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1. Experimental section

1.1. General methods

H NMR, *C NMR, *F NMR and 2D-NMR spectra were performed on Bruker ASCEND
400 (400 MHz) spectrometer. Chemical shifts of *H NMR were expressed in parts per
million downfield from TMS as an internal standard (6 = 0) in CDCl;. Chemical shifts of *C
NMR were expressed in parts per million downfield and upfield from CDCI; as an internal
standard (6 = 77.0). Chemical shifts of °F NMR were expressed in parts per million upfield
from CFCl; as an internal standard (6 = 0) in CDCls. High-resolution mass spectra were
recorded by electron spray (MS-ESI) technique using QToF Impact HD Bruker
spectrometer. Reagent grade chemicals were used and solvents were dried by refluxing
with sodium metal-benzophenone (THF) and distilled under an argon atmosphere. All
moisture sensitive reactions were carried out under an argon atmosphere using oven-dried
glassware. Reaction temperatures below 0 °C were obtained using a bath cooling (dry
ice/iso-propanol). Thin-layer chromatography (TLC) was performed on Merck Kieselgel 60-
F2s4 with EtOAc/hexane as developing systems. Visualization of the reactions products was
achieved using UV light (254 nm) and a standard procedure (solution of potassium
permanganate). Merck Kieselgel 60 (230-400 mesh) was used for column
chromatography.

1.2. Experimental procedures and compounds characterization

1.2.1. Tri- and tetrafluorinated amides — starting materials

Starting compounds la—d and 2a—d for the preparation of designed products were prepared

acc

ording to the synthetic pathway described earlier in our laboratory.!

1.2.2. General procedure for the synthesis of a,B- and a-fluorinated
unsaturated amides with n-BulLi
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To the mixture of corresponding amide in dry THF placed in a round-bottom flask and cooled
to -78°C, n-BuLi (4 equiv, 2 M in cyclohexane) was added dropwise under an argon
atmosphere. The solution was stirred at the =78 °C for 3 h. Next, the cooling bath was removed
and the reaction mixture was left overnight at room temperature with stirring. Following this,
the reaction mixture was carefully quenched by dropwise addition of saturated NH.Cl aq. (10
mL), and then extracted with AcOEt (3 x 15 mL). The combined organic phases were dried
(Na,S0O.), the volatiles were removed using a rotary evaporator and the residue was subjected
to careful column chromatography (hexane - 2% EtOAc/hexane) to yield the desired products.

(2)-2,3-Difluoro-N-heptylhept-2-enamide (9a)

The pure product was isolated as a white solid in 68% yield (45 mg). *H NMR (400 MHz, CDCls)
0 6.22 (bs, 1H, NH), 3.32 (dt, J = 7.4, 6.1 Hz, 2H, NHCH), 2.87 (dtd, J = 26.8, 7.6, 2.8 Hz, 2H,
CH.CF), 1.62-1.52 (m, 2H, CH,), 1.40 (dt, J = 15.0, 7.4 Hz, 2H, CH3CH,CHy), 1.35-1.25 (m,
10H, 5XCH,), 0.93 (t, J = 7.4 Hz, 3H, CHz3), 0.87 (t, J = 6.6 Hz, 3H, CHs); *C NMR (101 MHz,
CDCls) 6 160.09 (dd, J = 24.2, 7.7 Hz, CO), 157.03 (dd, J = 268.2, 11.8 Hz, CF), 139.05 (dd,
J = 254.3, 18.4 Hz, CFCO), 39.21 (NHCH.), 31.71, 29.47, 28.91, 27.98 (d, J = 2.9 Hz,
CH,CH,CF), 27.77 (dd, J = 19.8, 1.9 Hz, CH.CF), 26.85, 22.57, 22.13, 14.04, 13.73; *F NMR
(376 MHz, CDCl3) 6-112.58 (t, J = 26.9 Hz, 1F, F), -154.18 + -158.21 (m, 1F, F); **F{/*H} NMR
(376 MHz, CDCl3) 6 -112.58 (d, J = 2.0 Hz, 1F, F), -156.57 (d, J = 2.0 Hz, 1F, F); HRMS (ESI)
m/z: calcd. for CisHxsF2NO* 262.1982 [M+H]*; found 262.1974, calcd. for Ci4H2sF2NONa*
284.1801 [M+Na]*; found 284.1792, calcd. for CisH.sF.NOK* 300.1541 [M+K]*; found
300.2693.

3-Butyl-2-fluoro-N-heptylhept-2-enamide (10a)

The pure product was isolated as a colorless oil in 13% yield (10 mg). *H NMR (400 MHz,
CDCIls) 6 6.20 (bs, 1H, NH), 3.29 (g, J = 6.7 Hz, 2H, NHCH,), 2.69-2.53 (m, 2H, CH,), 2.17 (td,
J =17.7,3.6 Hz, 2H, CH,), 1.62-1.49 (m, 2H, CH,), 1.49-1.37 (m, 4H, 2xCH,), 1.37-1.22 (m,
12H, 6xCH,), 0.97-0.82 (m, 9H, 3xCHs); **C NMR (101 MHz, CDCls) § 161.12 (d, J = 31.9 Hz,
CO), 140.05 (d, J = 249.4 Hz, CF), 133.95 (dd, J = 11.3 Hz, C=CF), 38.98 (NHCH,), 31.74,
30.71 (d, J = 2.8 Hz), 29.79 (d, J = 1.8 Hz), 29.65 (d, J = 9.0 Hz), 29.55, 29.11 (d, J = 3.2 Hz),
28.96, 26.93, 22.91, 22.71, 22.59, 14.06, 13.99, 13.89; **F NMR (376 MHz, CDCls) 6 -130.19
(d, J = 4.4 Hz, 1F, F); **F{/*H} NMR (376 MHz, CDCls) & -130.19 (s, 1F, F); HRMS (ESI) m/z:
calcd. for C1gH3sFNO* 300.2702 [M+H]*; found 300.2693, calcd. for C1sH3sFNONa* 322.2522
[M+Na]*; found 322.2511.
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(2)-N-Benzyl-2,3-difluorohept-2-enamide (9b)

The pure product was isolated as a white solid in 59% yield (39 mg). *H NMR (400 MHz, CDCls)
0 7.43-7.17 (m, 5H, Ph), 6.54 (bs, 1H, NH), 4.51 (d, J = 5.8 Hz, 2H, NHCH,), 2.89 (dtd, J =
26.7, 7.5, 2.8 Hz, 2H, CH.CF), 1.65-1.56 (m, 2H, CH,), 1.40 (h, J = 7.3 Hz, 2H, CH3CH,CH,),
0.94 (t, J = 7.4 Hz, 3H, CHs); *C NMR (101 MHz, CDCIls) 6 160.10 (dd, J = 24.4, 7.9 Hz, CO),
157.45 (dd, J = 269.1, 11.7 Hz, CF), 138.94 (dd, J = 254.1, 18.6 Hz, CFCO), 137.42, 128.85,
127.86, 127.81, 43.18 (NHCH,), 27.97 (d, J = 2.8 Hz, CH,CH,CF), 27.82 (dd, J = 19.8, 2.0 Hz,
CH,CF), 22.15, 13.75; **F NMR (376 MHz, CDCl;) -111.40 (t, J = 26.7 Hz, 1F, F), -155.74 + -
157-79 (m, 1F, F); **F{/*H} NMR (376 MHz, CDCl5) -111.40 (d, J = 2.0 Hz, 1F, F), -156.69 (d,
J=19Hz, 1F, F); HRMS (ESI) m/z: calcd. for C,4H1sF2NO* 254.1356 [M+H]*; found 254.1353;
calcd. for Ci4Hi7F:NONa* 276.1175 [M+Na]*; found 276.1172; calcd. for Ci4H:7F2NOK*
292.0915 [M+K]*; found 292.2072.

N-Benzyl-3-butyl-2-fluorohept-2-enamide (10b)

The pure product was isolated as a colorless oil in 15% yield (11 mg). *H NMR (400 MHz,
CDCl3) 6 7.39-7.24 (m, 5H, Ph), 6.51 (bs, 1H, NH), 4.50 (d, J = 5.7 Hz, 2H, NHCH), 2.69-2.60
(m, 2H, CH2), 2.18 (td, J = 7.8, 3.6 Hz, 2H, CH.), 1.52-1.24 (m, 8H, 4xCH>), 0.92 (t, J = 7.1 Hz,
3H, CHs), 0.90 (t, J = 7.1 Hz, 3H, CHs); **C NMR (101 MHz, CDCl3) 6 161.03 (d, J = 32.3 Hz,
CO), 145.86 (d, J = 248.9 Hz, CFCO), 137.97, 134.79 (d, J = 11.2 Hz, C=CF), 128.75, 127.87,
127.59, 43.00 (NHCH,), 30.71 (d, J = 2.9 Hz), 29.78 (d, J = 2.0 Hz), 29.70 (d, J = 8.9 Hz),
29.15 (d, J = 3.2 Hz), 22.92, 22.71, 14.01, 13.89; *°*F NMR (376 MHz, CDCl3) & -130.36 (d, J
= 4.5 Hz, 1F, F); %F{/*H} NMR (376 MHz, CDCls) & -130.36 (s, 1F, F); HRMS (ESI) m/z:
calcd. for C1gH27FNO* 292.2076 [M+H]*; found 292.2072; calcd. for C,sH2,sFNONa* 314.1896
[M+Na]*; found 314.1892; calcd. for C15H26FNOK™* 330.1635 [M+K]*; found 330.0564.

(R,2)-2,3-Difluoro-N-(1-phenylethyl)hept-2-enamide (9c)
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The pure product was isolated as a colorless oil in 61% yield (30 mg). *H NMR (400 MHz,
CDCl3) 6 7.42-7.20 (m, 5H, Ph), 6.44 (bs, 1H, NH), 5.17 (p, J = 6.8 Hz, 1H, NHCH), 3.05-2.67
(m, 2H, CH,CF), 1.59 (dd, 2H, J = 8.9, 6.0 Hz, CH), 1.54 (d, J = 6.9 Hz, 3H, CHsCH), 1.38 (h,
J=7.3Hz, 2H, CH,), 0.92 (t, J = 7.3 Hz, 3H, CHs); 3*C NMR (101 MHz, CDCls) & 159.30 (dd,
J=24.4,7.8Hz, CO), 157.34 (dd, J = 268.9, 11.7 Hz, CF), 142.55, 138.92 (dd, J = 254.1, 18.3
Hz, CFCO), 128.82, 127.64, 126.13, 48.70 (NHCH), 27.94 (d, J = 2.8 Hz), 27.80 (dd, J = 19.8,
2.1 Hz), 22.15, 21.87, 13.75; *°*F NMR (376 MHz, CDCl5) -112.13 (t, J = 26.5 Hz, 1F, F), -
155.99 + -159.11 (m, 1F, F); **F{/*H} NMR (376 MHz, CDCls) -112.13 (d, J = 2.0 Hz, 1F, F), -
156.97 (d, J =2.0 Hz, 1F, F); HRMS (ESI) m/z: calcd. for C15H20F2NO* 268.1512 [M+H]*; found
268.1503; calcd. for CisHigFoNONa®™ 290.1332 [M+Na]*; found 290.1323; calcd. for
CisH19F2NOK* 306.1071 [M+K]*; found 306.1060.

ZI

(R)-3-Butyl-2-fluoro-N-(1-phenylethyl)hept-2-enamide (10c)

The pure product was isolated as a colorless oil in 14% yield (8 mg). *H NMR (400 MHz, CDCls)
0 7.38-7.24 (m, 5H, Ph), 6.43 (bs, 1H, NH), 5.25-5.06 (m, 1H, NHCH), 2.72-2.50 (m, 2H,
CH.CF), 2.17 (td, J = 7.8, 3.5 Hz, 2H, CH,), 1.56 (s, 2H, CH,), 1.52 (d, J = 6.9 Hz, 3H, CH3CH),
1.49-1.26 (m, 6H, 3xCH>), 0.91 (t, J = 7.2 Hz, 3H, CHs), 0.90 (t, J = 7.1 Hz, 3H, CHa); **C NMR
(101 MHz, CDCIls3) 6 160.23 (d, J = 32.0 Hz, CO), 145.88 (d, J = 248.6 Hz, CFCO), 143.07,
134.54 (d, J = 11.1 Hz, C=CF), 128.72, 127.41, 126.18, 48.25 (NHCH), 30.65 (d, J = 2.4 Hz),
29.79, 29.68 (d, J = 8.9 Hz), 29.10 (d, J = 3.1 Hz), 22.90, 22.73, 22.00, 14.00, 13.89; *°F NMR
(376 MHz, CDCl3) & -130.56 (d, J = 4.2 Hz, 1F, F); **F{/*H} NMR (376 MHz, CDCl;) & -130.56
(s, 1F, F); HRMS (ESI) m/z: calcd. for C19H2sFNO* 306.2233 [M+H]*; found 306.2222; calcd.
for CigH2sFNONa*® 328.2052 [M+Na]*; found 328.2042; calcd. for Ci9H2sFNOK* 344.1792
[M+K]*; found 344.1781.

