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1. General information 

α-, β- and γ-cyclodextrins (CDs) were purchased from Wacker company (Germany), and 

before use, they were recrystallized from a hot water solution (β-CD) or water/methanol solution 

(α-CD, γ-CD). Other chemicals (including compounds 1, 6, 8) were supplied by common 

commercial sources (Sigma-Aldrich, FluoroChem, etc). Compounds 2, 3, 4, 5 and 7 were 

synthesized according to the described procedures cited in the article (Scheme 1). NMR spectra 

were measured on a Bruker Avance III HD 600 spectrometer at 25 °C. Signals of tetramethylsilane 

(for 1H NMR) and chloroform (for 13C NMR) served as internal standards. All samples for NMR 

analysis were measured in deuterated water. To obtain reasonable 13C NMR spectra, solutions of 

a guest (7–15 mM) were prepared with no buffer. Each guest solution was partitioned to prepare 

complex solutions with a corresponding cyclodextrin whose concentration twice exceeded guest 

concentration for α- and γ-cyclodextrins and was equimolar solutions for β-cyclodextrin. 13C and 

13C-DEPT spectra (2000 scans) of these samples were measured together with blank solutions with 

a corresponding guest. To measure 1H and 2D NMR (COSY, HSQC, HMBS, ROESY, NOESY) 

spectra, less concentrated solutions (Cgues t≈ 2–3 mmol; CCD ≈ 3–6 mmol) were used.    

 

 

Scheme 1 Guest compounds used for complexations with cyclodextrins 
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2. NMR spectra  

 

 

Figure S1 The partial 13C DEPT spectra of 1 (15 mM) water solution in the absence of any host (blank); 

in the presence of α-CD (30 mM); β-CD (15 mM); γ-CD (30 mM) (no buffer) 
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Figure S2 The 13C DEPT spectra of 1 (15 mM) water solution (no buffer) 
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Figure S3 The 1H NMR spectra of 1 (15 mM) water solution (no buffer) 
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Figure S4 The 13C DEPT spectra of 1 (15 mM) water solution in the presence of α-CD (30 mM); (no 

buffer) 
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Figure S5 The 1H NMR spectra of 1 (15 mM) water solution in the presence of α-CD (30 mM); (no 

buffer) 
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Figure S6 The 13C DEPT spectra of 1 (15 mM) water solution in the presence of β-CD (15 mM) (no 

buffer) 
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Figure S7 The 1H NMR spectra of 1 (15 mM) water solution in the presence of β-CD (15 mM) (no 

buffer) 
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Figure S8 The 13C DEPT spectra of 1 (15 mM) water in the presence of γ-CD (30 mM) (no buffer) 
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Figure S9 The 1H NMR spectra of 1 (15 mM) water in the presence of γ-CD (30 mM) (no buffer) 
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Figure S10 The partial 13C DEPT spectra of 2 (10 mM) water solution in the absence of any host (blank); 

in the presence of α-CD (20 mM); β-CD (10 mM); γ-CD (20 mM) (no buffer). 
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Figure S11 The 13C DEPT spectra of 2 (10 mM) water solution (no buffer). 
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Figure S12 The 1H NMR spectra of 2 (10 mM) water solution (no buffer). 
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Figure S13 The 13C DEPT spectra of 2 (10 mM) water solution in the presence of α-CD (20 mM) (no 

buffer). 
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Figure S14 The 1H NMR spectra of 2 (10 mM) water solution in the presence of α-CD (20 mM) (no 

buffer). 
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Figure S15 The 13C NMR spectra of 2 (10 mM) water solution in the presence of β-CD (10 mM) (no 

buffer). 
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Figure S16 The 1H NMR spectra of 2 (10 mM) water solution in the presence of β-CD (10 mM) (no 

buffer). 
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Figure S17 The 13C DEPT spectra of 2 (10 mM) water solution in the presence of γ-CD (20 mM) (no 

buffer). 
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Figure S18 The 1H NMR spectra of 2 (10 mM) water solution in the presence of γ-CD (20 mM) (no 

buffer). 
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Figure S19 The partial 13C DEPT spectra of 3 (15 mM) water solution in the absence of any host (blank); 

