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Abstract 

Tuberculosis (TB) is an airborne transmissible disease caused by Mycobacterium 

tuberculosis (Mtb), responsible for 1.3 million deaths per year. Due to increased cases 

of drug resistance to Mtb, a new treatment regime for TB needs to be discovered. 

ClpC1 plays a crucial role in the protein homeostasis of Mtb thus, presents as a 

promising target in controlling TB infection. The present study aimed to identify 

potential inhibitors for the ClpC1 N-terminal domain (ClpC1-NTD) by applying the 

relaxed complex scheme in virtual screening that accounts for the target and ligand 

flexibility. A filtered library of natural product compounds was virtually screened against 

each of the selected ClpC1-NTD dominant conformations from the ensemble 

generated using molecular dynamics simulation. The promising compounds with the 

strong binding affinity to ClpC1 protein were then further analysed for their molecular 
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interactions. The stability of the most potent compound was examined through a 

complex MD simulation while the pharmacokinetics properties were gathered using 

SwissADME and pkCSM. The results showed that ligand NP132 formed a strong and 

stable complex with good pharmacokinetics and toxicological profile.  

Keywords 

caseinolytic protein C1; molecular docking; molecular dynamics simulation; natural 

product compounds; tuberculosis  

Introduction 

Tuberculosis (TB) is among the deadliest diseases in the world, and as stated in the 

WHO TB report, it accounts for 10 million new cases annually [1]. The current TB 

treatments may need to be replaced with novel approaches to tackle the increasing 

cases of drug resistance to the etiological agent for TB, Mycobacterium tuberculosis 

(Mtb) [2]. A promising target for anti-mycobacterial drug development is the 

caseinolytic protein C1 (ClpC1), a protein chaperone encoded by the Mtb clpC1 gene 

[3]. It plays a pivotal role in Mtb survival and homeostasis by refolding damaged 

proteins during infection, thus preventing their degradation [4]. The N-terminal domain 

(NTD) of ClpC1 contains the binding domain that would trigger a proteolytic complex 

formation, and based on experimental evidence, ClpC1-NTD is essential for the growth 

and survival of Mtb [5]. Inhibition of ClpC1-NTD would disrupt the formation of the 

proteolytic complex, resulting in increased protein toxicity levels and causing 

mycobactericidal effects, significantly reducing the number of Mtb [6]. As ClpC1-NTD 

has been structurally and functionally characterised, this makes it an attractive target 

for drug design and discovery. 
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Through experimental means, several natural product compounds have been identified 

as potential inhibitors for ClpC1-NTD such as cyclomarin A, ecumicin, and rufomycin 

I. However, cyclomarin A and ecumicin displayed poor pharmacokinetic properties in 

mice models due to their large size and high flexibility [7]. Experimental identification 

of ClpC1-NTD inhibitors is expensive nonetheless, recent technological advances 

have allowed using computational means to ease the drug discovery process. Finding 

potential inhibitors using in silico analysis comes under computer-aided drug design 

(CADD) and has proven to be an efficient, cost-, and time-effective method [8,9]. 

Among the CADD techniques, the relaxed complex scheme allows to computationally 

visualise the actual dynamics of a protein [10]. 

 

This study employed an ensemble-based virtual screening approach for the 

identification of potential inhibitors for ClpC1-NTD [11]. The protein is not a rigid 

structure as often treated by most molecular docking tools but is flexible [8]. Therefore, 

molecular dynamics (MD) simulation was utilised to ensure that the in silico analysis 

closely mimicked the natural condition where the protein and ligand are flexible when 

interacting with each other [12]. Investigation on the promising compound stability with 

the protein was carried out by a subsequent protein-ligand (complex) MD simulation to 

strengthen the findings. 