(2)-2,3-Difluoro-N-(prop-2-yn-1-yl)hept-2-enamide (9d)

The pure product was isolated as a colorless oil in 48% yield (34 mg). *H NMR (400 MHz,
CDCls;) 6 6.40 (bs, 1H, NH), 4.13 (dd, J = 5.2, 2.6 Hz, 1H, NHCH,), 2.86 (dtd, J = 26.7, 7.6, 2.9
Hz, 2H, CH,CF), 2.28 (t, J = 2.6 Hz, 1H, CCH), 1.65-1.53 (m, 2H, CHy), 1.46-1.34 (m, 2H,
CHy), 1.39 (h, J = 7.3 Hz, 2H, CH), 0.93 (t, J = 7.3 Hz, 3H, CH3); *C NMR (101 MHz, CDCl5)
6 159.89 (dd, J =25.1, 8.1 Hz, CO), 157.77 (dd, J =270.1, 11.4 Hz, CF), 138.65 (dd, J = 253.6,
18.9 Hz, CFCO), 78.65 (CCH), 72.12 (CCH), 28.89 (NHCHy), 27.92 (d, J = 3.0 Hz), 27.77 (dd,
J =19.6, 2.1 Hz), 22.11, 13.72; **F NMR (376 MHz, CDCl5) -110.27 (t, J = 26.7 Hz, 1F, F), -
156.54 + -158.97 (m, 1F, F); **F{/*H} NMR (376 MHz, CDCls) -110.27 (d, J = 2.1 Hz, 1F, F), -
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157.29 (d, J = 2.0 Hz, 1F, F); HRMS (ESI) m/z: calcd. for C10H14F2NO* 202.1043 [M+H]*; found
202.1046.

3-Butyl-2-fluoro-N-(prop-2-yn-1-yl)hept-2-enamide (10d)

The product was obtained in trace amounts.
F NMR (376 MHz, CDCls) 6 -130.97 (d, J = 4.1 Hz, 1F, F).

1.2.3. General procedure for the synthesis of p-fluorinated and
nonfluorinated unsaturated amides with n-BulL.i

To the mixture of corresponding amide in dry THF placed in a round-bottom flask and cooled
to =78 °C, n-BuLi (4 equiv, 2 M in cyclohexane) was added dropwise under an argon
atmosphere. The solution was stirred at the =78 °C for 3 h. Next, the cooling bath was removed
and the reaction mixture was left overnight at room temperature with stirring. Following this,
the reaction mixture was carefully quenched by dropwise addition of saturated NH,CI aqg (10
mL), and then extracted with AcOEt (3 x 15 mL). The combined organic phases were dried
(Na2S0.), the volatiles were removed using a rotary evaporator and the residue was subjected
to careful column chromatography (hexane - 10% EtOAc/hexane) to yield the desired products.

(E)-3-Fluoro-N-heptylhept-2-enamide (11a)

The pure product was isolated as a pale yellow oil in 21% yield (27 mg). *H NMR (400 MHz,
CDCls) 65.42 (d, 1H, J = 20.6 Hz, H,), 5.33 (bs, 1H, NH), 3.27 (dt, J = 7.3, 5.9 Hz, 2H, NHCH)),
2.86 (dt, J = 26.1, 7.6 Hz, 2H, CH.CF), 1.63-1.47 (m, 2H, CHy), 1.39 (h, J = 7.4 Hz, 2H,
CH3CH,CH,), 1.35-1.21 (m, 10H, 5xCH,), 0.92 (t, J = 7.3 Hz, 3H, CHs), 0.87 (t, J = 6.6 Hz, 3H,
CHs); *C NMR (101 MHz, CDCl5) & 174.40 (d, J = 269.9 Hz, CF), 164.94 (d, J = 22.5 Hz, CO),
102.30 (d, J = 25.4 Hz, CH,), 39.49 (NHCH,), 31.75, 29.65, 29.17 (d, J = 22.9 Hz, CH,CF),
28.96, 28.18, 26.92, 22.58, 22.28, 14.06, 13.79; °F NMR (376 MHz, CDCls) 6 -82.12 (dt, J =
26.1, 20.6 Hz, 1F, F); **F{/*H} NMR (376 MHz, CDCls) & -82.12 (s, 1F, F);: HRMS (ESI) m/z:
calcd. for C14H.7FNO* 244.2076 [M+H]*; found 244.2072, calcd. for C14H2sFNONa* 266.1896
[M+Na]*; found 266.1892, calcd. for C14H26FNOK* 282.1635 [M+K]*; found 282.1627.
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N-Heptylhept-2-ynamide (12a)

The pure product was isolated as a pale yellow oil in 54% yield (57 mg). *"H NMR (400 MHz,
CDCl3) 6 5.96 (bs, 1H, NH), 3.27 (td, J = 7.3, 6.0 Hz, 2H, NHCH,), 2.29 (t, J = 7.1 Hz, 2H,
CH.C), 1.58-1.46 (m, 4H, 2xCH,), 1.45-1.37 (m, 2H, CH,), 1.35-1.25 (m, 8H, 4xCHy), 0.91 (t,
J =7.3 Hz, 3H, CHs), 0.88 (t, J = 7.3 Hz, 3H, CHs); **C NMR (101 MHz, CDCl3) 6 153.62 (CO),
87.02 (CspCsp), 75.63 (CspCsp), 39.82 (NHCHy), 31.70, 29.79, 29.32, 28.90, 26.81, 22.55, 21.93,
18.25, 14.02, 13.47; HRMS (ESI) m/z: calcd. for C14H26NO* 224.2014 [M+H]*; found 224.2010;
calcd. for C14H2sNONa* 246.1833 [M+Na]*; found 246.1828.

I H\/@
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(E)-N-Benzyl-3-fluorohept-2-enamide (11b)

The pure product was isolated as a colorless oil in 28% yield (19 mg). *H NMR (400 MHz,
CDCls) 6 7.38-7.23 (m, 5H, Ph), 5.69 (bs, 1H, NH), 5.46 (d, J = 20.4 Hz, 1H, H,), 4.46 (d, J =
5.7 Hz, 1H, NHCH,), 2.95-2.81 (m, 2H, CH.CF), 1.64-1.52 (m, 2H, CH,), 1.46-1.34 (m, 2H,
CHy), 0.93 (t, J = 7.4 Hz, 3H, CHj3); ®*C NMR (101 MHz, CDCl;) 5 174.91 (d, J = 271.0 Hz, CF),
164.86 (d, J = 22.9 Hz, CO), 138.08, 128.72, 127.80, 127.56, 102.04 (d, J = 26.0 Hz, CH,),
43.49 (NHCH,), 29.22 (d, J = 22.4 Hz, CH,CF), 28.12, 22.24, 13.76; F NMR (376 MHz,
CDCls) -80.81 (td, J = 25.8, 20.2 Hz, 1F, F); **F{/*H} NMR (376 MHz, CDCls) -80.82 (s, 1F, F);
HRMS (ESI) m/z: calcd. for CisHigFNO* 236.1450 [M+H]*; found 236.1439; calcd. for
C14H1sFNONa* 258.1270 [M+Na]*; found 258.1260.

ANHV@

o]
N-Benzylhept-2-ynamide (12b)

The pure product was isolated as a colorless oil in 60% yield (38 mg). *H NMR (400 MHz,
CDCls) 6 7.39-7.25 (m, 5H, Ph), 6.01 (bs, 1H, NH), 4.47 (d, J = 5.8 Hz, 1H, NHCH,), 2.29 (t, J
= 7.0 Hz, 2H, CH,C), 1.59-1.47 (m, 2H, CH,), 1.46-1.34 (m, 2H, CH,), 0.91 (t, J = 7.3 Hz, 3H,
CHs); **C NMR (101 MHz, CDCls) & 153.45 (CO), 137.45, 128.80, 127.94, 127.75, 87.94
(CspCsp), 75.37 (CspCsp), 43.85 (NHCHy,), 29.76, 21.96, 18.30, 13.50; HRMS (ESI) m/z: calcd.
for C14H1sNO* 216.1388 [M+H]*; found 216.1375; calcd. for C14H:7NONa* 238.1207 [M+Na]*;
found 238.1196.
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(R,E)-3-Fluoro-N-(1-phenylethyl)hept-2-enamide (11c)

The pure product was isolated as a colorless oil in 26% yield (16 mg). *"H NMR (400 MHz,
CDCl3) 6 7.39-7.22 (m, 5H, Ph), 5.59 (d, J = 8.1 Hz, 1H, NH), 5.43 (d, J = 20.5 Hz, 1H, H,),
5.15 (p, J = 7.1 Hz, 1H, NHCH), 2.96-2.74 (m, 2H, CH,CF), 1.62-1.51 (m, 2H, CH,), 1.50 (d, J
= 6.9 Hz, 3H, CH;CH), 1.43-1.32 (m, 2H, CH), 0.91 (t, J = 7.3 Hz, 3H, CHs); "*C NMR (101
MHz, CDCls) 6 174.77 (d, J = 270.7 Hz, CF), 164.10 (d, J = 22.7 Hz, CO), 143.13, 128.73,
127.43, 126.15, 102.24 (d, J = 25.8 Hz, CH,), 48.73 (NHCH), 29.22 (d, J = 22.6 Hz, CH,CF),
28.13, 22.28, 21.84, 13.79; °F NMR (376 MHz, CDCls) -80.69 (td, J = 25.9, 20.3 Hz, 1F, F);
YF{/"H} NMR (376 MHz, CDCls) -80.69 (s, 1F, F); HRMS (ESI) m/z: calcd. for CisH2;FNO*
250.1607 [M+H]*; found 250.1593; calcd. for CisHoFNONa* 272.1426 [M+Na]*; found
272.1416.

/\/\(H

o
(R)-N-(1-Phenylethyl)hept-2-ynamide (12c)

The pure product was isolated as a colorless oil in 64% yield (36 mg). *H NMR (400 MHz,
CDCls) 6 7.37-7.25 (m, 5H, Ph), 5.98 (bs, 1H, NH), 5.22-5.09 (m, 1H, NHCH), 2.28 (t, J=7.1
Hz, 2H, CH,C), 1.59-1.47 (m, 2H, CH,), 1.51 (d, J = 6.8 Hz, 3H, CHsCH), 1.49-1.33 (m, 2H,
CHy), 0.91 (t, J = 7.3 Hz, 3H, CH3); **C NMR (101 MHz, CDCls) 6 152.67 (CO), 142.41, 128.75,
127.59, 126.26, 87.51 (CspCsp), 75.58 (CspCsp), 49.14 (NHCH), 29.77, 21.98, 21.49, 18.30,
13.51; HRMS (ESI) m/z: calcd. for C1sH2oNO* 230.1544 [M+H]*; found 230.1529; calcd. for
CisH1sNONa*® 252.1364 [M+Na]*; found 252.1351 calcd. for CisHigNOK* 268.1103 [M+K]*;
found 268.1082.

H
F/H/

(o)

(E)-3-Fluoro-N-(prop-2-yn-1-yl)hept-2-enamide (11d)

The pure product was isolated as a colorless oil in 19% yield (11 mg). *H NMR (400 MHz,
CDCls) §5.51 (bs, 1H, NH), 5.44 (d, J = 20.1 Hz, 1H, H,), 4.08 (dd, J = 5.3, 2.6 Hz, 2H, NHCHy),
2.85 (dt, J = 26.1, 7.5 Hz, 2H, CH,CF), 2.24 (t, J = 2.6 Hz, 1H, CH), 1.63-1.51 (m, 2H, CHy),
1.44-1.35 (m, 2H, CHy), 0.92 (t, J = 7.3 Hz, 3H, CHs); **C NMR (101 MHz, CDCls) & 175.51
(d, 3 =272.0 Hz, CF), 164.62 (d, J = 23.0 Hz, CO), 101.56 (d, J = 26.5 Hz, CH,), 79.37 (CCH),
71.70 (CCH), 29.29 (d, J = 22.3 Hz, CH,CF), 29.11 (NHCH,), 28.11, 22.26, 13.77; °F NMR
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(376 MHz, CDCl3) -79.05 (td, J = 26.2, 20.1 Hz, 1F, F); **F{/*H} NMR (376 MHz, CDCl3) -79.05
(s, 1F, F); HRMS (ESI) m/z: calcd. for C10H1sFNO* 184.1137 [M+H]*; found 184.1128; calcd.
for C10H14FNONa* 206.0957 [M+Na]*; found 206.0954.

o]
N-(Prop-2-yn-1-yl)hept-2-ynamide (12d)

The pure product was isolated as a colorless oil in 51% yield (26 mg). *"H NMR (400 MHz,
CDCIl3) 6 5.90 (bs, 1H, NH), 4.08 (dd, J = 5.4, 2.6 Hz, 2H, NHCH,), 2.30 (t, J = 7.1 Hz, 2H,
CH,C), 2.26 (t, J = 2.6 Hz, 1H, CCH), 1.59-1.47 (m, 2H, CH,), 1.59-1.50 (m, 2H, CH,), 1.47-
1.38 (m, 2H, CHy), 0.92 (t, J = 7.3 Hz, 3H, CHs); **C NMR (101 MHz, CDCls) 6 153.05 (CO),
88.61 (CspCsp), 78.66 (CCH), 74.88 (CspCsp), 72.07 (CCH), 29.69, 29.43 (NHCH,), 21.95, 18.29,
13.49; HRMS (ESI) m/z: calcd. for C10H14NO* 164.1075 [M+H]*; found 164.1072; calcd. for
Ci0H1sNONa* 186.0894 [M+Na]*; found 186.0893.

