s, /©/ N
3H), 2.50 (s, 3H). 13C NMR (75 MHz, CDCl3): 6 (ppm) = 198.6, 197.1, F3C

144.4,134.3, 127.7, 127.1, 127.1, 116.1, 31.9, 26.8. 1°F NMR (282 MHz, CDCl3): 6 (ppm) = -

66.54. The spectral data are in accordance with the literature.??
3-(2-(4-Chlorophenyl)hydrazono)pentane-2,4-dione
(0]
Yield: 2.17 g (9.10 mmol, 85 %). 'H NMR (400 MHz, DMSO-dg): &6 H P o
°N
(ppm) =13.84 (s, 1H),7.62 —=7.57 (m, 2H), 7.49 —7.43 (m, 2H), 2.43 /©/
Ci
(s, 6H). 3C NMR (101 MHz, DMSO-dg): 6 (ppm) = 196.5, 140.9,

133.8, 129.4, 129.0, 117.9, 31.2, 26.4. MS(EI) m/z: 239.06 [M+H]*, 261.04 [M+Na]*. The

spectral data are in accordance with the literature. 3
4-(2-(2,4-Dioxopentan-3-ylidene)hydrazineyl)benzonitrile

Yield: 1.24 g (5.39 mmol, 50 %). H NMR (300 MHz, DMSO~d¢): & " o
(ppm) = 13.39 (s, 1H), 7.88 — 7.81 (m, 2H), 7.73 — 7.66 (m, 2H), 2.47 /©/N\N/ 0
(s, 3H), 2.42 (s, 3H). 13C NMR (75 MHz, DMSO-de): & (ppm) = 197.6, NC

196.5, 145.9, 135.8, 133.8, 119.0, 116.4, 106.1, 31.3, 26.3. MS(EI) m/z: 252.1 [M+Na]*. The

spectral data are in accordance with the literature.?

3-(2-(4-Methoxyphenyl)hydrazono)pentane-2,4-dione

Yield: 0.55 g (2.36 mmol, 22 %). *H NMR (300 MHz, DMSO~ds): y OF°
N. (0]

5 (ppm) = 14.36 (s, 1H), 7.58 — 7.51 (m, 2H), 7.05 — 6.97 (m, 2H), /@/ N”

3.77 (s, 3H), 2.48 — 2.35 (m, 6H). 3CNMR (75 MHz, DMSO-dg): MeO

5(ppm) = 196.1, 157.4, 1352, 132.5, 117.9, 114.9, 55.4, 31.1, 26.4. MS(E) m/z:

257.1 [M+Na]*. The spectral data are in accordance with the literature.?3

3-(2-(4-Nitrophenyl)hydrazono)pentane-2,4-dione
(0]
Yield: 1.61 g (6.47 mmol, 60%). H NMR (400 MHz, CD,Cly): 6 ',:l' Ifo
°N
(ppm) = 14.43 (s, 1H), 8.36 —8.16 (m, 2H), 7.73 = 7.43 (m, 2H), 2.59 /©/
O,N
(s, 3H), 2.49 (s, 3H). (s, 3H. 3CNMR (101 MHz, CD:Cl,): (ppm) =
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199.0, 197.1, 147.3, 144.8, 135.5, 126.0, 116.2, 31.9, 26.8. MS(EI) m/z: 272.1 [M+Na]*. The

spectral data are in accordance with the literature.?3

2.2 General procedure 2 to synthesize 1,3-dimethyl-arylazopyrazoles

o N
H i )
N. Iﬁo Hydrazine hydrate‘ R “~ NH
N N
/©/ EtOH, 4 h, 79°C /©/
R

R

o N
H i N—
N\,\l:/[fo Methylhydrazine N\\NIKN
/©/ EtOH, 4 h, 79°C /©/
R R
The synthesis was adopted from Patel et al.* The 3-(2-phenylhydrazono)pentane-2,4-dione
(0.5 mmol, 1 equiv) was dissolved in EtOH (7 mL) and then the hydrazine

hydrate/methylhydrazine (0.5 mmol, 1 equiv) was added. The solution was refluxed for 4

hours, and the solvent was removed in vacuo.

(E)-3,5-Dimethyl-4-(phenyldiazenyl)-1H-pyrazole

\

Yield: 101,5 mg (quant.) *H NMR (400 MHz, CDCls) 6 (ppm) =7.74 N NH

—7.69 (m, 2H), 7.54 — 7.48(m, 2H), 7.44 — 7.40 (m, 1H), 2.6 (s, 6H). N
13C NMR (101 MHz, CDCl3): & (ppm) = 153.7, 141.7, 134.9, 129.7, N
129.1, 122.0, 12.3. MS(EI) m/z: 201.1 [M+H]*, 223.1 [M+Na]*. The spectral data are in

accordance with the literature.®
(E)-1,3,5-Trimethyl-4-(phenyldiazenyl)-1H-pyrazole

Yield: 88.0mg (0.41 mmol, 82 %). *H NMR (400 MHz, DMSO-dg): 6 N
(ppm) = 7.75 - 7.70 (m, 2H), 7.54 - 7.48 (m, 2H), 7.46 - 7.39 (m, 1H), N

3.74 (s, 3H), 2.55 (s, 3H), 2.37 (s, 3H). 13C NMR (101 MHz, DMSO-ds): H

6 (ppm) =153.0, 140.3, 139.6, 134.4, 129.5, 129.2, 121.4, 36.0, 13.8, 9.5. MS(El) m/z: 215.13

[M+H]*, 237.11 [M+Na]*. The spectral data are in accordance with the literature.!
(E)-4-((4-Fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole

Yield: 111.4mg (quant.). H NMR (400 MHz, DMSO-dg): 6 (ppm) =

_N
N\\N g NH
12.84 (s, 1H), 7.80 - 7.73 (m, 2H), 7.36 - 7.29 (m, 2H), 2.44 (s, 6H). /©/
F
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13C NMR (101 MHz, DMSO-de): 6 (ppm) = 163.8, 161.3, 149.8, 134.0, 123.4, 123.3, 116.1,
115.9, 13.7, 10.0. MS(EI) m/z: 219.10 [M+H]*, 241.08 [M+Na]*. The spectral data are in

accordance with the literature.>®
(E)-4-((4-Fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole

Yield: 157.7mg (quant.). H NMR (300 MHz, DMSO-dg¢): 6 (ppm) = N. N—
7.78 (dd, ) =9.2, 5.3 Hz, 2H), 7.34 (t, ) = 8.9 Hz, 2H), 3.74 (s, 3H), 2.54 /©/ N

(s, 3H), 2.36 (s, 3H). *C NMR (75 MHz, DMSO-d): 6 (ppm) = 161.0, &

149.7, 140.3, 139.7, 123.3, 116.2, 115.9, 36.0, 13.8, 9.5. °F NMR (282 MHz, DMSO-d¢): 6
(ppm) =-112.4. MS(El) m/z: 233.12 [M+H]*, 255,10 [M+Na]*.

(E)-4-((3,5-Dimethyl-1H-pyrazol-4-yl)diazenyl)phenol

Yield: 105.1mg (0.49 mmol, 98 %). H NMR (300 MHz, DMSO-dg): & N, K;\NH
(ppm) 12.67 (s, 1H), 9.91 (s, 1H), 7.65 — 7.56 (m, 2H), 6.92 — 6.83 /©/ N

(m, 2H), 2.48 — 2.34 (m, 6H). BCNMR (75 MHz, DMSO-ds): Ho

5 (ppm) = 159.1, 146.1, 133.7, 123.1, 115.6, 31.1, 26.4. MS(EI) m/z: 217.1 [M+H]*, 215.1 [M-

H]~. The spectral data are in accordance with the literature.®

(E)-4-((1,3,5-Trimethyl-1H-pyrazol-4-yl)diazenyl)phenol

Yield: 75.5mg (0.33 mmol, 66 %). *H NMR (300 MHz, DMSO-dg): R K:N\
6 (ppm) =9.93 (s, 1H), 7.65 - 7.57 (m, 2H), 6.90 - 6.83 (m, 2H), 3.71 /©/ N

(s, 3H), 2.51 (s, 3H), 2.34 (s, 3H). ¥3C NMR (75 MHz, DMSO-dg): & "o

(ppm)=196.0,159.1, 155.9, 146.1, 139.9, 138.2,134.0,123.2,118.1, 116.14,115.6, 35.9, 31.1,

13.7,9.4. MS(EIl) m/z: 231.1 [M+H]*, 253.1 [M+Na]*. The spectral data are in accordance with

the literature.”
(E)-4-((4-Bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole

Yield: 144.0mg (0.49 mmol, 98 %). *H NMR (300 MHz, DMSO-de): = NH
5 (ppm) = 12.89 (s, 1H), 7.71 - 7.62 (m, 4H), 2.43 (d, J = 7.3 Hz,

6H). 13C NMR (75 MHz, DMSO-ds): 6 (ppm) = 196.5, 151.9, 141.4, B
134.2,132.3, 123.3, 122.4, 13.6, 10.1. MS(EI) m/z: 279.0 [M+H]*, 281.0 [M+H]*. The spectral

data are in accordance with the literature.>®
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(E)-4-((4-Bromophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole

=N
Yield: 147.6mg (quant.). *H NMR (300 MHz, DMSO-dg): 6 (ppm) = N- IKN\
°N
7.73 -7.64 (m, 4H), 3.74 (s, 3H), 2.54 (s, 3H), 2.36 (s, 3H). 13C NMR /©/
Br

(75 MHz, DMSO-ds): 6 (ppm) = 151.9, 140.5, 140.1, 134.4, 132.2,
123.3,122.4, 36.0, 13.8, 9.5. MS(El) m/z: 293.0 [M+H]*, 295.0 [M+H]*, 315.0 [M+Na]*, 317.0
[M+Na]*.