in the presence of α-CD (30 mM); β-CD (15 mM); γ-CD (30 mM) (no buffer) 
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Figure S20 The 13C DEPT spectra of 3 (15 mM) water solution (no buffer) 
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Figure S21 The 1H NMR spectra of 3 (15 mM) water solution (no buffer) 
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Figure S22 The 13C DEPT spectra of 3 (15 mM) water solution in the presence of α-CD (30 mM) (no 

buffer) 
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Figure S23 The 1H NMR spectra of 3 (15 mM) water solution in the presence of α-CD (30 mM) (no 

buffer) 
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Figure S24 The 13C DEPT spectra of 3 (15 mM) water solution in the presence of β-CD (15 mM) (no 

buffer) 
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Figure S25 The 1H NMR spectra of 3 (15 mM) water solution in the presence of β-CD (15 mM) (no 

buffer) 
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Figure S26 The 13C DEPT spectra of 3 (15 mM) water solution in the presence of γ-CD (30 mM) (no 

buffer) 
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Figure S27 The 1H NMR spectra of 3 (15 mM) water solution in the presence of γ-CD (30 mM) (no 

buffer) 
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Figure S28 The partial 13C NMR spectra of 4 (6 mM) water solution in the absence of any host (blank); 

in the presence of α-CD (12 mM); β-CD (6 mM); γ-CD (12 mM) (no buffer) 
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Figure S29 The 13C NMR spectra of 4 (6 mM) water solution (no buffer). 
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Figure S30 The 1H NMR spectra of 4 (6 mM) water solution (no buffer). 
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Figure S31 The 13C NMR spectra of 4 (6 mM) water solution in the presence of α-CD (12 mmol) (no 

buffer). 
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Figure S32 The 1H NMR spectra of 4 (6 mM) water solution in the presence of α-CD (12 mmol) (no 

buffer). 
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Figure S33 The 13C NMR spectra of 4 (6 mM) water solution in the presence of β-CD (6 mmol) (no 

buffer). 
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Figure S34 The 13C NMR spectra of 4 (6 mM) water solution in the presence of γ-CD (12 mmol) (no 

buffer). 
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Figure S35 The 13C NMR spectra of 4 (6 mM) water solution in the presence of γ-CD (12 mmol) (no 

buffer). 
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Figure S36 The 1H NMR spectra of 4 (6 mM) water solution in the presence of γ-CD (12 mmol) (no 

buffer). 
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Figure S37 The partial 13C NMR spectra of 5 (5 mM) water solution in the presence of α-CD (10 mM); 

β-CD (5 mM); γ-CD (10 mM) (no buffer) 
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Figure S38 The 13C DEPT spectra of 5 (5 mM) water solution in the presence of α-CD (10 mM) (no 

buffer) 
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Figure S39 The 1H NMR spectra of 5 (5 mM) water solution in the presence of α-CD (10 mM) (no 

buffer) 
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Figure S40 The 13C DEPT spectra of 5 (5 mM) water solution in the presence of β-CD (5 mM) (no 

buffer). 
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Figure S41 The 1H NMR spectra of 5 (5 mM) water solution in the presence of β-CD (5 mM) (no buffer). 
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Figure S42 The 13C DEPT spectra of 5 (5 mM) water solution in the presence of γ-CD (10 mM) (no 

buffer). 
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Figure S43 The 1H NMR spectra of 5 (5 mM) water solution in the presence of γ-CD (10 mM) (no 

buffer). 
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Figure S44 The partial 13C DEPT spectra of 6 (14 mM) water solution in the absence of any host (blank); 

in the presence of α-CD (28 mM); β-CD (14 mM); γ-CD (28 mM) (no buffer) 
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Figure S45 The 13C DEPT spectra of 6 (14 mM) water solution (no buffer). 
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Figure S46 The 1H NMR spectra of 6 (14 mM) water solution (no buffer). 
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Figure S47 The 13C DEPT spectra of 6 (14 mM) water solution in the presence of α-CD (28 mM) (no 

buffer). 
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Figure S48 The 1H NMR spectra of 6 (14 mM) water solution in the presence of α-CD (28 mM) (no 

buffer). 
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Figure S49 The 13C DEPT spectra of 6 (14 mM) water solution in the presence of β-CD (14 mM) (no 

buffer). 
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Figure S50 The 1H NMR spectra of 6 (14 mM) water solution in the presence of β-CD (14 mM) (no 

buffer). 
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Figure S51 The 13C DEPT spectra of 6 (14 mM) water solution in the presence of γ-CD (28 mM) (no 

buffer). 
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Figure S52 The 13C NMR spectra of 6 (14 mM) water solution in the presence of γ-CD (28 mM) (no 

buffer). 
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Figure S53 The partial 13C DEPT spectra of 7 (10 mM) water solution in the presence of α-CD (20 mM); 