1.2.4. General procedure for the synthesis of a, B-fluorinated unsaturated
amides with tert-BulLi

To the mixture of corresponding amide in dry THF placed in a round-bottom flask and cooled
to —-78°C, tert-BuLi (4 equiv, 1.7 M in pentane) was added dropwise under an argon
atmosphere. The solution was stirred at the =78 °C for 3 h. Next, the cooling bath was removed
and the reaction mixture was left overnight at room temperature with stirring. Following this,
the reaction mixture was carefully quenched by dropwise addition of saturated NH4Cl aq (10
mL), and then extracted with AcOEt (3 x 15 mL). The combined organic phases were dried
(Na2S0.), the volatiles were removed using a rotary evaporator and the residue was subjected
to careful column chromatography (hexane - 2% EtOAc/hexane) to yield the desired products.

(2)-2,3-Difluoro-N-heptyl-4,4-dimethylpent-2-enamide (13a)

The pure product was isolated as a colorless oil in 70% yield (37 mg). *H NMR (400 MHz,
CDCls) 6 6.21 (bs, 1H, NH), 3.32 (tdd, J = 7.0, 5.9, 1.0 Hz, 2H, NHCH,), 1.54 (q, J = 7.2 Hz,
2H, CHy), 1.34 (d, J = 2.7 Hz, 9H, C(CHs)s), 1.32-1.16 (m, 8H, 4xCH), 0.87 (t, J = 6.8 Hz, 3H,
CHs); **C NMR (101 MHz, CDCls) & 163.53 (dd, J = 272.1, 13.0 Hz, CF), 159.74 (dd, J = 26.2,
6.8 Hz, CO), 140.65 (dd, J = 253.1, 24.4 Hz, CFCO), 39.32 (NHCH,), 34.76 (dd, J = 20.1, 1.7
Hz, CCF), 31.72, 29.43, 28.90, 27.27 (dd, J = 6.1, 2.0 Hz), 26.85, 22.56, 14.04; *°F NMR (376
MHz, CDCls) -112.32 + -112.42 (m, 1F, F), -149.61 (t, J = 4.9 Hz, 1F, F); “*F{/*H} NMR (376
MHz, CDCls) -112.37 (d, J = 5.7 Hz, 1F, F), -149.61 (d, J = 6.1 Hz, 1F, F); HRMS (ESI) m/z:

S8



calcd. for C14H26F2NO* 262.1982 [M+H]*; found 262.1973; calcd. for C14H2sF2NONa* 284.1801
[M+Na]*; found 284.1797.

(2)-N-Benzyl-2,3-difluoro-4,4-dimethylpent-2-enamide (13b)

The pure product was isolated as a colorless oil in 73% yield (48 mg). *H NMR (400 MHz,
CDClIs) 6 7.38-7.25 (m, 5H, Ph), 6.53 (bs, 1H, NH), 4.51 (d, J = 5.8 Hz, 2H, NHCH,), 1.35 (d,
J = 2.8 Hz, 9H, C(CHs)); *C NMR (101 MHz, CDCls) 6 164.05 (dd, J = 273.0, 12.9 Hz, CF),
159.73 (dd, J = 26.5, 6.9 Hz, CO), 140.53 (dd, J = 252.8, 24.6 Hz, CFCO), 137.48, 128.84,
127.83, 127.77, 43.28 (NHCH.), 34.85 (dd, J = 20.0, 1.6 Hz, CCF), 27.28 (dd, J = 6.1, 1.9 Hz);
F NMR (376 MHz, CDCls) -110.84 + 110.93 (m, 1F, F), -149.89 (t, J = 4.8 Hz, 1F, F); “*F{/*H}
NMR (376 MHz, CDCls) -110.89 (d, J = 5.7 Hz, 1F, F), -149.89 (d, J = 6.1 Hz, 1F, F); HRMS
(ESI) m/z: calcd. for C14H1sF2NO* 254.1356 [M+H]*; found 254.1351; calcd. for C14H17F:NONa*
276.1175 [M+Na]*; found 276.1175.

F H
F _— N

o)

(R,2)-2,3-Difluoro-4,4-dimethyl-N-(1-phenylethyl)pent-2-enamide (13c)

The pure product was isolated as a white solid in 65% yield (36 mg). *H NMR (400 MHz, CDCls)
0 7.40-7.25 (m, 5H, Ph), 6.42 (bs, 1H, NH), 5.17 (ddd, J = 8.2, 6.8, 1.5 Hz, 2H, NHCH), 1.54
(d, J = 6.9 Hz, 3H, CHCHs), 1.32 (d, J = 2.7 Hz, 9H, C(CHa)); **C NMR (101 MHz, CDCl5) &
163.85 (dd, J = 272.8, 12.9 Hz, CF), 158.93 (dd, J = 26.4, 6.8 Hz, CO), 142.55, 140.52 (dd, J
= 252.8, 24.5 Hz, CFCO), 128.79, 127.59, 126.11, 48.75 (NHCH), 34.80 (dd, J = 20.1, 1.6 Hz,
CCF), 27.26 (dd, J = 6.0, 1.9 Hz), 21.83; **F NMR (376 MHz, CDCls) -109.91 + -112.34 (m,
1F, F), -149.62 (t, J = 4.8 Hz, 1F, F); **F{/*H} NMR (376 MHz, CDCls) -111.42 (d, J = 5.7 Hz,
1F, F), -149.62 (d, J = 6.1 Hz, 1F, F); HRMS (ESI) m/z: calcd. for CisH19F:NONa* 290.1332
[M+Na]*; found 290.1316.

F
H 7
FOAN_Z
o
(2)-2,3-Difluoro-4,4-dimethyl-N-(prop-2-yn-1-yl)pent-2-enamide (13d)

The pure product was isolated as a colorless oil in 59% yield (39 mg). *H NMR (400 MHz,
CDCls) 6 6.45 (bs, 1H, NH), 4.13 (ddd, J = 5.4, 2.6, 0.9 Hz, 2H, NHCH,), 2.28 (t, J = 2.6 Hz,
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1H, CH), 1.34 (d, J = 2.8 Hz, 9H, C(CHz3)); *C NMR (101 MHz, CDCls) &6 164.47 (dd, J = 274.3,
12.7 Hz, CF), 159.45 (dd, J = 27.0, 7.2 Hz, CO), 140.21 (dd, J = 252.1, 25.0 Hz, CFCO), 78.59
(CCH), 72.06 (CCH), 34.85 (dd, J = 19.9, 1.7 Hz, NHCH), 28.98, 27.17 (dd, J = 6.2, 1.9 Hz);
F NMR (376 MHz, CDCls) -109.93 + 110.01 (m, 1F, F), -151.18 (dd, J = 6.1, 3.4 Hz, 1F, F);
YF{/*H} NMR (376 MHz, CDCls) -109.97 (d, J = 5.9 Hz, 1F, F), -151.17 (d, J = 5.6 Hz, 1F, F);
HRMS (ESI) m/z: calcd. for C10H14F2NO* 202.1043 [M+H]*; found 202.1043.

1.2.5. General procedure for the synthesis of nonfluorinated unsaturated
amides with tert-BulLi

To the mixture of corresponding amide in dry THF placed in a round-bottom flask and cooled
to -78°C, tert-BuLi (4 equiv, 1.7 M in pentane) was added dropwise under an argon
atmosphere. The solution was stirred at the =78 °C for 3h. Next, the cooling bath was removed
and the reaction mixture was left overnight at room temperature with stirring. Following this,
the reaction mixture was carefully quenched by dropwise addition of saturated NH4Cl ag (10
mL), and then extracted with AcOEt (3 x 15 mL). The combined organic phases were dried
(Na2:S0O.,), the volatiles were removed using a rotary evaporator and the residue was subjected
to careful column chromatography (hexane - 10% EtOAc/hexane) to yield the desired products.

N-Heptyl-4,4-dimethylpent-2-ynamide (14a)

The pure product was isolated as a colorless oil in 70% yield (40 mg). NMR (400 MHz, CDCls)
0 5.75 (bs, 1H, NH), 3.27 (td, J = 7.4, 6.0 Hz, 2H, NHCH,), 1.52 (h, J = 7.3 Hz, 2H, CH,), 1.35-
1.29 (m, 8H, 4xCH.), 1.26 (s, 9H, C(CHs)), 0.88 (t, J = 7.0 Hz, 3H, CHs); *C NMR (101 MHz,
CDCl3) 6 153.74 (CO), 94.19 (CspCsp), 74.21 (CspCsp), 39.87 (NHCH,), 31.71, 30.22, 29.36,
28.92, 26.84, 22.58, 14.06; HRMS (ESI) m/z: calcd. for C14H26NO* 224.2014 [M+H]*; found
224.2008; calcd. for C14H2sNONa* 246.1833 [M+Na]*; found 246.1828; calcd. for C14HsNOK*
262.1573 [M+K]*; found 262.1566.

(o)
N-Benzyl-4,4-dimethylpent-2-ynamide (14b)

The pure product was isolated as a white solid in 79% yield (44 mg). *H NMR (400 MHz, CDCls)
0 7.39-7.25 (m, 5H, Ph), 6.03 (bs, 1H, NH), 4.46 (d, J = 5.9 Hz, 2H, NHCH,), 1.25 (s, 9H,
C(CHz)s); *C NMR (101 MHz, CDCl3) & 153.55 (CO), 137.44, 128.75, 127.98, 127.71, 94.98
(CspCsp), 73.91 (CspCsp), 43.83 (NHCHy), 30.14, 27.36; HRMS (ESI) m/z: calcd. for C14H1sNO*
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216.1388 [M+H]*; found 216.1379; calcd. for C,;4Hi7NONa® 238.1207 [M+Na]*; found
238.1213.

NN
o
(R)-4,4-Dimethyl-N-(1-phenylethyl)pent-2-ynamide (14c)

The pure product was isolated as a white solid in 74% yield (42 mg). *H NMR (400 MHz, CDCls)
0 7.36-7.26 (m, 5H, Ph), 6.04 (bs, 1H, NH), 5.23-5.08 (m, 1H, NHCH), 1.51 (d, J = 6.9 Hz, 3H,
CHsCH), 1.25 (s, 9H, C(CHs)3); **C NMR (101 MHz, CDCl;) & 152.82 (CO), 142.44, 128.74,
127.58, 126.34, 94.56 (Cs,Csp), 74.18 (CspCsp), 49.13 (NHCH), 30.12, 27.38, 21.42; HRMS
(ESI) m/z: calcd. for C1sH20NO* 230.1544 [M+H]*; found 230.1532; calcd. for CisHigNONa*
252.1364 [M+Na]*; found 252.1355; calcd. for C1sH1oNOK* 268.1103 [M+K]*; found 268.1088.

o]
4,4-Dimethyl-N-(prop-2-yn-1-yl)pent-2-ynamide (14d)

The pure product was isolated as a white solid in 62% yield (31 mg). *H NMR (400 MHz, CDCls)
0 5.94 (bs, 1H, NH), 4.08 (dd, J = 5.4, 2.6 Hz, 2H, NHCH,), 2.26 (t, J = 2.6 Hz, 1H, CH), 1.26
(s, 9H, C(CHa)3); **C NMR (101 MHz, CDCl3) 6 153.21 (CO), 95.68 (Csp,Csp), 78.70 (CCH),
73.49 (CspCsp), 72.04 (CCH), 30.12, 29.42 (NHCH,), 27.43; HRMS (ESI) m/z: calcd. for
C10H1sNO* 164.1075 [M+H]*; found 164.1063; calcd. for CioH1sNONa" 186.0894 [M+Na]*;
found 186.0893.