(E)-3,5-Dimethyl-4-(p-tolyldiazenyl)-1H-pyrazole

Yield: 113.9mg (quant.). *H NMR (300 MHz, DMSO-dg): & (ppm) =

/N\
N\\N ~ NH
12.79 (s, 1H), 7.65 - 7.60 (m, 2H), 7.33-.28 (m, 2H), 2.44 (s, 6H), /©/
Me

2.36 (s, 3H), 2.30 (s, 3H). 3C NMR (75 MHz, DMSO-dg): 6 (ppm) =
151.0,139.2,134.0,129.7,121.3, 20.9, 20.5. MS(El) m/z: 215.13 [M+H]*, 237.11 [M+Na]*. The

spectral data are in accordance with the literature. >
(E)-1,3,5-Trimethyl-4-(p-tolyldiazenyl)-1H-pyrazole

Yield: 126.2mg (quant.). *H NMR (300 MHz, DMSO-dg): 6 (ppm) =

/N\
N\\ N N—
7.63 (d, ) = 8.4 Hz, 2H), 7.30 (d, J = 8.7Hz, 2H), 3.73 (s, 3H), 2.53 (s, /©/ N
Me

3H), 2.36 (s, 6H). 3C NMR (75 MHz, DMSO-dg): & (ppm) = 151.0,
140.2,139.3,130.0,129.7, 121.3,116.3, 35.9, 20.9, 13.7, 9.4. MS(El) m/z: 229.1 [M+H]*, 251.1

[M+Na]*. The spectral data are in accordance with the literature.?
(E)-4-((4-lodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole

Yield: 166.5mg (0.35 mmol, 70 %). *H NMR (400 MHz, DMSO-d¢): 6

N
N. s NH
(ppm) = 12.89 (s, 1H), 7.90 - 7.84 (m, 2H), 7.53 - 7.48 (m, 2H), 2.49 /©/ N
|

(s, 3H), 2.39 (d, J = 5.9 Hz, 3H). 13C NMR (101 MHz, DMSO-dg): &
(ppm) = 196.3, 152.4, 138.0, 123.4, 95.8, 26.4, 10.1. MS(EI) m/z: 327.0 [M+H]*. The spectral

data are in accordance with the literature.®
(E)-4-((4-lodophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole

Yield: 168.3mg (0.49 mmol, 98 %). 'H NMR (300 MHz, DMSO-de): & =

N\
N\\ = N—
(ppm) =7.91 - 7.82 (m, 2H), 7.56 - 7.47 (m, 2H), 3.73 (s, 3H), 2.53 (s, /©/ N
|

3H), 2.35 (s, 3H). 3CNMR (75 MHz, DMSO-dg): & (ppm) = 152.3,
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140.5, 140.0, 138.0, 134.4, 123.4, 95.9, 36.0, 13.8, 9.5. MS(El) m/z: 341.0 [M+H]*, 363.0

[M+Na]*. The spectral data are in accordance with the literature.?10
(E)-3,5-Dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole

Yield: 125.3mg (0.34 mmol, 68 %). *H NMR (400 MHz, DMSO-de): 6

=N
N NH
N =
(ppm) =12.99 (s, 1H), 7.89 - 7.82 (m, 4H), 2.45 (s, 6H). 3C NMR (101 /@/ N
C

MHz, DMSO-de): 6 (ppm) = 155.3,134.6, 126.4, 126.4,121.9,116.4. F3
19F NMR (282 MHz, DMSO-ds): 6 (ppm) =-60.77. MS(EI) m/z: 269.1 [M+H]*. The spectral data

are in accordance with the literature.®
(E)-1,3,5-Trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole

Yield: 130.3mg (0.46 mmol, 92%). *H NMR (300 MHz, DMSO-dg): =N

5 (ppm) =7.87 (d, ) = 1.8 Hz, 4H), 3.75 (s, 3H), 2.57 (s, 3H), 2.38 (s, /@/N\\NI(N\
3H). 3C NMR (75 MHz, DMSO-dg): & (ppm) = 155.3, 140.8, 134.8, F4C

126.4,121.9, 36.0, 13.8, 9.5. °F NMR (282 MHz, CDCls): 6 (ppm) = -62.34. MS(EI) m/z: 283.1
[M+H]*.

(E)-4-((4-Chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole

Yield: 118.6mg (quant.). 'TH NMR (300 MHz, DMSO-dg): & (ppm) = _N
12.89 (s, 1H), 7.75-7.71 (m, 2H), 7.58 - 7.53 (m, 2H), 2.43 (s, 6H). N\\NIYNH
13C NMR (75 MHz, DMSO-dg): 6 (ppm) = 151.6, 134.2, 133.7, 129.4, C|/©/
129.3,123.0, 117.9. MS(EI) m/z: 235.1 [M+H]*. The spectral data are in accordance with the

literature.®
(E)-4-((4-Chlorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole

Yield: 123.6mg (quant.). *H NMR (300 MHz, DMSO-dg): 6 (ppm) =

/N\
N\\ \N\
7.76 -7.70 (m, 2H), 7.59 - 7.52 (m, 2H), 3.73 (s, 3H), 2.54 (s, 3H), /©/ N
Cli

2.36 (s, 3H). 3C NMR (75 MHz, DMSO-dg): 6 (ppm) = 151.6, 140.5,
140.0, 134.4, 133.7, 129.2, 123.0, 117.9, 36.0, 13.8, 9.5. MS(ElI) m/z: 249.1 [M+H]*, 271.1
[M+Na]*.
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(E)-4-((3,5-Dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile

Yield: 114.9mg (quant.). *H NMR (400 MHz, DMSO-dg): 6 (ppm) = N NH
13.03 (s, 1H), 7.98 - 7.92 (m, 2H), 7.86 - 7.79 (m, 2H), 2.45 (s, 6H). /©/ N

13C NMR (101 MHz, DMSO—de): & (ppm) = 155.3, 134.8, 133.8, "C

133.6,122.1,111.1, 106.0, 30.9, 25.9. MS(EI) m/z: 226.1 [M+H]*, 248.1 [M+Na]*. The spectral

data are in accordance with the literature.?
(E)-4-((1,3,5-Trimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile

Yield: 121.0mg (quant.). H NMR (300 MHz, CDCls): 6 (ppm) =

_N
N = N—
7.86 -7.80 (m, 2H), 7.76 - 7.71 (m, 2H), 3.79 (s, 3H), 2.59 (s, 3H), /©/ N
NC

2.48 (s, 3H). 13C NMR (75 MHz, CDCls): § (ppm) = 155.9, 143.0,
140.5, 135.8, 133.2, 122.5, 119.0, 116.4, 112.1, 36.3, 14.1, 10.2. MS(EI) m/z: 240.1 [M+H]",
262.1 [M+Nal".

(E)-4-((4-Methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazole

Yield: 115.3mg (quant.). 'TH NMR (300 MHz, DMSO-dg): & (ppm) =

/N\
N‘\N o NH
12.73 (s, 1H), 7.70 (d, J = 9.0 Hz, 2H), 7.04 (dd, J = 9.1, 2.3 Hz, 2H), /©/
o)

3.82 (s, 3H), 2.38 (s, 6H). 3C NMR (75 MHz, DMSO—-d¢): & (ppm) = M®
160.4, 147.2, 133.8, 122.9, 117.9, 114.9, 114.3, 55.4, 13.7, 10.0. MS(EI) m/z: 231.1 [M+H]".

The spectral data are in accordance with the literature.”
(E)-4-((4-Methoxyphenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole

Yield: 122.2mg (quant.). *H NMR (300 MHz, DMSO-dg): 6 (ppm) E;‘N\
=7.74-7.67 (m, 2H), 7.04 (dd, J = 9.1, 2.2 Hz, 2H), 3.82 (s, 3H), /©/N\\N h
3.72 (s, 3H), 2.52 (s, 3H), 2.35 (s, 3H). 3CNMR (75 MHz, MeO

DMSO-de): 6 (ppm) = 196.1, 160.4, 147.1, 140.1, 138.6, 123.0, 114.3, 55.5, 35.9, 13.7, 9.4.
MS(EI) m/z: 245.1 [M+H]*, 267.1 [M+Na]*. The spectral data are in accordance with the

literature.*
(E)-3,5-Dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole

Yield: 116.3mg (0.47 mmol, 94 %). 'HNMR (400 MHz,

=N
N+ S NH
DMSO-dg): & (ppm) = 13.07 (s, 1H), 8.38-8.32 (m, 2H), /©/ N
O,N

7.91-7.86 (m, 2H), 2.47 (s, 6H). 3C NMR (101 MHz, DMSO-ds):
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6 (ppm) =156.7,147.0,135.1,124.9,122.2,30.7. MS(El) m/z: 246.1 [M+H]*. The spectral data

are in accordance with the literature.>®
(E)-1,3,5-Trimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole

Yield: 129.5mg (quant.). 'H NMR (400 MHz, DMSO-ds): 6 (ppm) /N\N\
=8.36-.31 (m, 2H), 7.91 - 7.86 (m, 2H), 3.75 (s, 3H), 2.57 (s, 3H), /©/N\\N S
2.38 (s, 3H). 3C NMR (101 MHz, DMSO-dg): & (ppm) = 156.6, 92N

147.0, 141.5, 141.0, 135.2, 124.9, 122.2, 36.1, 13.9, 9.6. MS(El) m/z: 260.1 [M+H]*, 282.1

[M+Na]*. The spectral data are in accordance with the literature.*

2.3 General procedure 3 to synthesize (E)-1-(4-(diazenyl-3,5-dimethyl-1H-
pyrazol-1-yl)ethan-1-one

A solution of acetyl chloride (0.5 mol L%, 2.5 equiv) in DCM was added to the ice-cooled
solution of (E)-3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole derivative (1.0 equiv),
NaHCOs (2.5 equiv) in DCM (0.045 mol L™1), and the reaction mixture was stirred for 16 hours
under Ny atmosphere. Then, 5 mL of water was added, and the resulting solution was extracted
(3 x50 mL) with brine and (3 x50 mL) DCM. The organic layer was separated, dried using
Na»S04, and concentrated under reduced pressure. The crude was purified via FCC (silica gel)

toyield the desired product.