β-CD (10 mM); γ-CD (20 mM) (no buffer). 
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Figure S54 The 13C DEPT spectra of 7 (10 mM) water solution in the presence of α-CD (20 mM) (no 

buffer). 
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Figure S55 The 1H NMR spectra of 7 (10 mM) water solution in the presence of α-CD (20 mM) (no 

buffer). 
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Figure S56 The 13C DEPT spectra of 7 (10 mM) water solution in the presence of β-CD (10 mM) (no 

buffer). 
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Figure S57 The 1H NMR spectra of 7 (10 mM) water solution in the presence of β-CD (20 mM) (no 

buffer). 
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Figure S58 The 13C DEPT spectra of 7 (10 mM) water solution in the presence of γ-CD (20 mM) (no 

buffer). 
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Figure S59 The 1H NMR spectra of 7 (10 mM) water solution in the presence of γ-CD (20 mM) (no 

buffer). 
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Figure S60 The partial 13C NMR spectra of 8 (10 mM) water solution in the absence of any host (blank); 

in the presence of α-CD (20 mM); β-CD (10 mM); γ-CD (20 mM) (no buffer). 
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Figure S61 The 13C NMR spectra of 8 (10 mM) water solution (no buffer). 
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Figure S62 The 1H NMR spectra of 8 (10 mM) water solution (no buffer). 
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Figure S63 The 13C NMR spectra of 8 (10 mM) in the presence of α-CD (20 mM) water solution (no 

buffer). 
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Figure S64 The 13C NMR spectra of 8 (10 mM) in the presence of α-CD (20 mM) water solution (no 

buffer). 
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Figure S65 The 13C NMR spectra of 8 (10 mM) in the presence of β-CD (10 mM) water solution (no 

buffer). 
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Figure S66 The 1H NMR spectra of 8 (10 mM) in the presence of β-CD (10 mM) water solution (no 

buffer). 
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Figure S67 The 13C NMR spectra of 8 (10 mM) in the presence of γ-CD (20 mM) water solution (no 

buffer). 
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Figure S68 The 1H NMR spectra of 8 (10 mM) in the presence of γ-CD (20 mM) water solution (no 

buffer). 
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Figure S69 The partial 13C NMR titration of 16 mM water solution of 1 with α-cyclodextrin (no buffer) 
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3. NMR study 

 

 

 

Figure S70 2D ROESY spectra (200 ms mixing) of 16 mM water solution α-cyclodextrin (host) with 

16mg of 2-aminoadamantane (guest), no buffer. The highlighted crosspeak indicate deep penetration of 

the guest into the cavity. 
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4. Computational study 

 

The initial structure of alpha-CD was obtained from the crystal structure 4FEM [1] and 

parametrized using the CHARMM force field [2]. Initial structures of compounds 1-8 were created 

using the Molefacture tool from the VMD software package [3] and force constants were generated 

using the ParamChem web server [4].  

 

Molecular dynamics simulations of TIP3P water-enveloped host-guest complexes were performed 

using the NAMD software package [5,6]. The solvated complexes were energy minimized for 

2000 steps. Newton’s equations of motion were integrated using the Verlet algorithm with a step 

of 2 fs. The simulated systems were heated up to 280 K and properly equilibrated. Then production 

MD simulations (10 × 100ns for each compound) were run at 280 K. The temperature was 

controlled by a Langevin thermostat with a damping coefficient of 5/ps. The Langevin piston 

method was applied with an oscillation period of 100 fs, decay – damping time scale of 50 fs was 

used to maintain a constant pressure of 1 atm. Short-range van der Waals interactions were 

calculated using a switching function of 10.0 Å, with a cutoff of 12.0 Å. Long-range electrostatic 

interactions were calculated using the Particle Mesh Ewald method with a cut-off of 12.0 Å.  