1.2.6. Synthesis of N-methylation products

To the mixture of corresponding amide in dry THF placed in a round-bottom flask and cooled
to -78°C, tert-BuLi (8 equiv, 1.7 M in pentane) was added dropwise under an argon
atmosphere. The solution was stirred at the =78 °C for 3 h. Further, methyl iodide (2 equiv)
was dropped into the reaction mixture. Next, the cooling bath was removed and the reaction
mixture was left overnight at room temperature with stirring. Following this, the reaction mixture
was carefully quenched by dropwise addition of saturated NH,Cl ag (10 mL), and then
extracted with ACOEt (3 x 15 mL). The combined organic phases were dried (Na,SO.), the
volatiles were removed using a rotary evaporator and the residue was subjected to careful
column chromatography (hexane - 2% EtOAc/hexane) to yield the desired products.
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15a 15a’

(2)-2,3-Difluoro-N-heptyl-N,4,4-trimethylpent-2-enamide (15a (15a’))
The pure product was isolated as a colorless oil in 96% yield (40mg).

Minor - 15a: *H NMR (400 MHz, CDCls) & 3.33 (dt, J = 7.6, 1.9 Hz, 2H, NCHsCH), 2.96 (d, J
= 1.8 Hz, 3H, NCHs), 1.68-1.49 (m, 2H, CHz), 1.37-1.23 (m, 8H, 4xCH), 1.18 (s, 9H, C(CHs)),
0.89 (t, J = 6.8 Hz, 3H, CHs); *C NMR (101 MHz, CDCls) 5 161.66 (dd, J = 26.9, 5.3 Hz, CO),
155.82 (dd, J = 258.9, 12.2 Hz, CF), 138.47 (dd, J = 252.6, 20.2 Hz, CFCO), 50.94 (NCH),
35.91, 33.59 (dd, J = 21.0, 3.5 Hz, CCF), 32.25, 31.64, 28.91, 28.21, 26.82 (dd, J = 5.9, 2.0
Hz), 26.47, 22.53, 14.03; °F NMR (376 MHz, CDCl) 5 -134.82 (d, J = 8.9 Hz, 1F, F), -142.85
(d, J = 9.0 Hz, 1F, F), °F{/*H} NMR (376 MHz, CDCl) & -134.82 (d, J = 9.3 Hz, 1F, F), -
142.85 (d, J = 9.0 Hz, 1F, F),

Major - 15a’: *H NMR (400 MHz, CDCls) 6 3.41-3.36 (m, 2H, NCHsCH,), 3.05 (d, J = 2.1 Hz,
3H, NCH;5), 1.68-1.49 (m, 2H, CHy), 1.37-1.23 (m, 8H, 4xCH,), 1.18 (s, 9H, C(CHs)), 0.88 (t, J
= 6.8 Hz, 3H, CH3); C NMR (101 MHz, CDCls) 6 161.59 (dd, J = 26.9, 5.3 Hz, CO), 155.80
(dd, J = 259.3, 12.2 Hz, CF), 138.27 (dd, J = 252.3, 20.4 Hz, CFCO), 47.24 (NCH,), 35.89,
33.58 (dd, J = 21.3, 3.4 Hz, CCF), 32.25, 31.72, 28.98, 28.21, 26.84 (d, J = 7.4, 1.8 Hz), 26.58,
22.54, 14.01; °F NMR (376 MHz, CDCls) 6 -135.24 (d, J = 8.7 Hz, 1F, F), -144.58 (d, J = 8.8
Hz, 1F, F); **F{/*"H} NMR (376 MHz, CDCl3) & -135.24 (d, J = 8.8 Hz, 1F, F), -144.59 (d, J =
9.0 Hz, 1F, F);

HRMS (ESI) m/z: calcd. for CisH2sFoNO* 276.2138 [M+H]*; found 276.2132, calcd. for
CisH27F,NONa* 298.1958 [M+Na]*; found 298.1954, calcd. for CisH.7F.NOK* 314.1697
[M+K]*; found 314.1690.

fj%
[ N |
5
(0] (0]

16a 16a’

N-Heptyl-N,4,4-trimethylpent-2-ynamide (16a (16a’))
The pure product was isolated as a colorless oil in 83% yield (44 mg).

Minor - 16a; *H NMR (400 MHz, CDCls) & 3.37 (t, J = 7.2 Hz, 2H, NHCH,), 3.14 (s, 3H, NCHs),
1.63-1.49 (m, 4H, 2xCHz), 1.34-1.27 (m, 6H, 3xCH>), 1.26 (s, 9H, C(CHs)), 0.93-0.83 (m, 3H,
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36.34, 31.75, 31.72, 30.23, 29.08, 28.93, 27.71, 26.96, 26.77, 22.59, 14.06;

Major - 16a’: *H NMR (400 MHz, CDCls) 5 3.52 (t, J = 7.2 Hz, 2H, NHCH;), 2.93 (s, 3H, NCHs),
1.63-1.49 (M, 4H, 2xCH,), 1.34-1.27 (m, 6H, 3xCH,), 1.28 (s, 9H, C(CHs)), 0.93-0.83 (m, 3H,
CHs); *C NMR (101 MHz, CDCls) & 154.85 (CO), 99.39 (CsyCep), 72.80 (CsCep), 51.27 (NCHy),
39.87, 32.19, 31.78, 30.21, 29.37, 29.01, 28.23, 26.84, 26.61, 22.56, 14.06;

HRMS (ESI) m/z: calcd. for CisH2sNO* 238.2170 [M+H]*; found 238.2158; calcd. for
CisH27NONa* 260.1990 [M+Na]*; found 260.1981; calcd. for C14H2sNOK* 276.1729 [M+K]*;
found 276.1715.

2. Copies of NMR spectra
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3. DFT Calculations

3.1. Methods

Initial structures of substrates and experimentally obtained products were optimized
within DFT framework at wB97XD/6-31+G(d) level of theory?®. To find possible reaction
pathways we conducted relaxed potential energy scans while controlling 1 or 2 interatomic
distances. QST3° (synchronous transit-guided quasi-Newton approach) was used to
determine the geometry of transition state. Pseudo IRC*° calculation were conducted to
confirm or generate potential energy minima that are connected by a given TS. For all
stationary points identified throughout the research, force constants and the resulting
vibrational modes (freq calculations!?) were computed. All calculations were performed with
the GAUSSIAN 16*2.

3.2. Results
3.2.1. Reaction pathway of 2,3,3,3-tetrafluoro-N-heptylpropanamide (1a) with n-BuLi

Performed calculations allowed us to obtain optimized structures of substrates, transition
state and products of reaction of 2,3,3,3-tetrafluoro-N-heptylpropanamide (1a) with n-BuLi.
Gained energies are gathered in Figure S1. As shown in Figure S1, in order to obtain transition
state with lithium connected to oxygen atom of 2,3,3,3-tetrafluoro-N-heptylpropanamide (1a),
a barrier of 0.1 kcal/mol has to overcome. Formation of the gem-difluorinated Michael acceptor

seems to be reversible as the reverse reaction would require 0.2 kcal/mol.
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Figure S1. DFT Gibbs free energy calculation of possible reaction pathway of 2,3,3-
trifluoro-N-heptylacrylamide formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S2 (coordinates of those structures are included in Table S1).

°-©

Substrates Transition state Products

Figure S2. Optimized structures of substrates, transition state and products of 2,3,3,3-
tetrafluoro-N-heptylpropanamide la reaction with n-BulLi.

In second step, 2,3,3-trifluoro-N-heptylacrylamide reacts with n-BuLi yielding
(2)-2,3-difluoro-N-heptylhept-2-enamide (9a). Energies for this reaction are gathered
in Figure S3. As shown in Figure S3, the formation of transition state requires
overcoming an energy barrier of 17.9 kcal/mol. Creating final product seems to be

irreversible because reverse reaction would require 93.6 kcal/mol.
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Figure S3. DFT Gibbs free energy calculation of possible reaction pathway of (2)-2,3-
difluoro-N-heptylhept-2-enamide (9a) formation.

Optimized structures of substrates, transition state and products are presented

in Figure S4 (coordinates of those structures are included in Table S2).

C L ‘«L

Substrates Transition state Products

Figure S4. Optimized structures of substrates, transition state and products of 2,3,3-
trifluoro-N-heptylacrylamide reaction with n-BulLi.

In third step, (2)-2,3-difluoro-N-heptylhept-2-enamide (9a) reacts with n-BulLi
forming 3-butyl-2-fluoro-N-heptylhept-2-enamide (10a). Energies for this reaction are
gathered in Figure S5. As shown in Figure S5, the formation of transition state requires
overcoming an energy barrier of 7.4 kcal/mol. Creating final product seems to be

irreversible because reverse reaction would require 90.7 kcal/mol.
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Figure S5. DFT Gibbs free energy calculation of possible reaction pathway of 3-butyl-
2-fluoro-N-heptylhept-2-enamide (10a) formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S6 (coordinates of those structures are included in Table 3).

Substrates Transition state Products

Figure S6. Optimized structures of substrates, transition state and products of (2)-2,3-
difluoro-N-heptylhept-2-enamide (9a) reaction with n-BulLi.

3.2.2. Reaction pathway of 3,3,3-trifluoro-N-heptylpropanamide (2a) with n-BulLi

Performed calculations allowed us to obtain optimized structures of substrates,
transition state and products. Obtained energies are gathered in Figure S7. As shown
in Figure S7, in order to obtain transition state with lithium connected to oxygen atom
of 3,3,3-trifluoro-N-heptylpropanamide (2a) a barrier of 0.1 kcal/mol has to overcome.
The formation of gem-difluorinated Michael acceptor seems to be reversible as the

reverse reaction would require 0.2 kcal/mol.
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Figure S7. DFT Gibbs free energy calculation of possible reaction pathway of 3,3-
difluoro-N-heptylacrylamide formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S8 (coordinates of those structures are included in Table 4).

dO

Substrates Transition state Products

Figure S8. Optimized structures of substrates, transition state and products of 3,3,3-
trifluoro-N-heptylpropanamide (2a) reaction with n-BulLi.

In second step, 3,3-difluoro-N-heptylacrylamide reacts with n-BuLi yielding
(E)-3-fluoro-N-heptylhept-2-enamide (11a). Energies for this reaction are presented in
Figure S9. As shown in Figure S9 the formation of transition state requires overcoming
an energy barrier of 22.9 kcal/mol. Creating final product seems to be irreversible

because reverse reaction would require 99.4 kcal/mol.
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Figure S9. DFT Gibbs free energy calculation of possible reaction pathway of (E)-3-
fluoro-N-heptylhept-2-enamide (11a) formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S10 (coordinates of those structures are included in Table 5).

e

¢

Substrates Transition state Products

Figure S10. Optimized structures of substrates, transition state and products of
reaction of 3,3-difluoro-N-heptylacrylamide with n-BulLi.

In third step, (E)-3-fluoro-N-heptylhept-2-enamide (11a) reacts with n-BulLi
yielding N-heptylhept-2-ynamide (12a). Energies for this reaction are gathered in
Figure S11. As shown in Figure S11 the formation of transition state requires
overcoming an energy barrier of 37.0 kcal/mol. Creating final product seems to be

irreversible because reverse reaction would require 73.5 kcal/mol.
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Figure S11. DFT Gibbs free energy calculation of possible reaction pathway of N-
heptylhept-2-ynamide (12a) formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S12 (coordinates of those structures are included in Table 6).

Substrates Transition state Products

Figure S12. Optimized structures of substrates, transition state and products of
reaction of (E)-3-fluoro-N-heptylhept-2-enamide (11a) with n-BulLi.

3.2.3. Reaction pathway of 2,3,3,3-tetrafluoro-N-heptylpropanamide la with tert-
BuLi
Performed calculations allowed us to obtain optimized structures of substrates,
transition state and products. Energies are gathered in Figure S13. As shown in Figure
S13 in order to obtain transition state with lithium connected to oxygen atom of 2,3,3,3-
tetrafluoro-N-heptylpropanamide (1a) a barrier of 0.4 kcal/mol has to overcome. The

formation of final product seems to be irreversible as the reverse reaction would require
34.3 kcal/mol.
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Figure S13. DFT Gibbs free energy calculation of possible reaction pathway of 2,3,3-
trifluoro-N-heptylacrylamide formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S14 (coordinates of those structures are included in Table 7).

ég; »};; —

Substrates Transition state Products

Figure S14. Optimized structures of substrates, transition state and products of
2,3,3,3-tetrafluoro-N-heptylpropanamide (1a) reaction with tert-BulLi.

In second step, the gem-difluorinated Michael acceptor reacts with tert-BulLi
yielding  (2)-2,3-difluoro-N-heptyl-4,4-dimethylpent-2-enamide  (13a). Obtained
energies for this reaction are gathered in Figure S15. As shown in Figure S15 obtaining
transition state requires overcoming an energy barrier of 2.3 kcal/mol. Creating final

product seems to be irreversible because reverse reaction would require 62.3 kcal/mol.
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Figure S15. DFT Gibbs free energy calculation of possible reaction pathway of (Z)-
2,3-difluoro-N-heptyl-4,4-dimethylpent-2-enamide (13a) formation.