(E)-1-(4-((4-Nitrophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one

Synthetized according General procedure 3. 0.020 g of (E)-3,5-
dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole was used. N K?‘N_{O
Mobile phase: 20 % ethyl acetate in pentane. Yellow solid (0.020 /©/ N

g,85%). Mp.: 155.3-157.4 °C 'H NMR (400 MHz, CD,Cl,) §8.39 — 92N

8.26 (m, 2H), 8.00 — 7.86 (m, 2H), 2.94 (s, 3H), 2.69 (s, 3H), 2.49 (s, 3H). 3C NMR (101 MHz,
CD,Cly) 6 172.1, 156.9, 148.7, 147.3, 145.0, 138.4, 125.1, 123.1, 23.6, 15.5, 12.5. HRMS(ESI)
m/z: [M]* calcd. for C13H14NsOsNa* 310.0911; found 310.0911. IR (ATR): ¥ (cm) 2355, 2335,
1980, 1730, 1574, 1517, 1335, 1289, 872,772, 593.
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(E)-1-(4-((4-lodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one

Synthetized according General procedure 3. 0.020 g of (E)-3,5-
dimethyl-4-((4-iodophenyl)diazenyl)-1H-pyrazole was used. /©/ ‘<
Mobile phase: 15 % ethyl acetate in pentane. Yellow solid

(0.014 g, 61%). Mp.: 146.3-148.2 °C. *H NMR (400 MHz, CD5Cl;) § 7.95 — 7.77 (m, 2H), 7.58
(dg, J = 9.2, 3.0 Hz, 2H), 2.90 (s, 3H), 2.68 (s, 3H), 2.47 (s, 3H). 13C NMR (101 MHz, CD,Cl,) &
172.1, 153.0, 145.7, 145.2, 138.7, 138.0, 124.2, 97.0, 23.6, 15.4, 12.5. HRMS(ESI) m/z: [M]*

calcd. for C13H13IN4ONa* 391.0026; found 391.0026. IR (ATR): ¥ (cm) 2914, 2846, 1738, 1577,
1370, 1334, 1031, 1000, 960, 889, 776, 589.

(E)-4-((1-Acetyl-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile

Synthetized according General procedure 3. 0.020 g of (E)-4- . K’;\N\{O
((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrilewas used. /©/ N

Mobile phase: 10 % ethyl acetate in pentane. Yellow solid ¢

(0.016 g, 67%). Mp.: 177.7-180.1 °C. *H NMR (400 MHz, CD,Cl,) 6 7.93 — 7.87 (m, 2H), 7.82 —
7.74 (m, 2H), 2.93 (s, 3H), 2.68 (s, 3H), 2.48 (s, 3H). 3C NMR (101 MHz, CD,Cl,) 6 172.1, 155.6,
146.9, 145.1, 138.3, 133.6, 123.0, 118.9, 113.7, 23.6, 15.4, 12.5. HRMS (ESI) m/z: [M]* calcd.
for C14H13NsONa* 290.1012; found 290.1012. IR (ATR): ¥ (cm™) 2227, 1739, 1369, 1340,1286,
959,851, 695, 689, 593.

(E)-1-(4-((4-Methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one
Synthetized according General procedure 3. 0.020 g of (E)-3,5-
dimethyl-4-((4-methoxyphenyl)diazenyl)-1H-pyrazole wa /©/ Ii {
used. Mobile phase: 15 % ethyl acetate in pentane. Yellow solid MeO

(0.020 g, 84%). Mp.: 145.3-146.0 °C. 'H NMR (400 MHz, CD,Cl,) 6 7.87 — 7.76 (m, 2H), 7.06 —
6.94 (m, 2H), 3.87 (s, 3H), 2.89 (s, 3H), 2.67 (s, 3H), 2.48 (s, 3H). 3C NMR (101 MHz, CD,Cl,) 6
172.1,162.1,148.0, 145.4, 144.0, 137.8, 124.2, 114.5, 56.0, 23.6, 15.3, 12.4. HR-MS (ESI) m/z:
[M]* calcd. for C14H17N4O2* 273.1346; found 273.1346. IR (ATR): ¥ (cm') 2960, 2918, 2831,
1736, 1593, 1343, 1244, 1028, 838, 587, 533.
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(E)-1-(4-((4-Chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one

Synthesized according to General procedure 3. 0.010 g of (E)- /N\N o
3,5-dimethyl-4-((4-chlorophenyl)diazenyl)-1H-pyrazole = was /©/N\\N = \<
used. Mobile phase: 10 % ethyl acetate in pentane. Yellow solid Cl

(0.0067 g, 57%). Mp.: 76.8-78.7 °C. *H NMR (400 MHz, CD,Cl,) & 7.91 — 7.77 (m, 2H), 7.63 —
7.46 (m, 2H), 2.95 (s, 3H), 2.72 (s, 3H), 2.52 (s, 3H). 13C NMR (101 MHz, CD,Cl;) 6 172.1, 152.1,
145.4 (d, ) = 3.6 Hz), 137.9, 136.4, 129.6, 123.8, 23.6, 15.4, 12.5. HR-MS (ESI): m/z: [M]* calcd.
for C13H13CIN4ONa* 299.0670; found 299.0670. IR (ATR): ¥ (cm™) 1667, 1506, 1406, 1389, 1085,

1081, 830, 773, 583, 522. The spectral data are in accordance with the literature.!!

((E)-1-(4-((4-Bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one

Synthetised according to General procedure 3. 0.010 g of (E)- /N\N{O
3,5-dimethyl-4-((4-bromophenyl)diazenyl)-1H-pyrazole  was /©/N\\N 5

used. Mobile phase: 10 % ethyl acetate in pentane. Yellow solid Br

(0.015 g, 65%). Mp.: 70.8-73.4 °C. *H NMR (300 MHz, CDsCN) 6 7.80 — 7.73 (m, 2H), 7.72 —
7.66 (m, 2H), 2.88 (s, 3H), 2.63 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, CD,Cl,) 6 172.2, 152.5,
145.6, 145.2, 132.6, 124.8, 124.1, 23.6, 15.4, 12.5. HR-MS (ESI): m/z: [M]* calcd. for
Ci13H13BrNsNaO* 343.0165; found 343.0171. IR (ATR): ¥ (cm™) 2920, 2359, 2340, 1734.66,

1373, 1164, 1062, 1059, 827, 776.

(E)-1-(4-((4-Hydroxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one
Synthetised according to General procedure 3. 0.021 g of (E)- =N (o)
3,5-dimethyl-4-((4-hydroxyphenyl)diazenyl)-1H-pyrazole was /©/N\\NI<N\<
used. Mobile phase: 10 % ethyl acetate in pentane. Yellow solid HO

(0.019 g, 92%). Mp.: 185.1-187.0 °C. 'H NMR (400 MHz, DMSO-d): & (ppm) 10.17 (s, 1H), 7.70
(d, J =8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 2.81 (s, 3H), 2.62 (s, 3H), 2.41 (s, 3H). 3C NMR (125
MHz, DMSO-ds): & (ppm) 171.4, 160.4, 145.9, 144.0, 142.6, 136.7, 124.0, 115.9, 23.2, 14.9,
12.0. HR-MS (ESI): calc. for: C13H1aN4O2H: 259.1190, found.: 259.1183. IR (ATR): ¥ (cm?) 3210,
2918, 1701, 1588, 1380, 1332, 1199, 1139, 841, 809.
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(E)-1-(3,5-Dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one

Synthetised according to General procedure 3. 0.020 g of (E)- =N (o]
3,5-dimethyl-4-((4-methylphenyl)diazenyl)-1H-pyrazole  was N‘\NIKN‘{
used. Mobile phase: 20 % ethyl acetate in pentane. Yellow solid Me

(0.021 g, 84%). Mp.: 119.4 — 120.2 °C. *H NMR (400 MHz, CDCl3): & (ppm) 7.75 —7.71 (m, 2H),
7.31 —7.26 (m, 2H), 2.93 (s, 3H), 2.71 (s, 3H), 2.50 (s, 3H), 2.42 (s, 3H). 3C NMR (125 MHz,
CDCls): 6 (ppm) 172.0, 151.5, 145.5, 144.4, 141.1, 137.8, 129.8, 122.3, 23.6, 21.6, 15.3, 12.5.
HR-MS (ESI): calc. for: C1aH16N4OH: 257.1397, found.: 257.1389. IR (ATR): ¥ (cm) 2924, 1733,

1582, 1369, 1335, 1283, 962, 821, 739, 590. The spectral data are in accordance with the

literature.1!

(E)-1-(3,5-Dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one

Synthetized according to general procedure 3.0.02 g of (E)-3,5- _N o
dimethyl-4-(phenyldiazenyl)-1H-pyrazole was used. Mobile N\\NI(N\{
phase: 20 % ethyl acetate in pentane. Yellow solid (16 mg, H/©/

66%). Mp.: 103.2 — 103.9°C. 'H NMR (400 MHz, CDCls): & (ppm) 7.85—7.80 (m, 2H),
7.52—7.46 (m, 2H), 7.46 — 7.40 (m, 1H), 2.94 (s, 3H), 2.71 (s, 3H), 2.51 (s, 3H). 13C NMR (125
MHz, CDCl3): 6 (ppm) 172.0, 153.3, 145.4, 144.9, 137.8, 130.6, 129.2, 122.3, 23.6, 15.3, 12.5.
HR-MS (ESI): calc. for: C13H1aN4OH: 243.1240, found.: 243.1240. IR (ATR): ¥ (cm™) 2924, 1733,
1571, 1394, 1372,1346, 1289, 769, 694, 673.