 

The spatial 3D densities of prochiral atom occurrences were determined using the CPPTRAJ 

software package [7]. The software packages VMD [MD3] and UCSF Chimera [8] were used to 

visualize the simulated systems and spatial 3D densities. 
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Figure S71 MD1  Molecular model of the host (α-CD) - guest (compound 1) complex. The 3D 

densities show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S72 MD2  Molecular model of the host (α-CD) - guest (compound 2) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S73 MD3  Molecular model of the host (α-CD) - guest (compound 3) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S 74 MD4  Molecular model of the host (α-CD) - guest (compound 4) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations. 
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Figure S75 MD5  Molecular model of the host (β-CD) - guest (compound 4) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S76 MD6  Molecular model of the host (γ -CD) - guest (compound 4) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S77 MD7  Molecular model of the host (α-CD) - guest (compound 5) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S78 MD8  Molecular model of the host (α-CD) - guest (compound 6) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S79 MD9  Molecular model of the host (α-CD) - guest (compound 7) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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Figure S80 MD10  Molecular model of the host (α-CD) - guest (compound 8) complex. The 3D densities 

show the spatial distribution of prochiral atoms within MD simulations.  
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5. Crystallographic data collection and refinement details 

 

The x-ray experiment was carried on diffractometer Bruker D8 VENTURE Kappa Duo 

PHOTONIII by IμS  micro-focus sealed tube  Cu Kα (λ= 1.54178 Å) at a temperature of 150(2) 

K. The structure was solved by direct methods (XT [9]) and refined by full matrix least squares 

based on F2 (SHELXL2019 [10]). The hydrogen atoms on carbon were fixed into idealized 

positions (riding model) and assigned temperature factors Hiso(H) = 1.2 Ueq(pivot atom). Some 

hydrogen atom in -OH moieties were found on difference Fourier map and were included in the 

refinement to partially elucinate the formation of the dimer. The absolute structure of the crystal 

was assigned, based on known chirality of cyclodextrine moiety. 

The structure determination was severely affected by vast disorders. The several -CH2-OH 

moieties on outer rings of dimer are disordered as well as surrounding pool of water molecules. 

The contribution of all water molecules (except one)  was removed from diffraction pattern using 

Squeeze procerure of Platon40 softvare.  The electron density inside of cavity of the dimer is 

witnessing the presense of noradamentane molecule, however due its disorder the restrictions on 

its geometry and displacement parameters have to be applied during refinement.   

 

 

Crystal data for rh_no7: C36H56O30·C36H54O30·C10H17N·O, Mr = 2102.84; Orthorhombic , P 21 21 

21, (No 19), a = 13.9590 (4)   Å, b = 24.5261 (7)   Å, c = 30.9239 (9)  Å ,V = 10587.1 (5) Å3, Z = 

4,  Dx = 1.319    Mg m-3,  Needle, colourless of dimensions 0.50 × 0.07 × 0.03   mm, multi-scan 

absorption correction (µ =  0.99 mm-1) Tmin  = 0.661, Tmax = 0.752; a total of  131882 measured  

reflections (θmax = 67˚), from which 18708 were unique (Rint = 0.084) and 15958 observed 

according to the I > 2σ(I) criterion. The refinement converged (Δ/σmax= 0.001) to R = 0.071 for 

observed reflections and  wR(F2) = 0.188, GOF = 1.02 for 1244 parameters and all 18708 

reflections. The final difference map displayed peaks  (Δρmax = 0.74, Δρmin -1.01 e.Å-3). Absolute 

structure parameter: 0.29 (6) (4) [11]. 

 

X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data 

Centre (CCDC) under deposition number 2302954  for rh_no7  and can be obtained free of 

charge from the Centre via its website (https://www.ccdc.cam.ac.uk/structures/). 
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Figure S81 View on the dimer of alfa-cyclodextrin with the guest molecule noradamantane-3-methylene 

amine, the displacement ellipsoid are drawn on 30% probability level. 
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Figure S82 View on one alfa-cyclodextrin ring with the atom numbering schema. 
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Figure S83 View on the second alfa-cyclodextrin ring with the atom numbering schema. 
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Figure S84 View on one orientation on noradamantane  molecule with atom numbering schema. 
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