Optimized structures of substrates, transition state and products are depicted in

Figure S16 (coordinates of those structures are included in Table 8).

R WG E

Substrates Transition state Products

Figure S16. Optimized structures of substrates, transition state and products of 2,3,3-
trifluoro-N-heptylacrylamide reaction with tert-BuLi.

3.2.4. Reaction pathway of 3,3,3-trifluoro-N-heptylpropanamide (2a) with tert-BulLi

Performed calculations allowed us to obtain optimized structures of reaction
substrates, transition state and products. Obtained energies are gathered in Figure
S17. As shown in Figure S17 in order to obtain transition state with lithium connected
to oxygen atom of 3,3,3-trifluoro-N-heptylpropanamide (2a) a barrier of 0.1 kcal/mol
has to overcome. The creation of final product may be reversible as the reverse
reaction would require 0.2 kcal/mol.
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Figure S17. DFT Gibbs free energy calculation of possible reaction pathway of 3,3-
difluoro-N-heptylacrylamide formation.

Obtained optimized structures of substrates, transition state and products are

depicted in Figure S18 (coordinates of those structures are included in Table 9).
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Substrates Transition state Products

Figure S18. Optimized structures of substrates, transition state and products of 3,3,3-
trifluoro-N-heptylpropanamide (2a) reaction with tert-BuLi.

According to the DFT calculation in second step, 3,3-difluoro-N-
heptylacrylamide reacts with tert-BuLi creating (E)-3-fluoro-N-heptyl-4,4-dimethylpent-
2-enamide. Energies for this reaction are gathered in Figure S19. As shown in Figure
S19 the creation of transition state requires overcoming an energy barrier of 2.5
kcal/mol. Forming final product seems to be irreversible because reverse reaction
would require 79.1 kcal/mol. However, in the performed experiment (E)-3-fluoro-N-

heptyl-4,4-dimethylpent-2-enamide was not isolated. The reaction continued with the

S76



formation of the elimination product N-heptyl-4,4-dimethylpent-2-ynamide (14a, Figure
S21).
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Figure S19. DFT Gibbs free energy calculation of possible reaction pathway of (E)-3-
fluoro-N-heptyl-4,4-dimethylpent-2-enamide formation.

Optimized structures of substrates, transition state and products of 3,3-difluoro-
N-heptylacrylamide reaction with tert-BuLi are depicted in Figure S20 (coordinates of

those structures are included in Table 10).

Substrates Transition state Products

(¥
0

Figure S20. Optimized structures of substrates, transition state and products of 3,3-

difluoro-N-heptylacrylamide reaction with tert-BulLi.

In third step, (E)-3-fluoro-N-heptyl-4,4-dimethylpent-2-enamide reacts with tert-
BuLi creating N-heptyl-4,4-dimethylpent-2-ynamide (14a). Energies for this reaction

are gathered in Figure S21. As shown in Figure S21 the formation of transition state
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requires overcoming an energy barrier of 3.8 kcal/mol. Creating final product seems to

be irreversible because reverse reaction would require 61.7 kcal/mol.
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Figure S21. DFT Gibbs free energy calculation of possible reaction
heptylhept-2-ynamide (14a) formation.

LiF

pathway of N-

Optimized structures of substrates, transition state and products are depicted in

Figure S22 (coordinates of those structures are included in Table 11).

Substrates

Products

Transition state

'

Figure S22. Optimized structures of substrates, transition state and products of (E)-3-
fluoro-N-heptyl-4,4-dimethylpent-2-enamide reaction with tert-BulLi.

During our computational exploration, we tested various initial geometries to locate the

transition states of each reaction step. However, in many cases, these calculations did

not converge to a transition state. The structure presented in the manuscript reflects

the only viable transition state obtained from our geometry optimizations, where the
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positioning of the lithium atom was dictated by the energetically preferred arrangement

for each reaction step.

Table 1. Coordinates of substrates, transition state and products of 2,3,3,3-tetrafluoro-N-
heptylpropanamide 1a reaction with n-BuLi

Substrates Transition state Products
Atom X y z X y z X y z
C -0.78580 -0.21700 -0.51699 | -0.83611 -0.17032 -0.48355 | -1.31107 0.17706 -0.54292
C -0.69565 1.06908 0.29679 | -0.68651 1.11129 0.25469 | -0.53666 1.09144  0.23404
N -0.73054 2.21185 -0.38297 | -0.65831 2.25238 -0.43929 | -0.26454 2.31340 -0.27867
@] -0.58009 1.00386  1.52718 | -0.49483 1.07025 1.49101 | -0.00388 0.72653  1.33363
C -0.57421 3.49784 0.27624 | -0.33706 3.52338 0.18316 | 0.73194 3.18968 0.30069
F -0.84277 0.05805 -1.87063 | -0.88775 0.03203 -1.86138 | -1.79825 0.71313 -1.73816
H 0.09707 -0.83013 -0.27548 | 0.14829 -0.86662 -0.02191 | 2.20066 -4.12521 -0.56155
Li 0.54108 -2.11482 2.66776 | 0.06090 -0.67483 1.98734 | 1.14294 -2.06342 0.94254
C 2.07234 -2.97678 1.63692 | 1.45622 -1.51598 0.64201 | 3.18065 -4.03682 -0.07176
C 2.93991 -1.89105 0.97905 | 2.48817 -0.46336 0.22365 | 3.86541 -2.70206 -0.38467
C 417095 -2.37658 0.19885 | 3.89290 -0.98697 -0.09867 | 5.21981 -2.55236 0.30918
C 4.97528 -1.24772 -0.44773 | 4.86693 0.11127 -0.52671 | 5.87619 -1.20222 0.02696
C -2.03489 -1.02828 -0.15886 | -2.06304 -0.95860 -0.09054 | -2.34980 -0.65004 0.10159
F -1.97318 -1.43878 1.12348 | -1.96589 -1.32579 1.22634 | -2.69303 -0.63608 0.90260
F -3.15949 -0.30998 -0.30294 | -3.23195 -0.29960 -0.21158 | -3.06720 -0.92555 -1.03319
F -2.13320 -2.10882 -0.93299 | -2.16868 -2.08302 -0.80236 | -0.69290 2.55247 -1.15983
H -0.80626 2.16240 -1.38889 | -0.80231 2.19520 -1.43687 | 0.65479 4.16714 -0.17959
H -0.66248 4.28361 -0.47431 | -1.06240 3.76185 0.96555 | 0.55921 3.30525 1.37293
H -1.34951  3.62993 1.03491 | 0.66088 3.48991 0.63067 | 1.74752 2.80122 0.15424
H 0.40523 3.56208 0.75833 | -0.36382 4.30054 -0.58170 | 3.23351 -1.84670 -0.10141
H 3.28410 -1.17615 1.74600 | 2.57856 0.30778 1.00794 | 3.07022 -4.20139 1.01360
H 2.69868 -3.49443 2.38654 | 1.78806 -1.98005 1.59697 | 3.99007 -2.61786 -1.47087
H 2.34404 -1.27177 0.27604 | 2.11813 0.07855 -0.66563 | 5.88437 -3.36483 -0.01388
H 3.83849 -3.08525 -0.57299 | 3.81220 -1.74184 -0.89278 | 3.78125 -4.87901 -0.42852
H 1.86479 -3.76417 0.88581 | 1.46856 -2.35473 -0.07063 | 5.08610 -2.67365 1.39302
H 4.81324 -2.95056 0.88070 | 4.28809 -1.51116 0.78260 | 6.03663 -1.05851 -1.04794
H 435649 -0.68034 -1.15545 | 4.50472 0.62864 -1.42406 | 5.24498 -0.38037 0.38468
H 5.33969 -0.54169 0.30961 | 4.98392 0.86338 0.26392 | 6.84746 -1.11953 0.52517
H 5.84559 -1.62737 -0.99591 | 5.86054 -0.29259 -0.75254 | -0.40932 -3.00798 1.76975

Table 2. Coordinates of substrates, transition state and products of 2,3,3-trifluoro-N-heptylacrylamide

reaction with n-BulLi

Substrates Transition state Products
Atom X y z X y z X y z
C 151825 0.35589 0.34720 | -1.52537 0.63179 0.36869 | 0.54570 1.24938 -0.06019
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m C

0.53654
0.06577
0.19366
-0.96122
2.15310
0.34079
-1.95702
-0.89917
-0.78994
-2.91897
-1.23769
-4.16069
-1.81984
-1.96643
-0.37433
-2.51298
-4.58353
-4.94036
-3.90932
-1.01738
-2.23934
-3.21310
-0.40034
2.05396
2.98308
1.76463

1.17782
2.23634
0.89678
3.10550
-0.71658
2.34983
2.67760
4.07558
3.23366
-1.14817
-2.96406
-1.84506
-2.12859
-3.74495
-3.53451
-0.47906
-2.52897
-1.12627
-2.43887
-1.53643
-2.73875
-0.50725
-2.18353
-1.16166
-1.42681
0.71021

-0.38852
0.28082
-1.54824
-0.26718
-0.12962
1.24610
-0.11430
0.22862
-1.33685
1.21023
0.49241
0.65489
1.64650
0.21648
0.88400
0.43310
1.40142
0.37472
-0.23086
2.12053
2.47050
2.05610
-0.66177
-1.35597
0.58571
1.62698

-1.61833
-2.83870
-0.59207
-3.02033
-0.84142
-3.60901
-2.29844
-4.03269
-2.88423
2.50324
4.21067
2.65701
4.10214
3.74237
3.70873
5.25605
2.17005
2.17200
2.73042
4.60581
4.61911
3.16468
0.45588
0.38059
-1.64588
-2.61368

-0.79530
-1.34495
-1.43060
-2.78332
1.60765
-0.77256
-3.31674
-3.03054
-3.09608
1.58378
-1.88898
0.14554
-0.38068
-2.17856
-2.44735
-2.21798
-0.06370
-0.48068
1.72158
0.16185
-0.09109
2.22071
0.09094
1.34028
2.55285
1.15741

-0.00451
0.03799
-0.30476
-0.09731
-0.34802
0.35164
0.52629
0.22405
-1.13568
0.61832
-0.15113
0.19117
0.08227
-1.10055
0.64955
-0.18089
-0.78607
0.94559
1.68232
-0.72882
1.00463
0.01790
0.25748
-0.72755
-0.71247
0.99256

1.59523
2.73289
1.44207
3.81929
-0.70186
2.78840
4.11555
4.66784
3.51843
-1.37155
-2.48444
-2.04266
-3.08487
-1.87344
-1.85341
-3.27621
-1.29265
-2.52120
-0.63788
-3.70334
-3.76075
-2.12869
0.81759
0.03905
-1.48401
0.91037

0.24444
0.42478
-0.71154
-0.53668
1.24495
1.20016
-0.70292
-0.13634
-1.49190
0.27254
-0.32641
-0.93436
-0.59692
0.58197
-1.16763
-0.19901
-1.59635
-1.50751
-0.09053
0.25260
-1.45562
0.84467
-2.42817
-3.20450
2.26340
2.24890

-0.29423
0.38854
-1.07723
0.32537
-0.55207
1.03255
-0.71311
0.88109
0.76838
-1.46136
1.69021
-0.76779
0.30766
1.71189
1.99764
2.43664
-0.31572
-1.57126
-2.18506
-0.01430
0.39346
-2.01064
-0.66773
0.53655
-0.16735
0.78236