(E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)-diazenyl)-

1H-pyrazol-1-yl)ethan-1-one E?\N%o
N =~
Synthesized according to general procedure 3. 0.021 g of (E)- /©/ N
3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H- F5C

pyrazole was used. Mobile phase: 20 % ethyl acetate in pentane. Orange solid (19.7 mg, 95%).
Mp.: 112.8 — 113.4 °C. *H NMR (400 MHz, CDCls): & (ppm) 7.90 (d, J = 8.2 Hz, 2H), 7.74 (d, J =
8.3 Hz, 2H), 2.95 (s, 3H), 2.72 (s, 3H), 2.51 (s, 3H). 3C NMR (125 MHz, CDCl3): 6 (ppm) 172.0,
155.2,146.1, 145.1,137.9, 131.8 (q, / = 32.4 Hz), 126.4 (q, J = 3.8 Hz), 125.5, 122.5, 23.6, 12.4,
12.5. F NMR (377 MHz, CDCl3): & (ppm) -62.5. HR-MS (ESI): calc. for: CisH13F3N4OH:
311.1114, found.: 311.1115. IR (ATR): Vv (cm) 1747, 1372, 1337, 1321, 1278, 1167, 1116,
1113, 1065, 596.
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(E)-1-(3,5-Dimethyl-4-((4-(fluoro)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one

Synthesized according to general procedure 3. 0.020 g of (E)- /N\N o
4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole  was /©/N\\N S {
used. Mobile phase: 20 % ethyl acetate in pentane. Orange F

solid (18.0 mg, 75%). %). Mp.: 114.7 — 115.3 °C. *H NMR (400 MHz, CDCl3): 6 (ppm) 7.83 (ddt,
J=7.1,53, 2.5 Hz, 2H), 7.20-7.06 (m, 2H), 2.92 (s, 3H), 2.71 (s, 3H), 2.49 (s, 3H). 3C NMR
(125 MHz, CDCl3): 6 (ppm) 172.0, 165.4,162.9,149.9, 145.3, 137.6, 124.2,116.2,116.2, 116.0,
23.5, 15.3, 12.4. %F NMR (377 MHz, CDCl3): & (ppm) -110.2 (tt, J = 8.2, 5.3 Hz). HR-MS (ESI):

calc. for: C13H13FN4OH: 261.1146, found.: 261.1149. IR (ATR): ¥ (cm™) 1733, 1380, 1366, 1346,
1286, 1227, 846, 664, 590, 514.

2.4 pH-Dependent stability of NAc-PAP-H

A stock solution of NAc-PAP-H (1 mm) in MeOH was prepared in dark at room temperature at
pH 2 and 12 (HCl as acid and NaOCH3 as a base). Both samples were stirred for 2 h and we
observed full conversion to NH-PAP-H (detected on LC-MS; 95-5% water in CHsCN, 0.1%

formic acid) in both cases as shown in Figure S1.

We reperformed the experiment in MeCN with DBU (1072 m), and we observed after 2 h full

conversion to various products and NH-PAP-H.

Already on the standard LC—MS trace, one can already observe a small appearance of the
decomposition (NMR showed no impurities), since the mobile phase contained 0.1% of formic

acid.
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Figure S1: Chromatograph at 365 nm (maximum set to 1) of the pH stability experiments after 2 hours with the

comparison of the starting material (NAc PAP-H).
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3. Photochemical and photophysical studies

Upon 365 nm irradiation, the solution undergoes a color change from pale yellow to dark
yellow, corresponding to an increased absorption of the n—nt* transition associated with the Z-
isomer, which can be observed by naked eye. The solution changes from pale to dark yellow.

Figure S2: 0.5mm NAc-PAP-H on the right kept in the dark and on the left after 365 nm irradiation.

3.1 Determination of photostationary state distribution by 'H NMR

The NMR samples of NAc-PAPs were irradiated with 365 or 445 nm LED for 10 min, and then
immediately 'H NMR spectra were recorded using a Bruker Advance lll HD 300 at 25 °C. The

PSS was determined by the integration of the Eisomer and Zisomer signals.

I Hiy
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Figure S3: *H NMR spectra of NAc-PAP-NO>- a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in
CDsCN.
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Figure S4: 'H NMR spectra of NAc-PAP-I. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCls.
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Figure S5: *H NMR spectra of NAc-PAP-CN. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in

CDsCN.
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Figure S6: *H NMR spectra of NAc-PAP-CI. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDsCN.
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Figure S7: *H NMR spectra of NAc-PAP-Br. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CD3CN.
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Figure S8: *H NMR spectra of NAc-PAP-OMe. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in
CDsCN.
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Figure S9: 'H NMR spectra of NAc-PAP-Me. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCls.
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Figure S10: 'H NMR spectra of NAc-PAP-H. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCls.
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Figure S11: *H NMR spectra of NAc-PAP-CF;. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in
CDCls.
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Figure S12: 'H NMR spectra of NAc-PAP-F. a) in dark b) irradiated by 365 nm c) irradiated with 445 nm in CDCls.
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3.2 Cyclicirradiation to study fatigue resistance

Photoswitching stability of NAc-PAP derivatives was investigated in CH3CN. For the forward
E->Z-isomerization step, 365 nm light was used until the PSS was reached, whereas for the

Z->E-isomerization, 445 nm light was used until reaching PSS. Both the irradiation steps were

repeated 10 to 20 times.
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Figure S13: Photoswitching cycles of NAc-PAP-NO; in CH;CN at 25 °C.

1,0 Y X a2 A A

0,8 1

0,6 1

Ar, 365nm

0,4 1

0,21

A A A A A A A A A A A A A A

0,0 T T T T T T T

Switching Cycles

Figure S14: Photoswitching cycles of NAc-PAP-I in CH5CN at 25 °C.
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Figure S15: Photoswitching cycles of NAc-PAP-CN in CH;CN at 25 °C.
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Figure S16: Photoswitching cycles of NAc-PAP-OMe in CH3CN at 25 °C.
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Figure S17: Photoswitching cycles of NAc-PAP-Cl in CH3CN at 25 °C.
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Figure $18: Photoswitching cycles of NAc-PAP-Br in CH3CN at 25 °C.
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Figure S19: Photoswitching cycles of NAc-PAP-CF3 in CHsCN at 25 °C.

1,0 K
0,8
IS
S 06
n
(o]
™
— 04
< ,
0,2
AL ALl A4aAl li4al 1l
0,0 T T
0 5 10 15

Switching Cycles

Figure S20: Photoswitching cycles of NAc-PAP-F in CHsCN at 25 °C.
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Figure S21: Photoswitching cycles of NAc-PAP-H in CH;CN at 25 °C.
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Figure S22: Photoswitching cycles of NAc-PAP-Me in CH5CN at 25 °C.
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Figure S23: Photoswitching cycles of NAc-PAP-OH in CHsCN at 25 °C.
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3.3 Determination of molar extinction coefficients

Molar extinction coefficients (€) were determined by fitting the slope of absorbance
dependency to the concentration taken from at least two separate dilutions at 12.5 uM,
25 uM, 50 uM or 100 uM in CH3CN. The values were fitted linearly and the y-intercept was set

to zero.

3.3.1 Absorbance vs. concentrations of NAc-PAP derivatives
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Figure S24: Absorbance at 327 nm dependency on concentration and the slopes of NAc-PAP-F in CH3;CN at 12.5,
25 and 50 puM.
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Figure S25: Absorbance at 333 nm dependency on concentration and the slopes of NAc-PAP-CN in CH3CN at
12.5, 25 and 50 puM.
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Figure S26: Absorbance at 333 nm dependency on concentration and the slopes of NAc-PAP-Cl in CH;CN at

12.5, 25 and 50 pM.
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Figure S27: Absorbance at 324 nm dependency on concentration and the slopes of NAc-PAP-CF; in CH5CN at
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12.5, 25 and 50 uM.
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Figure S28: Absorbance at 344 nm dependency on concentration and the slopes of NAc-PAP-Br in CHsCN at
12.5, 25 and 50 pM.
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Figure S29: Absorbance at 327 nm dependency on concentration and the slopes of NAc-PAP-H in CH5CN at 12.5,

25 and 50 uM.
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Figure S30: Absorbance at 340 nm dependency on concentration and the slopes of NAc-PAP-1in CHs;CN at 12.5,

25 and 50 puM.
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Figure S31: Absorbance at 333 nm dependency on concentration and the slopes of NAc-PAP-Me in CHsCN at

12.5, 25 and 50 pM.
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Figure S32: Absorbance at 345 nm dependency on concentration and the slopes of NAc-PAP-NO, in CH;CN at

0.8

12.5, 25 and 50 pM.
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Figure S33: Absorbance at 344 nm dependency on concentration and the slopes of NAc-PAP-OH in CH;CN at
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Figure S34: Absorbance at 344 nm dependency on concentration and the slopes of NAc-PAP-OMe in CH3CN at
12.5, 25 and 50 pM.
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3.3.2 Absorbance vs. concentrations of NMe-PAP derivatives
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Figure S35: Absorbance at 343 nm dependency on concentration and the slopes of NMe-PAP-Br in CH5CN at
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12.5, 25 and 50 pM.
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Figure S36: Absorbance at 341 nm dependency on concentration and the slopes of NMe-PAP-CF;s in CH3CN at
12.5, 25 and 50 uM.
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Figure S37: Absorbance at 341 nm dependency on concentration and the slopes of NMe-PAP-Cl in CH3CN at 25,
50 and 100 puM.
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Figure S38: Absorbance at 352 nm dependency on concentration and the slopes of NMe-PAP-CN in CH3CN at
25,50 and 100 pM.
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Figure S39: Absorbance at 335 nm dependency on concentration and the slopes of NMe-PAP-F in CH3CN at 25,
50 and 100 puM.
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Figure S40: Absorbance at 337 nm dependency on concentration and the slopes of NMe-PAP-H in CH;CN at 25,

50 and 100 puM.
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Figure S41: Absorbance at 347 nm dependency on concentration and the slopes of NMe-PAP-I in CH5CN at 25,
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Figure S42: Absorbance at 338 nm dependency on concentration and the slopes of NMe-PAP-Me in CH3CN at
12.5, 25 and 50 pM.
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Figure S43: Absorbance at 368 nm dependency on concentration and the slopes of NMe-PAP-NO; in CH;CN at
25, 50 and 100 uM.
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Figure S44: Absorbance at 345 nm dependency on concentration and the slopes of NMe-PAP-OH in CH3CN at
12.5, 25 and 50 uM.
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Figure S45: Absorbance at 345 nm dependency on concentration and the slopes of NMe-PAP-OMe in CH3CN at
25,50 and 100 pM.
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3.3.3 Absorbance vs. concentrations of NH-PAP derivatives
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Figure S46: Absorbance at 341 nm dependency on concentration and the slopes of NH-PAP-Br in CH;CN at 25,

50 and 100 puM.
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Figure S47: Absorbance at 335 nm dependency on concentration and the slopes of NH-PAP-CFs in CH3CN at

12.5, 25 and 50 pM.
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Figure S48: Absorbance at 336 nm dependency on concentration and the slopes of NH-PAP-Cl in CHsCN at 30,

60 and 90 uM.
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Figure S49: Absorbance at 361 nm dependency on concentration and the slopes of NH-PAP-CN in CH3CN at 25,
50 and 100 puM.
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Figure S50: Absorbance at 332 nm dependency on concentration and the slopes of NH-PAP-F in CH3CN at 25, 50
and 100 uM.
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Figure S52: Absorbance at 324 nm dependency on concentration and the slopes of NH-PAP-1in CH:CN at 12.5,

20

25 and 50 puM.
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Figure S54: Absorbance at 361 nm dependency on concentration and the slopes of NH-PAP-NO, in CH;CN at 25,

50 and 100 puM.
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Figure S55: Absorbance at 342 nm dependency on concentration and the slopes of NH-PAP-OH in CH;CN at 25,

50 and 100 puM.
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Figure S56: Absorbance at 344 nm dependency on concentration and the slopes of NH-PAP-OMe in CH;CN at
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3.4 Chemical actinometry

A modification of a standard protocol was applied for the determination of the photon flux.12
An aqueous H,S04 solution (50 mM) containing freshly recrystallized Ks[Fe(C204)3] (41 mM, 2
mL, 1 cm quartz cuvette) was irradiated at 20 °C for a given period in the dark with a 365 nm
then 445 nm LED. The solution was then diluted with 1.0 mL of an aqueous H,SO4 solution
(0.5 M) containing phenanthroline (1 g/L) and NaOAc (122.5 g/L) and left to react for 10 min.
The absorption at A = 510 nm was measured and compared to an identically prepared non-
irradiated sample. The concentration of [Fe(phenanthroline)s]?* complex was calculated using
its molar absorptivity (€ = 11 100 M~ cm™1) and considering the dilution. The quantity of Fe?*
ions expressed in mol was plotted versus time (expressed in seconds) and the slope, obtained
by linear fitting the data points to the equation y = ax +b, equals the rate of formation of the
Fe?* ion at the given wavelength. This rate can be converted into the photon flux (1) by dividing
it by the quantum vyield of [Fe(phenanthroline)s]?* complex (P36 = 1,29, ®*4°"™ = 1.06) at
365 or 445 nm and by the probability of photon absorption at 365 nm of the Fe3* complex
(approximated to 1 as we were working in the total absorption regime). The obtained photon

flux values for 365 nm and 445 nm are listed in Table S1.

Table S1: Determined photon flux values for 365 nm and 445 nm.

A/nm | 1/10> mEs™.

365 2.38

445 6.43

3.5 Determination of quantum yields

The quantum yield of the photochemical isomerization of PAP compounds is determined using
the initial slope method. Photoisomerization was measured under 365 (at concentration 12.5
UM) or 445 nm (at concentration 50 uM) irradiation at 25% or 10% intensity, the natural
logarithm of the absorbance was plotted as a function of time. By applying equation 1,2 the

qguantum yield of the light-induced isomerization of PAP compounds can be calculated.

_ —klX]V
1 (1—10AtD)

(1)
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Where @ is the quantum yield; —k is the reaction rate; [X]to is the concentration of the PAP
compounds in the dark state (e.g. >>99% trans-isomer), V is the volume, I is the photon flux
and A(ty, 1) is the absorption value before irradiation at 365 nm or 445 nm respectively. By
applying first-order kinetics, —k can be derived from the slope of the linear fit to the plot of

the natural logarithm of absorbance as a function of time.

3.5.1 Irradiation of NAc-PAP derivatives and evaluation of the kinetic traces
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Figure S57: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-Me (50 uM in CHsCN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-Me.
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Figure S58: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-Me (12.5 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-Me.
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Figure S59: Left: Time-resolved UV—vis absorption spectra of NAc-PAP-OMe (37.5 puM in CH3CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-OMe.
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Figure S60: Time-resolved UV-vis absorption spectra of NAc-PAP-OMe (12.5 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-OMe.

0.6 4

0.5

0.4 4

034 —

0.2 1

Absorbance (a.u.)

0.1+

0.0 T T : : —
200 250 300 350 400 450 500
Wavelength (nm)

T
550

600

In(Ar) (343.5 nm)

—0.06 4

—0.08 1

—0.10 4

-0.12 4 y=-0.018x + -0.07
R*=0.9638
-0.14 §
—-0.16 4
b4 [
-0.18 4 * *
. T
6 8

4
Time (sec)

Figure S61: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-OH (50 uM in CHsCN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-OH.
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Figure S62: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-OH (50 uM in CH;CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-OH.
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Figure S63: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-NO; (37.5 uM in CH3CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-NO,.
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Figure S64: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-NO, (12.5 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-NO,.
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Figure S65: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-1 (37.5uM in CHs;CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-I.
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Figure S66: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-I (50 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-I.
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Figure S67: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-H (50 uM in CH3CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-H.
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Figure S68: Left: Time-resolved UV—vis absorption spectra of NAc-PAP-H (12.5 pM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-H.
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Figure S69: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-F (50 uM in CH3CN) upon 445nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-F.
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Figure S70: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-F (12.5 uM in CH3;CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-F.
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Figure S71: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-CF3; (50 pM in CH3CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-CFs.
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Figure S72: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-CF3 (50 uM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-CFs.
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Figure S73: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-CN (50 uM in CH3;CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-CN.
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Figure S74: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-CN (12.5 uM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-CN.
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Figure S75: Left: Time-resolved UV—vis absorption spectra of NAc-PAP-Cl (50 uM in CH3CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-CI.
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Figure S76: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-Cl (12.5 uM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NAc-PAP-CI.
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Figure S77: Left: Time-resolved UV-vis absorption spectra of NAc-PAP-Br (50 uM in CH3CN) upon 445 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-Br.
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Figure S78: Left: Time-resolved UV—vis absorption spectra of NAc-PAP-Br (12.5 uM in CHsCN) upon 365 nm

irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NAc-PAP-Br.
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3.5.2 Irradiation of NH-PAP derivatives and evaluation of the kinetic traces
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Figure S79: Left: Time-resolved UV-vis absorption spectra of NH-PAP-OMe (50 pM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-OMe.
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Figure S80: Left: Time-resolved UV-vis absorption spectra of NH-PAP-OH (50 pM in CH5CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-OH.
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Figure S81: Left: Time-resolved UV-vis absorption spectra of NH-PAP-NO, (25 uM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-NO,.
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Figure S82: Left: Time-resolved UV-vis absorption spectra of NH-PAP-Me (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-Me.
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Figure S83: Left: Time-resolved UV-vis absorption spectra of NH-PAP-1 (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-I.
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Figure S84: Left: Time-resolved UV—vis absorption spectra of NH-PAP-H (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NH-PAP-H.
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Figure S85: Left: Time-resolved UV-vis absorption spectra of NH-PAP-F (50 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NH-PAP-F.
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Figure S86: Left: Time-resolved UV-vis absorption spectra of NH-PAP-CN (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption

maximum of NH-PAP-CN.

S50



60
0.7 +
01
0.6 4 50
- -
3 E y=-0.031x + -0.04
. -0.2 2,
0.5 4 c R?=0.9992
_IE 40 -
(1] g :
9 0.4 3 ] 031
£ s m
30 w m
© E -
2 03 F =~ .
3 20 <
2 0.2 {1 c
051
10
0.1
0.6 1
0.0 T T T T T T T 0 T T T T T T T T
200 250 300 350 400 450 500 550 600 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Wavelength (nm) Time (sec)

Figure S87: Left: Time-resolved UV-vis absorption spectra of NH-PAP-CI (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-CI.
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Figure S88: Left: Time-resolved UV-vis absorption spectra of NH-PAP-CF; (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-CF;.
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Figure S89: Left: Time-resolved UV-vis absorption spectra of NH-PAP-Br (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NH-PAP-Br.
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3.5.3 Irradiation of NMe-PAP derivatives and evaluation of the kinetic traces
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Figure S90: Left: Time-resolved UV—vis absorption spectra of NMe-PAP-OMe (25 uM in CH3;CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-OMe.
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Figure S91: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-l1 (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-I.
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Figure S92: Left: Time-resolved UV—vis absorption spectra of NMe-PAP-Me (25 uM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-Me.
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Figure S93: Left: Time-resolved UV—vis absorption spectra of NMe-PAP-OH (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-OH.
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Figure S94: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-CN (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-CN.
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Figure S95: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-F (50 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-F.
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Figure S96: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-H (25 uM in CH5CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-H.
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Figure S97: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-CF3 (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-CF;.
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Figure S98: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-ClI (25 uM in CHsCN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-CI.
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Figure S99: Left: Time-resolved UV-vis absorption spectra of NMe-PAP-Br (25 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-Br.
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Figure S100: Left: Time-resolved UV—vis absorption spectra of NMe-PAP-NO; (50 uM in CH3CN) upon 365 nm
irradiation. Right: Linear fit of the logarithmic kinetic trace of the change of absorbance at the absorption
maximum of NMe-PAP-NO,.
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3.6 Determination of thermal half-lives

Determination of the thermal half-lives 7, ,, of the metastable Z isomers were recorded as
follows. A freshly prepared solution of the NAc-PAPs of interest in CH3CN was irradiated at
365 nm until reaching the PSS3e5nm and immediately moved to a Jasco V-670 spectrometer for
thermal back Z—E isomerization in the dark at 30 °C. Then, a first-order rate constant —k for
the thermal back Z- E isomerization reaction was obtained using equation 2.

In (é> = In (w) = —kt (2)
Ay Ay — A
Where A, is the absorbance at A, before irradiation (e.g. >>99 % trans-Isomer); 4, is the

absorbance at A, ,x at PSS3ssnm and Ay is the absorbance at 4,4 at a certain time.
The linearized data is shown in black, the fitis shown in red.

From —k the half-live 7, /, can be calculated as shown in equation 3.