Table 3. Coordinates of substrates, transition state and products of (Z)-2,3-difluoro-

enamide 9a reaction with n-BuLi

N-heptylhept-2-

Substrates Transition state Products
Atom X y z X y z X y z
C 1.68129 -0.50101 0.55637 | 1.04776 0.58969 0.57466 | 0.40555 -0.95686 0.35027
C 3.04196 -0.30450 -0.02195 | 2.23610 1.02491 -0.15089 | 1.86609 -1.02336 0.12733
N 3.70054 -1.44645 -0.31395 | 2.88240 2.10696 0.36206 | 2.33793 -2.19646 -0.32344
O 3.50506 0.81466 -0.21280 | 2.63126 0.43863 -1.16023 | 2.63855 -0.07756 0.35538
C 5.03371 -1.40861 -0.88591 | 4.08118 2.62031 -0.26827 | 3.75687 -2.41640 -0.53080
C 0.87077  0.47107 0.97900 | 0.04652 -0.19851 0.11177 | -0.40959 0.08302 0.57896
H 3.25987 -2.33370 -0.12466 | 2.50966 2.56263 1.17949 | 1.68410 -2.94939 -0.47429
H 5.73510 -0.92482 -0.19981 | 3.87176 2.97004 -1.28426 | 4.30940 -2.28151 0.40370
H 5.35969 -2.43238 -1.07476 | 4.45858 3.45334 0.32818 | 3.89956 -3.43632 -0.89018
H 5.03054 -0.84947 -1.82580 | 4.84896  1.84296 -0.32754 | 4.15070 -1.71436 -1.27093
C 1.04227 1.94824 1.00003 | 0.06843 -1.13136 -1.04427 | -0.02031 1.54511 0.56216
C -1.15203  1.19497 -1.50892 | 1.28971 -4.56321 0.43662 | -0.22981 0.87302 -2.72928
C 0.56662 2.67397 -0.27474 | 0.91950 -2.39308 -0.82262 | 0.68728 2.13464 -0.67216
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C -0.90302 2.44436 -0.65582 | 0.47966 -3.27002 0.35026 | -0.13657 2.19511 -1.96475
H -0.70861 0.28345 -1.08330 | 2.35826 -4.34826 0.55626 | -0.73262 0.09511 -2.14840
H -0.69844  1.30717 -2.49893 | 1.17192 -5.16426 -0.47313 | 0.77188 0.50199 -2.98049
H -2.22631  1.02462 -1.64440 | 0.97339 -5.17680 1.28723 | -0.78422 0.99940 -3.66599
H 1.22381 2.38744 -1.10419 | 1.96415 -2.08707 -0.69664 | 1.62139 1.60112 -0.88132
H 0.73538  3.74198 -0.09801 | 0.87365 -2.97972 -1.74990 | 0.97327 3.15123 -0.37903
H 2.10181 2.16468 1.15125 | 0.46311 -0.57863 -1.89995 | 0.58631 1.78556  1.45026
H -1.53136  2.42910 0.24852 | 0.58679 -2.71269 1.28910 | -1.14477 2.57034 -1.74053
H -1.26374  3.30807 -1.22477 | -0.58842 -3.50881 0.25180 | 0.32120 2.94288 -2.62474
H 0.48699 2.32012 1.86993 | -0.97106 -1.40043 -1.26227 | -0.94556 2.11712  0.70428
F -0.34202  0.04940 1.46520 | -1.44227 129297 1.14083 | 3.47838 3.94416 2.34730
F 1.26240 -1.78489 0.64234 | -0.87561 -0.55942 1.11115 | -0.14153 -2.22223 0.31905
C -5.12585 0.00152 0.64149 | 0.66588 1.40471 1.65879 | -1.85659 -0.19752 0.91826
C -3.86281 -2.74630 -0.03150 | -1.67206 1.40804 -0.88959 | -4.74315 -1.35029 0.70484
C -5.66747 -0.94734 -0.44415 | -5.38603 0.56139  0.06802 | -2.81167 0.03968 -0.26232
C -5.35534 -2.43147 -0.19139 | -3.08687 0.84753 -1.05061 | -4.28963 -0.00413 0.13815
H -3.49164 -2.46263 0.96280 | -3.92274 0.97024  0.23229 | -4.25709 -1.57533 1.66042
H -3.26591 -2.23006 -0.79923 | -5.45942 -0.47601 -0.27821 | -4.50968 -2.16671 0.01036
H -3.65664 -3.81769 -0.13424 | -5.88211 1.19569 -0.67515 | -5.82438 -1.35688 0.87851
H -5.23127 -0.68560 -1.42607 | -5.94156 0.64410 1.00876 | -2.61885 -0.71817 -1.03317
H -6.76116 -0.87410 -0.59270 | -3.03858 -0.21903 -1.32010 | -2.59591 1.01380 -0.71831
H -5.41190 1.03341 0.37155 | -3.65358 1.33211 -1.86583 | -2.13141 0.48042  1.73809
H -5.88161 -2.76209 0.71485 | -1.07538 1.24821 -1.79211 | -4.48815 0.78938  0.87150
H -5.75404 -3.03523 -1.01858 | -3.48087 0.33625 1.02196 | -4.89299 0.23580 -0.74623
H -5.67257 -0.20598 1.58010 | -3.88163 2.01449 0.58732 | -1.97446 -1.21760 1.28880
Li -3.15998 -0.30839 0.75334 | -1.72710 2.51206 -0.77382 | 3.98974 2.72086 1.38436
Table 4. Coordinates of substrates, transition state and products of 3,3,3-trifluoro-N-
heptylpropanamide 2a reaction with n-BuLi
Substrates Transition state Products
Atom X y z X y z X y z
C -0.87476 -0.20182 -0.70204 | -0.90007 -0.14949 -0.66270 | -1.35280 -1.29970 0.20884
C -0.75518 1.07264 0.11020 | -0.74582 1.12655 0.07402 | -0.29148 -1.24171 -0.81047
N -0.74235 2.23388 -0.55652 | -0.60713 2.27275 -0.61546 | 0.48985 -2.33526 -0.89818
@] -0.65207 1.02934  1.34312 | -0.64155 1.11961 1.32159 | -0.10317 -0.26995 -1.55358
C -0.54362 3.50155 0.12674 | -0.26593 3.52406 0.03574 | 1.61560 -2.38818 -1.81494
H -0.89055 -0.02585 -1.78029 | -0.83735 -0.06739 -1.74901 | -1.46636 -2.17871 0.83210
H -0.00820 -0.82981 -0.43518 | 0.04615 -0.83847 -0.14881 | 3.36951  4.45979 -0.05495
Li 0.61060 -1.71783 2.86562 | -0.17203 -0.65837 1.82453 | -1.36237 3.94324 -1.36817
C 2.20758 -2.58028 1.93312 | 1.33738 -1.50279 0.59870 | 3.84749 3.55410 0.33540
C 3.09834 -1.49450 1.30842 | 2.39188 -0.48655 0.15176 | 3.12786  3.05567  1.58748
C 435944 -1.97834 0.57579 | 3.80094 -1.03781 -0.09929 | 3.70146  1.74815 2.13449
C 5.18926 -0.84892 -0.03724 | 4.79725 0.02624 -0.56162 | 2.97323  1.24388 3.37979
C -2.11505 -0.99000 -0.34079 | -2.11838 -0.92724 -0.29542 | -2.20559 -0.30072 0.43288
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-2.09900
-3.24334
-2.22434
-0.82757
-0.56746
-1.33400
0.42186
3.41276
2.80648
2.52716
4.05792
2.02012
4.97514
4.59890
5.52379
6.08039
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-1.40359
-0.26974
-2.08511
2.22423
4.30167
3.66375
3.50819
-0.77843
-3.10305
-0.87754
-2.68666
-3.36168
-2.55300
-0.27940
-0.14411
-1.22759

0.94706
-0.50479
-1.10665
-1.56101
-0.61382
0.86398
0.64002
2.08690
2.70135
0.58330
-0.20919
1.17023
1.28123
-0.76758
0.73482
-0.55190

-2.08792
-3.29279
-2.21976
-0.74036
-0.13722
-1.05638
0.66549
2.46599
1.64288
2.05443
3.73688
1.35532
4.16615
4.46587
4.89783
5.79353

-1.32560
-0.26889
-2.05282
2.25397
4.29083
3.83167
3.41675
0.32669
-1.91524
0.00790
-1.83768
-2.37848
-1.51251
0.49372
0.82222
-0.39694

1.02651
-0.43232
-1.01949
-1.61417
-0.72987
0.72634
0.59905
0.89363

1.58546
-0.77816
-0.84995
-0.06891
0.82199
-1.49768
0.18718
-0.73462

-1.59529
-2.24254
-3.14350
0.34673
2.08151
1.27650
2.35128
2.05670
3.83531
3.17351
4.76585
4.89933
3.66408
3.02495
1.91114
3.40708

5.55770
0.84411
-0.35738
-3.09709
-3.37100
-2.23025
-1.61651
2.92237
2.78741
3.82927
1.89278
3.77710
0.97969
1.98190
1.06458
0.30911

-1.25435
-0.19038
1.34848
-0.25313
-1.73438
-2.84161
-1.56745
1.37668
-0.45267
2.36440
2.36432
0.54974
1.34862
4.18853
3.16991
3.75302

Table 5. Coordinates of substrates, transition state and products of 3,3-difluoro-N-heptylacrylamide

reaction with n-BulLi

Substrates Transition state Products
Atom X y z X y z X y z
C 157797 -0.41533 -0.68774 | -1.52537 0.63179 0.36869 | -1.08117 -0.95167 -0.36997
C 0.67278 -1.28151 0.08600 | -1.61833 -0.79530 -0.00451 | -2.20554 -0.04870 -0.04725
N 0.14954 -2.32362 -0.58445 | -2.83870 -1.34495 0.03799 | -3.43619 -0.49831 -0.36386
H 1.67023 -0.53680 -1.76022 | -0.59207 -1.43060 -0.30476 | -1.18950 -1.62700 -1.21232
@] 0.39139 -1.08408 1.28054 | -3.02033 -2.78332 -0.09731 | -2.05644 1.07984  0.45101
C -0.82460 -3.21252 0.02453 | -0.84142 1.60765 -0.34802 | -4.62509 0.30490 -0.14178
C 2.26745 058491 -0.14494 | -3.60901 -0.77256 0.35164 | 0.32363 -1.08049 0.27620
H 0.35233 -2.42395 -1.56728 | -2.29844 -3.31674 0.52629 | -3.53571 -1.44513 -0.69642
H -1.76550 -2.68682 0.21459 | -4.03269 -3.03054 0.22405 | -4.51448 1.27879 -0.62514
H -1.00578 -4.04570 -0.65598 | -2.88423 -3.09608 -1.13568 | -5.48219 -0.21570 -0.57171
H -0.43825 -3.59625 0.97129 | 2.50324 158378 0.61832 | -4.79592  0.46602  0.92697
C -3.35579  2.16206 -0.71501 | 4.21067 -1.88898 -0.15113 | 0.47076  0.32999  0.72649
C -1.60466 3.87316  0.09567 | 2.65701 0.14554 0.19117 | 4.17992 0.82085  1.92522
C -4.53669 2.77804 0.03456 | 4.10214 -0.38068 0.08227 | 1.68698 0.54285 1.65740
C -2.28413  3.19147 -1.10524 | 3.74237 -2.17856 -1.10055 | 3.03007 0.64712  0.93568
H -2.29718 4.61968 0.52051 | 3.70873 -2.44735 0.64955 | 4.24135 -0.05933 2.57340
H -0.76184 4.47938 -0.28679 | 5.25605 -2.21798 -0.18089 | 4.03875 1.71066  2.55274
H -2.89401 1.39114 -0.07600 | 2.17005 -0.06370 -0.78607 | 5.13761 0.92723  1.40369
H -5.01165 3.55918 -0.57234 | 2.17200 -0.48068 0.94559 | 1.74144 -0.28572 2.37213
H -5.29987 2.02905 0.27914 | 2.73042 1.72158 1.68232 | 1.50560 1.46888 2.21942
H -4.20330 3.24392 0.96851 | 4.60581 0.16185 -0.72882 | -0.45090 0.60474  1.24964
H -1.52459  2.66337 -1.70783 | 4.61911 -0.09109 1.00463 | 3.20446 -0.26687 0.36142
H -2.76074 3.90187 -1.80990 | 3.16468 2.22071 0.01790 | 3.00405 1.48891 0.22745
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H -3.72901  1.64447 -1.61249 | 0.45588 0.09094 0.25748 | 0.55367 0.97695 -0.15704

Li -0.99437 2.46231 1.42834 | 0.38059 1.34028 -0.72755 | -1.30200 5.88361 -0.60164

F 2.31707 0.89903 1.12591 | -1.64588 255285 -0.71247 | -0.04364 5.08714  0.10250

F 3.03892 1.38476 -0.84103 | -2.61368 1.15741 0.99256 | 1.27482 -1.46878 -0.59992

Table 6. Coordinates of substrates, transition state and products of (E)-3-fluoro-N-heptylhept-2-
enamide 11a reaction with n-BuLi
Substrates Transition state Products