In(2
T1/2 = n](( ) (3)
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Figure S101: Thermal Z-E isomerization of NAc-PAP-Br in CH5CN at 30 °C.
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Figure $102: Thermal Z-E isomerization of NAc-PAP-CF; in CH3CN at 30 °C.
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Figure S103: Thermal Z-E isomerization of NAc-PAP-Cl in CH3CN at 30 °C.
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Figure $104: Thermal Z-E isomerization of NAc-PAP-CN in CHsCN at 30 °C.
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Figure $S105: Thermal Z-E isomerization of NAc-PAP-F in CH3CN at 30 °C.
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Figure S106: Thermal Z-E isomerization of NAc-PAP-H in CH5CN at 30 °C.
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Figure S107: Thermal Z-E isomerization of NAc-PAP-I in CH5CN at 30 °C.
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Figure S108: Thermal Z-E isomerization of NAc-PAP-Me in CH;CN at 30 °C.
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Figure $110: Thermal Z-E isomerization of NAc-PAP-OH in CH5;CN at 30 °C.
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Figure S111: Thermal Z-E isomerization of NAc-PAP-OMe in CHsCN at 30 °C.

3.7 Hammett correlation of thermal half-lives of NAc-PAP derivatives
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The correlation of thermal relaxation with the R-substituent parameters resulted in the

Hammett plot, depicted in Figure S112. We found the best correlation using the Hammett

substitution constant o resulting in two linear fits (OH was treated as exception due to the

possible presence of a tautomerism mechanism).
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To get a deeper insight into the nature of those, two representative compounds were chosen
(NAc-PAP-CN and NAc-PAP-OMe) and their Z->E thermal relaxation was measured at different
temperatures in toluene. Three measurements were conducted at every temperature and
were then fitted to the linearized form of the Eyring equation:

k —AH? ky AS*

k_ kp 457 (@)
T rr TR TR

In

where AH% is activation enthalpy, AS# is activation entropy, R is the universal gas constant, T
is the temperature, k the kinetic constant, h is the Planck constant, and kg is the Boltzmann
constant. By numerically fitting the data using the package /ift as implemented in Python3, it
is possible to obtain the standard errors on the slope and intercept and directly the standard
errors on AH¥ (6AH) and AS# oAS by multiplying these values with R. Using the covariance
matrix obtained from the fit, it is possible to numerically obtain the correlation between AH#
and ASt (pAHAS) which resulted to be close to 1 for both CN- (0.9979) and MeO- (0.9995)
derivatives. This correlation can be used to obtain the error on the Gibbs free energy of

activation, AGZ, by exploiting the formula

Opng = \/UAZH + T2 + 05 — 2T PariasOanOas (5)
associated with the canonical form of the Eyring equation

AG* = AH* — TAS* (6)

Table S2 provides an overview of the measured rates and the resulting thermodynamic
parameters and Table S3 of the results of the Eyring analysis of the data set.
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Table S2: Thermal relaxation rates (recorded in min~) of NAc-PAP-CN and NAc-PAP-OMe in

toluene at different temperat

ures.

Temperatures / °C CN OMe
20 0.0008 | 0.0008 | 0.0008 | 0.0001 | 0.0001 | 0.0001
35 0.0057 | 0.0054 | 0.0056 | 0.0008 | 0.0007 | 0.0008
50 0.0251 | 0.0240 | 0.0266 | 0.0040 | 0.0037 | 0.0040
65 0.1248 | 0.1312 | 0.1280 | 0.0188 | 0.0190 | 0.0179
80 0.5870 | 0.5390 | 0.5330 | 0.0677 | 0.0705 | 0.0715

Table S3: Eyring analysis of the measurements in Table S2.

NAc-PAP-CN NAc-PAP-OMe
AG*/ kJ/mol 99.1 +0.07° 104.3 £0.1°
AH*/ kJ/mol 90.0+0.7 93.0+1.0
AS*/ J/(mol K) -30.0+2.0 -39.0+ 4.0

3.7.1 Thermal relaxation of NAc-PAP-CN at different temperatures
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Figure S113: Thermal relaxation absorbance trace of the NAc-PAP-CN at 20 °C in toluene.
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Figure S114: Thermal relaxation absorbance trace of the NAc-PAP-CN at 35 °C in toluene.
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Figure S115: Thermal relaxation absorbance trace of the NAc-PAP-CN at 50 °C in toluene.
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Figure S116: Thermal relaxation absorbance trace of the NAc-PAP-CN at 65 °C in toluene.
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Figure S117: Thermal relaxation absorbance trace of the NAc-PAP-CN at 80 °C in toluene.

=
o
1

(4]
1

Equaion Toaro
Pt 1 2 3
weigi o Weighing
rercept 099717 5000113 | 099682£000114 | 099794 £ 000167
Sope 53362 0 : : : y
Resiual SunofSquares | 606005E5 saseLIES G4026265
Poarsons ¢ 099983 099983 099977
ReSqure COD) oasses oasses o9ssss
A RSauare 099963 099963 099948 A

A LA o®

80°C -
A

Ad

il

Asa

= Sample 1
e Sample 2
A  Sample 3

—— Linear fit 1
— Linear fit 2
— Linear fit 3

2 4
Time (min)

6 8

S64



3.7.2 Thermal relaxation of NAc-PAP-OMe at different temperatures
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Figure S118: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 20 °C in toluene.
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Figure S119: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 35 °C in toluene.
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Figure $120: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 50 °C in toluene.

IN[(A.-AQ(A-A)]

Figure S121: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 65 °C in toluene.
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Figure S122: Thermal relaxation absorbance trace of the NAc-PAP-OMe at 80 °C in toluene.
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4. NMR Spectra

IH NMR (400 MHz, DMS@®)14.05 §, 1H), 7.59 — 7.54 (m, 2H), 7.45 — 7.39 (m, 2H),
7.22 —7.16 (m, 1H), 2.44 (s, 6H).
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Figure $123: 'H NMR spectrum of 3-(2-phenylhydrazono)pentane-2,4-dione in DMSO-ds.
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13C NMR (101 MHz, DMS®)196.45, 141.76, 133.31, 129.57, 125.36, 116.28, 31.19, 26.5.
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Figure S124: 3C NMR spectrum of 3-(2-phenylhydrazono)pentane-2,4-dione in DMSO-ds.
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IH NMR (400 MHz, DMS®)14.03 ¢, 1H), 7.65 — 7.59 (m, 2H), 7.30 — 7.23 (m, 2H), 2.43 (s, 6H).
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Figure $S125: *H NMR spectrum of 3-(2-(4-fluorophenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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-117.38

19F NMR (282 MHz, DMS®)-117.4.
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Figure S126: °F NMR spectrum of 3-(2-(4-fluorophenyl)hydrazono)pentane-2,4-dione in DMSO-ds.

S71



13C NMR (101 MHz, DMS®)196.36, 160.85, 158.45, 138.45, 138.42, 133.27, 118.16, 118.08, 116.40,
116.17, 31.04, 26.42.
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Figure S127: *3C NMR spectrum of 3-(2-(4-fluorophenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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IH NMR (300 MHz, DMS®)14.49 §, 1H), 9.65 (s, 1H), 7.46 — 7.40 (m, 2H), 6.87 — 6.79 (m, 2H),

2.45 (s, 3H), 2.37 (s, 3H).
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Figure S128: *H NMR spectrum of 3-(2-(4-hydroxyphenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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13C NMR (75 MHz, DMS®)195.98, 155.91, 133.73, 132.11, 118.08, 116.14, 31.09, 26.43.

& by Rz 8% o o
w I 0o % O e ¥
a n Mmm o - O
- - - g IS IR
\/ \ [
|
|
W AN A
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

f1 (ppm)

Figure S129: 3C NMR spectrum of 3-(2-(4-hydroxyphenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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IH NMR (400 MHz, CDGb 14.65 ¢, 1H), 7.52 — 7.48 (m, 2H), 7.29 — 7.25 (m, 2H), 2.59 (s, 3H), 2.47 (s, 3H)
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Figure S130: *H NMR spectrum of 3-(2-(4-bromophenyl)hydrazono)pentane-2,4-dione in CDCls.
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Figure S131: '3C NMR spectrum of 3-(2-(4-bromophenyl)hydrazono)pentane-2,4-dione in CDCls.
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IH NMR (400 MHz, DMS®)14.17 §, 1H), 7.49 — 7.44 (m, 2H), 7.26 — 7.21 (m, 2H), 2.43 (s, SH),
2.30 (s, 3H).
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Figure S132: *H NMR spectrum of 3-(2-(p-tolyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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I3C NMR (101 MHz, DMS®)196.32, 139.44, 134.93, 132.88, 130.03, 116.32, 31.09, 26.25, 20.53.
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Figure S133: 3C NMR spectrum of 3-(2-(p-tolyl)hydrazono)pentane-2,4-dione in DMSO-ds.

S78



IH NMR (400 MHz, DMS®)13.81 §, 1H), 7.77 — 7.71 (m, 2H), 7.41 — 7.36 (m, 2H), 2.43 (s, 6H).

-

-} OINTMOHOMAN—=HOOD®ON ()
- NNNNRNNETOman +
— NNNNNNNNNNNN o~

D (m)
7.39
B (s) C(m) A (s)
13.81 7.74 2.43
RERRER TRARBN
NINNNNN NINNNNN
SN\ S\
/ l
|
||
I I
)8 8
T T T T T T T T T T T T T T T
7.8 7.7 7.6 7.5 7.4 7.3
f1 (ppm)
\\._4 K_JJ A
d 4 4 iy
o ~N o~ wn

T

T 1 T * T T T T T T T T T T " T " T " T " T " 1T T T T T T T T T T T T " T " T " T " T " T " T T T
140 13.5 13.0 125 120 11.5 11.0 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 0.5

f1 (ppm)

Figure S134: *H NMR spectrum of 3-(2-(4-iodophenyl)hydrazono)pentane-2,4-dione in DMSO-db.
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I3C NMR (101 MHz, DMS®)196.82, 141.75, 138.08, 133.84, 118.44, 89.32, 31.23, 26.33.
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Figure S135: *3C NMR spectrum of 3-(2-(4-iodophenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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IH NMR (300 MHz, D@5 14.58 ¢, 1H), 7.66 (d/ = 8.3 Hz, 2H), 7.48 (d= 8.4 Hz, 2H),
2.62 (s, 3H), 2.50 (s, 3H).
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Figure $S136: *H NMR spectrum of 3-(2-(4-(trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione in CDCls.
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-66.89

19F NMR (282 MHz, DMS@)-66.89.