Atom X y z X y z X y z
C -0.40063 -1.40650 -0.72479 | 1.08216 -1.61790 -0.27403 | 1.56832 -1.62988 0.13017
Cc -1.59104 -1.27571 0.13693 | 2.30873 -0.89762 -0.67448 | 2.79765 -0.86776 0.10031
N -2.77955 -1.32622 -0.49699 | 3.11854 -0.47079 0.34733 | 3.85590 -1.47229 -0.46485
H -0.53397 -1.33669 -1.79951 | 2.62924 -0.71574 -1.84733 | -0.01986 1.34394  -0.88593
O -1.53460 -1.10785 1.36624 | 4.37019 0.20261 0.07563 | 2.87263 0.27460  0.56552
C -4.02739 -1.07157 0.19976 | 0.08098 -1.16474 0.51851 | 5.14508 -0.81041 -0.57747
C 0.85861 -1.52932 -0.29161 | 2.97781 -0.89240 1.25223 | 0.51341 -2.21858 0.17639
H -2.79162 -1.39477 -1.50290 | 4.19698 1.03045 -0.61694 | 3.73806 -2.41046 -0.81743
H -4.08816 -0.02598 0.51893 | 4.77088 0.59846  1.01265 | 5.58351 -0.64434 0.41078
H -4.85447 -1.29284 -0.47657 | 5.10878 -0.46780 -0.38079 | 5.80823 -1.44509 -1.16641
H -4.09901 -1.71244 1.08114 | -0.00205 -0.02964 1.51572 | 5.03239  0.15600 -1.07554
C 2.09393 -1.53534 -1.12399 | 1.08056 3.33201 -0.24852 | -0.79779 -2.85996 0.23804
C 449343  1.27553  0.22242 | 0.67864 1.31734  1.21914 | -4.44757 -1.47758 -0.01466
C 2.89349 -0.21718 -1.04636 | 0.36870 1.98601 -0.11916 | -1.93802 -1.84364 0.05791
C 3.64213 0.00783 0.26781 | 2.16778 3.20471 -0.18150 | -3.31778 -2.49278  0.15566
H 3.86428 2.15625 0.05101 | 0.77508 4.02362 0.54673 | -4.38651 -0.97929 -0.98894
H 523883 1.22716 -0.58134 | 0.86041 3.80614 -1.21071 | -4.39640 -0.70126  0.75690
H 5.02623 1.42619 1.16709 | 1.76231 1.20542 1.30225 | -5.42757 -1.96043 0.05691
H 2.21435 0.62498 -1.22974 | 0.37390 1.99366 2.03035 | -1.82528 -1.34975 -0.91473
H 3.61672 -0.23156 -1.87255 | 0.40023 -0.41113 2.46523 | -1.83919 -1.05875 0.81667
H 1.79526 -1.71973 -2.16084 | 0.68219  1.33470 -0.94221 | -0.85824 -3.64027 -0.53070
H 2.92477 0.09097  1.09073 | -0.71447 2.13039 -0.22352 | -3.40800 -3.27710 -0.60828
H 427914 -0.86308 0.47780 | -1.06601 0.15939  1.69625 | -3.41762 -2.99276 1.12865
H 2.72686 -2.37517 -0.80959 | -2.24614 -1.85640 0.54295 | -0.89508 -3.36501  1.20770
Li -0.10998 1.79683  1.83296 | -0.66613 -2.29524  1.19135 | 2.54382 2.13197  0.66887
F 111032 -1.64300 1.03170 | 0.87652 -2.49606 -0.87957 | 2.68458  3.74314  0.41940
C 0.48801 3.54644  0.96377 | -1.59636 -0.76087 -0.97938 | -0.18162 2.10679 -0.11279
C -2.81433  4.00200 -1.12748 | -5.11097 0.79525 -0.08235 | -4.08733  2.41657 -0.29873
C -0.40198 3.80614 -0.26552 | -3.12081 -0.49855 -1.05519 | -1.55752 2.75649 -0.26013
C -1.88938 3.91662 0.08716 | -3.61919 0.48238 0.01522 | -2.71462 1.76459 -0.14307
H -2.72283  3.10127 -1.75084 | -5.71478 -0.11614 0.01001 | -4.18172 2.90369 -1.27658
H -2.55894  4.86171 -1.75884 | -5.34717 1.24995 -1.05091 | -4.24764 3.18229  0.46953
H -3.86794  4.10314 -0.83755 | -5.42947 1.49035 0.70178 | -4.89417 1.67974 -0.21261
H -0.29050 298371 -0.99635 | -3.70818 -1.44059 -0.96359 | -1.61484 3.26570 -1.23147
H -0.13413 472237 -0.82841 | -3.42085 -0.11574 -2.04325 | -1.67033 3.53879  0.50200
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H 154372 357160 0.64105 | -1.30639 -1.55744 -1.68086 | 0.60461 2.86829 -0.19424
H -2.17569 3.05446 0.70728 | -3.40101 0.09488  1.02831 | -2.59459 0.97952 -0.90254
H -2.03611 4.80009 0.72413 | -3.03319 1.40644 -0.06250 | -2.65700 1.25940  0.83168
H 0.39080 4.41781 1.63805 | -1.06494 0.13891 -1.27981 | -0.09110 1.60915  0.86335
Table 7. Coordinates of substrates, transition state and products of 2,3,3,3-tetrafluoro-N-
heptylpropanamide 1a reaction with tert-BuL.i.
Substrates Transition state
Products
Atom X y z X y z X y z
C 0.64300 -0.33800 0.56100 | -0.50300 0.34900 0.51400 | -1.50600 -0.44700 0.44600
C 1.21300 0.88300 -0.14700 | -1.27600 -0.72000 -0.18100 | -0.59200 -1.24200 -0.25800
N 2.26600 1.47100 0.41200 | -2.31500 -1.27200 0.45000 | -0.13900 -2.38100  0.33900
O 0.67100 1.28700 -1.18500 | -0.86900 -1.12100 -1.29300 | -0.14700 -0.90000 -1.40700
Cc 2.86000 2.67400 -0.14800 | -3.03300 -2.40900 -0.09800 | 0.69600 -3.35100 -0.33300
F 1.26200 -0.53600 1.78100 | -0.97100 0.56000  1.80900 | -1.75100 -0.73100 1.77400
H -0.44600 -0.17200 0.67100 | 0.67800 -0.04600 0.37500 | 1.69986 1.26431 -0.26770
Li -2.37561 0.73704 -1.43224 | 0.92100 -0.54500 -1.58200 | -0.49817 3.64270 -2.58993
C -3.78078 0.47838 -0.02242 | 2.21600 -0.66300 0.09000 | 2.76786  1.44631 -0.45370
C -3.65561 1.57704  1.14876 | 2.05600 -1.86800 1.01200 | 3.49586 0.11431 -0.27270
C -4.88061 1.00604 -0.92324 | 3.05800 -1.08300 -1.12800 | 2.95686 1.96931 -1.88370
C -4.23661 -0.78696 0.65476 | 2.94900 0.46000 0.81700 | 3.23186 2.49031  0.56330
C 0.83800 -1.61400 -0.26400 | -0.54000 1.67900 -0.20800 | -2.01100 0.79200 -0.03800
F 0.17300 -1.51800 -1.43400 | 0.07800 1.55200 -1.42300 | -1.47899 4.53492 -1.35631
F 2.13200 -1.83100 -0.55100 | -1.77600 2.15100 -0.46000 | -2.55600 0.79100 -1.27600
F 0.37600 -2.67800 0.38800 | 0.11500 2.62300 0.46900 | -2.80300 1.44400 0.79100
H 2.63600 1.07000 1.26300 | -2.57100 -0.89300 1.35000 | -0.58200 -2.64500 1.20600
H 3.30000 2.46500 -1.12600 | -3.51900 -2.14100 -1.04000 | 0.12900 -4.24700 -0.61200
H 2.09800 3.44900 -0.26300 | -2.34500 -3.23900 -0.28400 | 1.08700 -2.89400 -1.24300
H 3.63600 3.02600 0.53300 | -3.78900 -2.72100 0.62200 | 1.53300 -3.64400 0.30800
H -3.37561 2.56904 0.76076 | 1.56400 -2.71100 0.50300 | 3.13486 -0.62869 -0.99170
H -4.60761 1.71604 1.70676 | 3.02300 -2.24400 1.39900 | 4.57686 0.23831 -0.41870
H -2.90161 1.30604 190576 | 1.44200 -1.62200 1.89200 | 3.33286 -0.28669 0.73330
H -5.07361  0.27804 -1.72924 | 3.20400 -0.25800 -1.85000 | 2.38386 2.89331 -2.06270
H -5.85661 1.16004 -0.41224 | 4.07800 -1.41000 -0.85000 | 4.00686 2.22531 -2.06770
H -4.64461 1.97204 -1.40324 | 2.62700 -1.94200 -1.67700 | 2.69986 1.20631 -2.63470
H -4.37261 -1.57396 -0.10124 | 3.10300 1.33500 0.16900 | 2.68786 3.43431  0.44230
H -3.52161 -1.17996 1.39576 | 2.38600 0.80900 1.69500 | 3.06786 2.13731  1.58630
H -5.20561 -0.68696 1.19176 | 3.94600 0.14700 1.18300 | 4.30286 2.69631  0.44430

Table 8. Coordinates of substrates, transition state and products of 2,3,3-trifluoro-N-heptylacrylamide
reaction with tert-BuLi.

Atom

Substrates

y

Transition state

y

Products

y
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C -1.35293  0.73399 -0.22040 | -0.87977 1.07996 -0.16854 | -0.54980 0.63755  0.29946
C -1.37471  -0.61098 0.38961 | -1.61423 -0.09190 0.30886 | -1.63949 -0.15402 0.00208
N -1.99888 -1.55334 -0.32327 | -2.73667 -0.40527 -0.35573 | -2.79237 0.45797 -0.45199
F -1.96204 0.86427 -1.41742 | -1.22773 157464 -1.38018 | -0.69670 2.01007  0.13772
@) -0.85319 -0.83182 1.49433 | -1.19546 -0.76788 1.26813 | -1.65322 -1.44277 0.12179
C -1.97282 -2.94798 0.08395 | -3.47176 -1.62360 -0.06725 | -4.06989 -0.21219 -0.31509
C -0.75826  1.81415 0.28973 | 0.22176 1.57227 0.42155 | 0.84932 0.25482 0.57953
F -0.12605 1.84560 1.43671 | 0.52521 1.37600 1.69714 | 0.84140 -0.88520 1.53391
F -0.75611 2.97575 -0.30456 | 0.93887 2.52621 -0.10184 | 1.44928 1.24703  1.28551
H -2.32904 -1.31499 -1.24761 | -2.98000 0.14183 -1.16842 | -2.80086 1.46333 -0.35868
H -2.27674 -3.03404 1.12875 | -3.68410 -1.68629 1.00205 | -4.38818 -0.32019 0.73257
H -2.66993 -3.50511 -0.54278 | -4.41145 -1.60041 -0.62064 | -4.82428 0.36578 -0.85553
H -0.96616 -3.36300 -0.03015 | -2.89629 -2.50715 -0.36274 | -4.00908 -1.20728 -0.75857
C 2.25593  -0.40558 -0.04085 | 1.94505 -0.89630 -0.16549 | 1.79433 -0.18697 -0.56004
C 1.65233 -1.34430 -1.09212 | 1.06092 -1.44385 -1.28126 | 1.28027 -1.47926 -1.21006
C 3.61637 -0.98446 0.36114 | 2.65705 -2.08134 0.50623 | 3.22058 -0.40401 -0.03216
C 250656  0.94362 -0.71444 | 3.00205 0.01859 -0.76418 | 1.79208 0.93717 -1.60940
H 1.45003 -2.35059 -0.68949 | 0.31036 -2.16347 -0.91175 | 1.38648 -2.34004 -0.53504
H 2.32437 -1.48998 -1.96887 | 1.64043 -1.97989 -2.06482 | 1.88295 -1.70408 -2.09666
H 0.70300 -0.96052 -1.50263 | 0.51104 -0.64495 -1.80295 | 0.23470 -1.39683 -1.51876
H 430062 -1.10055 -0.51121 | 3.25515 -2.68650 -0.21012 | 3.86505 -0.73596 -0.85413
H 414315 -0.34334 1.08376 | 3.35553 -1.75377 1.29118 | 3.64236 0.51793  0.37713
H 3.52903 -1.98293 0.81846 | 1.95737 -2.80460 0.97121 | 3.24937 -1.16954 0.74967
H 158343  1.39460 -1.11422 | 255940 0.85567 -1.32140 | 0.79726 1.06943 -2.04601
H 3.20076  0.86046 -1.58204 | 3.66264 -0.51758 -1.48164 | 2.49259  0.68446 -2.41300
H 2.95343 1.67694 -0.02702 | 3.65846 0.45356 0.00298 | 2.10376 1.89083 -1.17292
Li 1.01156 -0.44011 157366 | 0.70943 -0.87372 1.44885 | -0.42331 -2.16236 1.13315
Table 9. Coordinates of substrates, transition state and products of 3,3,3-trifluoro-N-
heptylpropanamide 2a reaction with tert-BulLi
Substrates Transition state Products
Atom X y z X y z X y z
C -0.72155 -0.36953 -0.75425 | 0.57056 0.39224 -0.73363 | 2.00470 -0.51720 -0.68354
C -1.32825 0.81745 -0.03506 | 1.43288 -0.59140 -0.02429 | 0.98085 -1.28099 0.04010
N -2.38475 141717 -0.59760 | 2.50903 -1.09336 -0.65413 | 0.66593 -2.48611 -0.47463
0] -0.83963  1.22302 1.02932 | 1.10278 -1.00812 1.10649 | 0.38993 -0.85637 1.05000
C -3.01179 2.58321 0.00316 | 3.33032 -2.13476 -0.06339 | -0.39660 -3.30024 0.08765
H -1.11230 -0.50905 -1.76508 | 0.82666  0.55260 -1.78265 | 2.20728 -0.72608 -1.72674
H 0.36980 -0.19248 -0.78304 | -0.55538 -0.08321 -0.56698 | -1.56971 0.15551 -0.40400
Li 1.78193 0.57707 1.14927 | -0.72892 -0.56377 1.40349 | -0.01332 1.02973  1.02209
C 3.28432  0.52230 -0.12708 | -2.12353 -0.75568 -0.11289 | -2.56862 0.55541 -0.18022
C 3.23184 155720 -1.28441 | -2.19008 -2.25499 0.19179 | -2.88507 1.59102 -1.25875
C 440308 0.94218 0.80201 | -3.06488 -0.00682 0.83674 | -3.55140 -0.61701 -0.19826
C 3.80660 -0.81343 -0.83167 | -2.58000 -0.51826 -1.54494 | -2.53918 1.21125 1.20566
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-0.93190
-0.33022
-2.23985
-0.43176
-2.77509
-3.47203
-2.26470
-3.77614
2.93407
4.20083
2.50172
4.57325
5.39201
4.15393
3.92779
3.11371
4.79049

-1.65689
-1.62592
-1.90826
-2.70354
1.02854
2.32476
3.36235
2.95632
2.53844
1.71329
1.30052
0.20122
1.10158
1.89894
-1.61820
-1.19299
-0.69544

0.01239
1.22450
0.23571
-0.65486
-1.44226
0.96093
0.17258
-0.67945
-0.88265
-1.80988
-2.07090
1.59972
0.31536
1.29258
-0.09185
-1.60057
-1.33897

0.48256
-0.07089
1.66908
-0.29838
2.79525
4.04029
3.87726
2.70035
-1.88758
-3.21283
-1.53198
-3.07857
-4.11161
-2.79949
-2.55481
-1.93664
-3.61494

1.71552  -0.04208
1.59544  1.20852
2.33765 0.15023
2.57150 -0.72015
-0.67342  -1.52474
-2.48698 -0.81345
-1.75900 0.80693
-2.96826  0.25663
-2.50827  1.22726
-2.67084  0.08077
-2.83196 -0.47220
1.07085 0.62857
-0.36806  0.77589
-0.11498 1.91061
0.54930 -1.80745
-1.04385 -2.26693
-0.87061 -1.72699

2.62781
0.43563
2.57454
3.47604
1.18185
-0.20587
-1.35995
-0.43829
-2.93582
-3.85323
-2.10556
-3.31755
-4.57751
-3.53212
-2.17119
-1.92641
-3.54791

0.53340
2.17164
0.89595
1.27503
-2.82809
-3.50295
-2.78910
-4.24319
1.12371
2.07227
2.35918
-1.34670
-0.26514
-1.13535
0.51547
2.12307
1.51460

-0.14716
-0.08825
1.10732
-0.80809
-1.27065
1.14473
-0.00075
-0.45954
-2.24923
-1.06540
-1.28176
0.58718
-0.02999
-1.16438
1.97443
1.19936
1.51118

Table 10. Coordinates of substrates, transition state and products of 3,3-difluoro-N-heptylacrylamide
reaction with tert-BuLi

Substrates Transition state Products
Atom X y z X y z X y z
C -1.34982 0.45001 -0.23758 | 0.96008 1.08957 0.58377 | 0.41954 0.22329 -1.31313
C -1.57150 -1.00689 -0.04748 | 1.79876 0.05582 -0.03181 | 1.63833 -0.08512 -0.51280
N -0.46992 -1.76412 -0.31128 | 2.99104 -0.17761 0.54897 | 2.37491 0.95947 -0.10975
H -0.37801 0.82379 -0.54236 | 1.05604 1.31988 1.63774 | 0.57022 0.20141 -2.39014
0] -2.64094 -1.49451 0.29865 | 1.43185 -0.61495 -1.01632 | 2.00900 -1.25083 -0.29409
C -0.46431 -3.19015 -0.06444 | 3.87935 -1.22537 0.07888 | 3.58535 0.79504 0.67612
C -2.29750 1.36317 -0.05527 | -0.07175 1.63578 -0.06737 | -0.81922 0.45186 -0.87032
H 0.41875 -1.30238 -0.44773 | 3.28847  0.42010 1.30475 | 2.01526 1.88456 -0.29142
H -1.42036 -3.61348 -0.37906 | 3.35785 -2.18602 0.06998 | 4.28401 0.13474 0.15686
H 0.34215 -3.64770 -0.64265 | 4.23341 -1.01260 -0.93416 | 4.04677 1.77356  0.81526
H -0.32191 -3.41832 0.99942 | 4.73304 -1.28561 0.75547 | 3.35452 0.35816  1.65293
C 3.34873  0.37445 0.08401 | -1.98317 -0.82298 0.04849 | -1.44877 0.54182 0.49972
C 3.01347 1.86992 0.12419 | -1.57771 -0.90199 1.51511 | -1.87652 2.00770  0.72001
C 259155 -0.29692 1.23602 | -2.19432 -2.26224 -0.45280 | -0.49030 0.10787 1.61529
C 2.82072 -0.18675 -1.23514 | -3.30821 -0.08050 -0.07002 | -2.68027 -0.38781 0.53206
H 3.33102 2.34948 1.06179 | -0.59986 -1.39413 1.65481 | -1.00967 2.68033 0.72802
H 191615 2.03940 0.04758 | -2.30630 -1.47575 2.13073 | -2.38188 2.09432  1.68801
H 347208 243148 -0.70285 | -1.50306 0.09371 1.97684 | -2.57057 2.34609 -0.05532
H 1.50039 -0.07865 1.20190 | -2.96688 -2.81179 0.12996 | -1.00663 0.21504 2.57518
H 269471 -1.39259 1.22692 | -2.53017 -2.29840 -1.50345 | -0.22481 -0.94860 1.50834
H 292947 0.05180 2.22320 | -1.27871 -2.87762 -0.37960 | 0.41248 0.72726  1.66365
H 3.32061 0.24948 -2.11170 | -3.23612 0.95499 0.29144 | -3.41796 -0.10533 -0.22444

S86



H 1.73654 0.03363 -1.38128 | -4.12046 -0.56418 0.51907 | -3.15442 -0.30342 1.51673
H 2.93626 -1.27861 -1.30834 | -3.66482 -0.03198 -1.10977 | -2.36773 -1.42823  0.38246
Li 5.34044 0.14383 0.34755 | -0.45196 -0.74582 -1.29054 | 0.65964 -2.59593 -0.23418
F -3.53694 1.16038 0.30716 | -0.25717 1.59817 -1.37665 | -0.84813 -2.96048 0.29443
F -2.08864 2.65796 -0.23201 | -0.91137 2.47085 0.48666 | -1.72896 0.68497 -1.84824
Table 11. Coordinates of substrates, transition state and products of (E)-3-fluoro-N-heptyl-4,4-
dimethylpent-2-enamide reaction with tert-BuLi
Substrates Transition state Products
Atom X y z X y z X y z

C -1.55354  0.85530 0.83823 | 0.97800 -0.69700 -0.66300 | 0.89866 -1.17464 0.09069

C -2.78245 1.15376 0.02238 | 0.22200 -1.61100 0.18700 | -0.26799 -2.02873 0.07970

N -3.92497 0.59147 0.48752 | 0.08700 -2.83700 -0.34700 | -0.14726 -3.18979 -0.58488

H -1.29535 1.60937 157769 | -0.07900 0.08800  0.24300 | -2.06379 159885 -0.77816

0] -2.74799  1.89643 -0.94570 | -0.31500 -1.31200 1.26200 | -1.32151 -1.71489 0.64854

C -5.19664 0.80799 -0.17804 | -0.79700 -3.82800 0.24000 | -1.24721 -4.13467 -0.67761

C -0.74229 -0.18279 0.69676 | 1.33500 -0.05900 -1.68600 | 1.81936 -0.39159 0.13999

H -1.97573 -2.62788 1.07443 | 0.56000 -3.03000 -1.21800 | 0.73499 -3.39560 -1.02919

H -5.19865 0.35496 -1.17496 | -0.81800 -4.70200 -0.41300 | -1.54937 -4.46933 0.31846

H -5.98859  0.36063  0.42499 | -0.44100 -4.12300 1.23100 | -2.10930 -3.67132 -1.16511

H -5.38631 1.87881 -0.28798 | -1.80900 -3.42500 0.33900 | -0.91698 -4.99284 -1.26409

C -0.68408 -1.39947 -0.19309 | 2.20000 1.44300 -0.59200 | 2.91684 0.58483 0.21976

C -1.71477  -1.30961 -1.32745 | 3.56100 1.28100 -1.27300 | 2.67964 1.68370 -0.83469

C -0.96032 -2.65149 0.66305 | 2.32100 0.96400 0.86800 | 4.25411 -0.12897 -0.05022

C 0.72600 -1.49437 -0.81274 | 1.66400 2.86700 -0.61300 | 2.91988 1.20587  1.63025

H -2.74175  -1.29964 -0.95029 | 3.84900 0.22800 -1.34300 | 2.65015 1.26413 -1.84548

H -1.60860 -2.19227 -1.96624 | 4.30800 1.80000 -0.65700 | 3.49766 2.41106 -0.78574

H -1.56285 -0.42039 -1.94609 | 3.56400 1.71400 -2.27400 | 1.73758 2.20880 -0.65215

H -0.86554 -3.54833 0.04145 | 3.11700 1.56900 1.31900 | 5.07395 0.59490 0.01526

H -0.25232  -2.73990 1.49299 | 1.41700 1.16500 1.44400 | 4.43442 -0.91988 0.68501

H -3.87178 -0.02976 1.28010 | 2.61500 -0.08700 0.95200 | 4.26806 -0.57440 -1.05033

H 1.01652 -0.56847 -1.32327 | 1.55800 3.24200 -1.63300 | 1.97375 1.71495 1.83796

H 0.74338 -2.29358 -1.55985 | 2.38500 3.49800 -0.07500 | 3.73022 1.93993 1.70154

H 149541 -1.74829 -0.07455 | 0.71900 2.94400 -0.06500 | 3.07761 0.44164 2.39784

Li 1.63948 2.78082 1.19571 | -0.85700 0.38700 1.92900 | -3.64786 -1.11977 1.26962

F 0.35447 -0.16891 1.57345 | 0.90900 0.52200 -0.01600 | -4.77771 -0.15465 1.96346

C 3.46228  3.05198 0.37475 | -1.74600 0.58300 -0.03000 | -1.75376 2.64834 -0.90274

C 3.47601  2.48343 -1.04796 | -2.24700 -0.14300 -1.27900 | -0.87223 2.70516 -2.15257

C 454821 2.32489 1.17492 | -2.58400 0.21700 1.19900 | -3.02822 3.47830 -1.05972

C 3.85607 4.52966  0.28782 | -1.70800 2.09800 -0.23100 | -0.98192 3.08856  0.34546

H 3.23691 1.40789 -1.07404 | -2.27300 -1.23000 -1.12300 | -1.42359 2.38285 -3.04405

H 447286 259129 -1.53236 | -1.59600 0.05900 -2.13700 | 0.00960 2.06116 -2.04741

H 2.75643  2.99190 -1.70928 | -3.26300 0.18000 -1.53800 | -0.52096 3.73054 -2.33067

H 5.55466  2.43669  0.71037 | -2.62500 -0.87300 1.35200 | -3.60182 3.16363 -1.94000

H 463612 2.70935 2.20263 | -2.18600 0.69700 2.10200 | -3.66004  3.36653 -0.17242
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H 436165 1.24191 1.25040 | -3.62200 0.55200 1.07800 | -2.78152 4.54161 -1.18210
H 3.14523 511635 -0.31399 | -2.71800 2.49500 -0.40200 | -0.60340 4.11177 0.21632
H 485566 4.66894 -0.18361 | -1.08800 2.36000 -1.09500 | -0.11898 2.43673  0.53239
H 3.91151 5.00527 1.27868 | -1.28700 2.59100 0.65200 | -1.63630 3.07842  1.22589
Table 12. The H-C-C-F torsion angles and corresponding Jxr coupling constants
for compounds 9a and 11a.
Compound Newman buir JH1F Prar JHoF
projection
Hi
JEN
Pr H2
8
9a 144.5° 26.8 Hz 28.9° -a
F o H
R= &~ N
SJY ~
(o)
H4
(1)
Pr H2
o
1la 168.0° 26.1 Hz 52° -2
H H
R= ¥~ N

2Not observed in *H and °F NMR spectra.
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