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
-10 -20 -30 -40 -50 -60 -70 -80 -90 -100  -110  -120  -130  -140  -150 -160 -170  -180  -190
f1 (ppm)

Figure S137: °F NMR spectrum of 3-(2-(4-(trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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3C NMR (75 MHz, CDGB 198.60, 197.10, 144.44, 134.26, 127.66, 127.14, 127.09, 116.14, 31.92, 26.76.
o o < o o <+ <+
O — < o~ O —~ O - o o
B N < T ONNN [} o~
o < ™ NN N — - O
— — — o — [aa} o~
VY \ NG \ I

0 A 0 0 AN

T T T T T T T T T T T T

T T T T T T T T T T T T T T T T T T T T

T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
f1 (ppm)

Figure S138: 3C NMR spectrum of 3-(2-(4-(trifluoromethyl)phenyl)hydrazono)pentane-2,4-dione in CDCls.

S83



IH NMR (400 MHz, DMS@)13.84 ¢, 1H), 7.62 — 7.57 (m, 2H), 7.49 — 7.43 (m, 2H), 2.43 (s, 6H).
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Figure $S139: *H NMR spectrum of 3-(2-(4-chlorophenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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13C NMR (101 MHz, DMS®)196.52, 140.92, 133.79, 129.41, 128.95, 117.90, 31.16, 26.43.
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Figure S140: *3C NMR spectrum of 3-(2-(4-chlorophenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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IH NMR (300 MHz, DMS®)13.39 §, 1H), 7.88 — 7.81 (m, 2H), 7.73 — 7.66 (m, 2H), 2.47 (s, 3H),
2.42 (s, 3H).
a
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Figure S141: *H NMR spectrum of 4-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile in DMSO-ds.
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C NMR (75 MHz, DMS@®@)197.58, 196.45, 145.86, 135.76, 133.83, 118.98, 116.43, 106.11, 31.26, 26.26.
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Figure S142:'3C NMR spectrum of 4-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile in DMSO-ds.
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IH NMR (300 MHz, DMS@)14.36 §,
2.43 (d,J=18.4 Hz, 6H).
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Figure S143: *H NMR spectrum of 3-(2-(4-methoxyphenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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13C NMR (75 MHz, DMS®)196.07, 157.39, 135.16, 132.48, 117.88, 114.85, 55.41, 26.39.
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Figure S144:*3C NMR spectrum of 3-(2-(4-methoxyphenyl)hydrazono)pentane-2,4-dione in DMSO-ds.
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Figure S145: *H NMR spectrum of 3-(2-(4-nitrophenyl)hydrazono)pentane-2,4-dione in CD,Cl,.
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Figure S146: 3C NMR spectrum of 3-(2-(4-nitrophenyl)hydrazono)pentane-2,4-dione in CD,Cl,.
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Figure S147: *H NMR spectrum of (E)-3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazole in CDCls.
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Figure S148: 3C NMR spectrum of (E)-3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazole in CDCls.
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IH NMR (400 MHz, DMS@®)7.75 — 7.7010, 2H), 7.54 — 7.48 (m, 2H), 7.46 — 7.39 (m, 1H), 3.74 (s, 3H), 2.55 (s, 3H), 2.37 (s, 3H).

C(s)
2.37

B (s)
2.55
d

A(s)
3.74

vwe— ————————————————

7.4

7.5

f1 (ppm)

ov.NJA
0¥’
ov.mg
'L
L
WL
€v°L
vr' LA ]
bl €L°L ] r
S voL

Sb'L A
=
E M = FeeT
w —= Freoe
= 66T

7.7

6t°L
6t
6t N
152
1572
Nm.ﬁ
s

€52
€5,

=
142
122
1L
e
€20
€204
b

E(m)

7.51

7.72

D (m)

S94

0.5

2.0 1.5 1.0

2.5

3.0

3.5

4.0

5.0 4.5
f1 (ppm)

5.5

6.0

7.5 7.0 6.5
Figure $S149: 'H NMR spectrum of (E)-1,3,5-trimethyl-4-(phenyldiazenyl)-1H-pyrazole in DMSO-ds.
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I3C NMR (101 MHz, DMS®)152.97, 140.32, 139.59, 134.38, 129.47, 129.18, 121.38, 35.96, 13.76, 9.47.
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Figure S150: *3C NMR spectrum of (E)-1,3,5-trimethyl-4-(phenyldiazenyl)-1H-pyrazole in DMSO-ds.
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TH NMR (400 MHz, GD})  8.39 — 8.2616, 2H), 8.00 — 7.86 (m, 2H), 2.94 (s, 3H), 2.69 (s{3H), 2.49
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Figure S151:*H NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-3,5-dimethyl)-1H-pyrazole in CD,Cl,.
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19F NMR (282 MHz, DMS@)-112.4.
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Figure S152: °F NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-3,5-dimethyl)-1H-pyrazole in DMSO-ds.

S97



13C NMR (101 MHz, DMS®)163.79, 161.34, 149.76, 134.00, 123.38, 123.30, 116.11, 115.89, 13.72, 10.01.
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Figure S153: 3C NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-3,5-dimethyl)-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS®)7.83 — 7.7410, 2H), 7.39 — 7.28 (m, 2H), 3.74 (s, 3H), 2.54 (s, 3H), 2.36 (s, 3H).
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Figure S154: *H NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-db.
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-60.74

19F NMR (282 MHz, DMS@®)-60.74.
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Figure S155: *°F NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, DMS@®)160.96, 149.72, 140.33, 139.65, 123.33, 116.20, 115.90, 35.97, 13.76, 9.46.
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Figure S156: *C NMR spectrum of (E)-4-((4-fluorophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS®)12.67 §, 1H), 9.91 (s, 1H), 7.65 — 7.56 (m, 2H), 6.92 — 6.83 (m, 2H), 2.48 — 2.34 (m, 6H).
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Figure S157: *H NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-ds.
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I3C NMR (101 MHz, DMS@)159.05, 146.14, 133.74, 123.13, 115.62, 31.07, 26.42.
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Figure S158: *3C NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-ds.
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IH NMR (300 MHz, DMS®)9.93 ¢, 1H), 7.65 — 7.58 (m, 2H), 6.90 — 6.83 (m, 2H), 3.71 (s, 3H), 2.51 (s, 4H), 2.34 (s, 3H).
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Figure $S159: *H NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-ds.
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13C NMR (75 MHz, DMS@)195.96, 159.09, 146.08, 139.92, 138.17, 134.01, 123.16, 115.63, 35.87, 13.70, 9.43.
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Figure S160: 13C NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)phenol in DMSO-db.
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IH NMR (300 MHz, CDGb 9.85 6, 1H), 7.70 (d/ = 8.8 Hz, 2H), [7.61 (d= 8.7 Hz, 2H), 2.59 (s, 6H).
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Figure S161: *H NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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I3C NMR (101 MHz, DMS®)196.50, 151.93, 141.36, 134.19, 132.27, 123.27, 122.36, 13.58, 10.07.
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Figure S162: 3C NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, CD$¢B 7.68 — 7.62161, 2H), 7.60 — 7.54 (m, 2H), 3.78 (s, 3H), 2.56 (s, 3H), 2.48 (s, 3H).
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Figure S163: *H NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, CD30)5 152.49, 142.58,139.32, 135.21, 132.18, 123.44, 123.39, 36.14, 13.95, 10.11.
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Figure S164: 3C NMR spectrum of (E)-4-((4-bromophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, CDJ 7.72 - 7.6516, 1H), 7.28 — 7.21 (m, 1H), 3.77 (s, 2H), 2.56 (5, 2H), 2.50 (s, 2H), 2.40 (s, 2H).
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Figure S165: *H NMR spectrum (E)-3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, CD3¢5 151.78, 142.42, 139.67, 138.48, 135.12, 129.64, 121.80, 36.06, 21.47, 13.88, 10.06.
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Figure S166: 3C NMR spectrum of (E)-3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS@®)7.63 @,/ = 8.4 Hz, 2H), 7.30 (d= 8.7 Hz, 2H), 3.73 (s, 3H), 2.53 (s, 3H), 2.36 (s, 6H).
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Figure S167:*H NMR spectrum of (E)-1,3,5-trimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, DMS@)151.00, 140.21, 139.25, 130.02, 129.65, 121.33, 116.32, 35.91, 20.87, 13.73, 9.44.
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Figure S168: 13C NMR spectrum of (E)-1,3,5-trimethyl-4-(p-tolyldiazenyl)-1H-pyrazole in DMSO-ds.
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IH NMR (400 MHz, DMS®)12.89 ¢, 1H), 7.89 — 7.84 (m, 2H), 7.53 — 7.48 (m, 2H), 2.50 (s, 3H), 213959, Hz, 3H).
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Figure S169: *H NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (101 MHz, DMS@®)196.27, 152.37, 138.04, 123.36, 95.84, 26.35, 10.05.
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Figure S170: 3C NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-db.
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IH NMR (300 MHz, DMS®)7.91 — 7.821, 2H), 7.56 — 7.47 (m, 2H), 3.73 (s, 3H), 2.53 (s, 3H), 2.35 (s, 3H).
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Figure S171:*H NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, DMS@)152.34, 140.52, 140.01, 138.04, 134.40, 123.36, 95.87, 35.98, 13.77, 9.48.
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Figure 172:3C NMR spectrum of (E)-4-((4-iodophenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS®)12.9 ¢, 1H), 7.9 (s, 4H), 2.5 (s, 6H).
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Figure S173:*H NMR spectrum of (E)-3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-ds.

S118



-62.3

19F NMR (282 MHz, CD3(IB -62.34.
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Figure S174:°F NMR spectrum of (E)-3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-db.
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I3C NMR (101 MHz, DMS®)155.34, 134.56, 126.40, 126.36, 121.93, 116.36.
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Figure S175: 3C NMR spectrum of (E)-3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS@®)7.87 €, J = 1.8 Hz, 4H), 3.75 (s, 3H), 2.57 (s, 3H), 2.38 (s, 3H).
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Figure S176:*H NMR spectrum of (E)-1,3,5-trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-ds.
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Figure S177:°F NMR spectrum of (E)-1,3,5-trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-ds.

-170

S122



13C NMR (75 MHz, DMS@©)155.30, 140.81, 134.75, 126.42, 121.94, 36.02, 13.79, 9.49.
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Figure S178: 3C NMR spectrum of (E)-1,3,5-trimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazole in DMSO-db.
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IH NMR (300 MHz, DMS®)12.9 ¢, 1H), 7.7 (m, 2H), 7.6 (m, 2H), 2.4 (s, 6H).

Figure S179:*H NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (101 MHz, DMS®)151.63, 134.17, 133.65, 129.42, 129.25, 123.00, 117.94, 13.73, 10.03.
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Figure S180: 3C NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS®)7.76 — 7.6910, 2H), 7.59 — 7.52 (m, 2H), 3.73 (s, 3H), 2.54 (s, 3H), 2.36 (s, 3H).

E (m) C(s)
7.55 2.36
D (m) A(s) B (s)
7.73 3.73 2.54
| |
——
7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40
f1 (ppm)
. J L I
J I I
N ™M <] N S
o~ o~ (a2} [a2] (a2}
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 45 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
f1 (ppm)

Figure S181:*H NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-1,3,5-triimethyl-1H-pyrazole in DMSO-ds.

S126



13C NMR (75 MHz, DMS®)151.57, 140.50, 139.97, 134.37, 133.66, 129.22, 122.99, 117.89, 35.96, 13.75, 9.45.
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Figure $S182:3C NMR spectrum of (E)-4-((4-chlorophenyl)diazenyl)-1,3,5-triimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (400 MHz, DMS®)13.03 ¢, 1H), 7.98 — 7.92 (m, 2H), 7.85 — 7.79 (m, 2H), 2.45 (s, 6H).
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Figure S183: 'H NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in DMSO-db.
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I3C NMR (101 MHz, DMS®)155.33, 134.76, 133.79, 133.55, 122.09, 111.10, 106.01, 13.73, 10.18.
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Figure S184: 3C NMR spectrum of (E)-4-((3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in DMSO-ds.

S129



IH NMR (300 MHz, CDB(EIS 7.86 —7.80rq, 2H), 7.76 — 7.71 (m, 2H), 3.79 (s, 3H), 2.59 (s, 3H), 2.48 (s, 3H).
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Figure S185:*H NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CDCls.
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13C NMR (75 MHz, CD{IB 155.94, 142.97, 140.45, 135.75, 133.19, 122.46, 119.04, 116.41, 112.13, 36.26, 14.13, 10.16.
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Figure S186: 3C NMR spectrum of (E)-4-((1,3,5-trimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CDCls.
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IH NMR (300 MHz, DMS®)12.73 §, 1H), 7.73 — 7.67 (m, 2H), 7.04 (de; 9.1, 2.3 Hz, 2H), 3.82 (s, 3H), 2.38 (s, GH).
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Figure S187:*H NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, DMS@®)160.37, 147.16, 133.83, 122.93, 117.88, 114.85, 114.28, 55.44, 13.69, 10.01.
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Figure S188: 3C NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (300 MHz, DMS@®)7.75 — 7.671q, 2H), 7.04 (dd[=9.1, 2.2 Hz, 2H), 3.82 (s, 3H), 3.72 (s, 3H), 2.52 (s, 3H), 2.35 (s, 3H).
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Figure S189:'H NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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13C NMR (75 MHz, DMS®)196.05, 160.41, 147.10, 140.05, 138.57, 122.95, 114.29, 55.45, 35.87, 13.69, 9.42.
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Figure $S190: 3C NMR spectrum of (E)-4-((4-methoxyphenyl)diazenyl)-1,3,5-trimethyl-1H-pyrazole in DMSO-ds.
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IH NMR (400 MHz, DMS@®)13.07 §, 1H), 8.37 — 8.32 (m, 2H), 7.91 — 7.86 (m, 2H), 2.47 (s, 6H).
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Figure S191: 'H NMR spectrum of (E)-3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-ds.
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13C NMR (101 MHz, DMS@®)156.65, 147.02, 135.05, 124.94, 122.21, 30.69.
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Figure S192: 3C NMR spectrum of (E)-3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-ds.
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IH NMR (400 MHz, DMS@®)8.36 — 8.3110, 2H), 7.91 — 7.86 (m, 2H), 3.75 (s, 3H), 2.57 (s, 3H), 2.38 (s, 3H).
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Figure S193:*H NMR spectrum of (E)-1,3,5-trimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-ds.
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I3C NMR (101 MHz, DMS®)156.60, 147.01, 141.54, 141.04, 135.22, 124.92, 122.21, 36.09, 13.86, 9.55.
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Figure S194: 3C NMR spectrum of (E)-1,3,5-trimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazole in DMSO-ds.
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TH NMR (400 MHz, GD}) 8 7.93 — 7.8716, 2H), 7.82 — 7.74 (m, 2H), 2.93 (s, 3H), 2.68 (s, 3H), 2.48 (s, 3H).
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Figure $195: 'H NMR spectrum of (E)-4-((1-acetyl-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CD,Cl,. Asterisk denotes grease.
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I3C NMR (101 MHz, GD1)§ 172.13, 155.60, 146.91, 145.07, 138.28, 133.63, 123.05, 118.93, 113.69,

30.09, 23.63, 15.43, 12.53. )
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Figure S196: 3C NMR spectrum of (E)-4-((1-acetyl-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)benzonitrile in CD,Cl,. Asterisk denotes grease.
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TH NMR (400 MHz, GD}) 8 7.87 — 7.7616, 2H), 7.06 — 6.94 (m, 2H), 3.87 (s, 3H), 2:89 (s, 3H), 2.67
(s, 3H), 2.48 (s, 3H).
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Figure S197: 'H NMR spectrum of (E)-1-(4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD,Cl,.
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I3C NMR (101 MHz, GD1) 8 172.1, 162.1, 148.0, 145.4, 144.0, 137.8, 124.2, 114.5, 56.0, 23.6, 15.3, 12.4.
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Figure $198: 3C NMR spectrum of (E)-1-(4-((4-methoxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD,Cl,.
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IH NMR (400 MHz, GD1) 8 7.91 — 7.771@, 2H), 7.63 — 7.46 (m, 2H), 2.95 (s, 3H), 2.72 (s, 3H), 2.52
(s, 3H).
B (m) D (s)
7.51 2.72
A (m) C(s)
7.83 2.95
E (s)
2.52

J JLJ

<

T S

3.04T

) E1id

T T T T T T —T1 T~ T ‘T T T * T T T T _ ‘* T T *~ T * T "~ T "~ T * T * T * T T "~ T "~ T " 1T
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 00 -05 -10 -15 -20 -25 -3.0

& (ppm)

Figure S199: *H NMR spectrum of (E)-1-(4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD,Cl,.
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I3C NMR (101 MHz, CD1) 172.14, 152.09, 145.56, 145.23, 137.94, 136.44, 129.64, 123.81, 23.61,

15.39, 12.47. T
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Figure S200: 3C NMR spectrum of (E)-1-(4-((4-chlorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD,Cl..
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IH NMR (300 MHz, qDN)B 7.80-7.73

10, 2H), 7.72 — 7.66 (m, 2H), 2.88 (s, 3H), 2.63 (s, 3H), 2.46
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Figure S201: *H NMR spectrum of (E)-1-(4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD,Cl,.
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I3C NMR (101 MHz, (iDpB 172.2,152.5, 145.6, 145.2, 132.6, 124.8, 124.1, 23.6, 15.4, 12.5.
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Figure $S202: 13C NMR spectrum of (E)-1-(4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CD,Cl,. Asterisks denote grease.
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Figure S203: 'H NMR spectrum of (E)-1-(3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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13C NMR (101 MHz, CJ%(IB 172.0, 151.5, 145.5, 144.4, 141.1, 137.8, 129.8, 122.3, 23.6, 21.6, 15.3, 12.5.
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Figure S204: 13C NMR spectrum of (E)-1-(3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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2.9 (s, 3H), 2.7 (s, 3H), 2.5 (s, 4H).
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Figure S205: 'H NMR spectrum of (E)-1-(3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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13C NMR (101 MHz, Cq@B 172.0, 153.3, 145.4, 144.9, 137.8, 130.6, 129.2, 122.3,23.6, 15.3, 12.5.
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Figure S206: 3C NMR spectrum of (E)-1-(3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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IH NMR (400 MHz, CDE6 7.9 @, 2H), 7.7 (d, 2H), 3.0, 3H), 2.7 (s, 3H), 2.5 (s, 3H).
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Figure S207: 'H NMR spectrum of (E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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-62.5

19F NMR (377 MHz, CDJ(IB -62.5.
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Figure S208: °F NMR spectrum of (E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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13C NMR (101 MHz, C]%@B 172.0, 155.2, 146.1, 145.1, 137.9, 125.5, 122.5,23.6, 15.4, 12.5.
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Figure S209: 3C NMR spectrum of (E)-1-(3,5-dimethyl-4-((4-(trifluoromethyl)phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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IH NMR (400 MHz, CD@B 78 ddt, 2H), 7.2 (d, 1H), 7.1 (m, 2H), 2.9 (s, 3H), 2.7 (s, 3H), 2.5 (s, 3H).
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Figure S210: 'H NMR spectrum of (E)-1-(4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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I9F NMR (377 MHz, CDG5 -110.2.
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Figure S211: °F NMR spectrum of (E)-1-(4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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I3C NMR (101 MHz, C]%GIB 172.0,165.4,162.9, 149.9, 145.3, 144.8, 137.6, 124.2, 124.2, 116.2, 116.0, 23.5, 15.3, 12.4.
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Figure $212: 13C NMR spectrum of (E)-1-(4-((4-fluorophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in CDCls.
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IH NMR (400 MHz, DMS®)10.2 ¢, 35H), 7.7 (d, 2H), 6.9 (d, 2H), 2.8 (s, 3H), 2.6 (s, 3H), 2.4 (s, 3H).
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Figure S213: 'H NMR spectrum of (E)-1-(4-((4-hydroxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in DMSO-ds.
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I3C NMR (101 MHz, DMS®)171.4, 160.4, 145.9, 144.0, 142.6, 136.7, 124.0, 118.1, 115.8, 23.2, 14.8, 12.0.
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Figure S214: 3C NMR spectrum of (E)-1-(4-((4-hydroxyphenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one in DMSO-d.
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