Results and Discussion  

ClpC1 structure selection and ligand library construction    

The crystal structure of Mtb ClpC1-NTD bound to rufomycin I (PDB ID: 6CN8) with a 

high resolution (1.40 Å) was selected for this in silico study. Subsequently, loop 
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refinement was carried out for the six missing residues and the model (Model 1) with 

the lowest normalised discrete optimised protein energy (zDOPE) score (–2.24) was 

chosen. As stated by [13], a zDOPE score value of less than –1 would produce a 

reliable model. Furthermore, a Ramachandran plot (Supporting Information File 1, 

Figure S1) was constructed for Model 1 and indicated that 100% residues were 

residing in the most favoured regions, thus making it a valid model. Simultaneously the 

ligand library was constructed based on Lipinski’s rule of five criteria [14] for small oral 

drugs (see Supporting Information File 1, Table S1), and 150 natural product (NP) 

compounds were filtered. Additionally, rufomycin I (PubChem CID: 76871757) was 

selected as the positive control because it was reported to have a strong binding affinity 

to ClpC1 protein [7]. 

 

Protein ensemble generation MD simulation and clustering 

An ensemble of protein conformations was generated over a 100,000 ps MD simulation 

run instead of using a rigid structure to avoid bias as ligands are known to favour some 

protein conformations over others and form stable complexes [12,15]. The energy 

analysis (Supporting Information File 1, Figure S2) showed that energy minimisation 

of the system was successful, as indicated by the steady convergence of the potential 

energy curve and the large negative value (–603,660 kJ/mol) obtained. The 

computational temperature (300 K) and pressure (1 bar) of the system respectively, 

were maintained over the entire protein MD simulation. The low total energy value (–

466,582 kJ/mol) for the MD simulation run was also an indication that the system had 

reached equilibrium. 
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For the protein trajectory analysis, there were slightly high fluctuations observed at the 

beginning of the simulation until 20,000 ps in both root mean square deviation (RMSD) 

and radius of gyration (Rg) plots (Figures 1A and B respectively). However, the protein 

structure was compact before 20,000 ps, and the entire trajectory reached an 

equilibration state after 20,000 ps. As shown in Figure 1D, the visualized structures at 

specific time intervals indicated that the protein remained stable and compact. The root 

mean square fluctuation (RMSF) plot (Figure 1C) provides information on the protein 

flexibility based on each of the residues [16]. As expected, the terminal loop regions 

displayed the highest flexibility. In addition, ClpC1 belongs to the AAA+ protein 

superfamily which is known to be highly dynamic and contains very flexible loop 

regions [17]. Contrarily, the RMSF values for the alpha-helices remained low 

throughout the protein MD simulation indicating well-structured regions [18]. 



6 

 

Figure 1: Trajectory analysis carried out to investigate stability and fluctuation during 

100,000 ps MD simulation. (A) Protein Cα atoms RMSD plot. (B) Protein Rg plot. (C) 
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RMSF plot for protein residues. (D) Protein showing compact and stable structures 

during MD simulation at specific time intervals, generated using UCSF Chimera.  

 

Finally, the protein trajectory was clustered using the RMSD-based (GROMOS) 

method since it would be computationally unfeasible to utilise each of the 10,001 

protein conformations (including the starting structure) generated via MD simulation for 

the molecular docking analysis. The GROMOS method clusters similar conformations 

together based on the selected RMSD cut-off value [19].Table 1 shows the 11 clusters 

produced from choosing the 1.70 Å RMSD cut-off value where the top three clusters 

represented 98% of the total protein conformations. Thus, the average (dominant) 

conformations from each of the three clusters were utilised in the subsequent virtual 

screening (VS) analysis. 

 

Table 1: Protein trajectory clustering analysis using the GROMOS method with 1.70 Å 

RMSD cut-off. 

Number of clusters  Total members Identifier for the representative 

conformation in each cluster 

Cluster 1 9,094 5,349 (conformation 1)a 

Cluster 2 499 1,051 (conformation 2)b 

Cluster 3 209 917 (conformation 3)c 

Cluster 4 70 1,711 

Cluster 5 62 876 

Cluster 6 30 1,254 

Cluster 7 17 3,307 

Cluster 8 10 1,501 
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Cluster 9  6 1,401 

Cluster 10 3 761 

Cluster 11 1 886 

a,b,cthe respective selected dominant conformations (1,2,3) to be utilised in the 

subsequent analyses. 

 

Ensemble-based virtual screening analysis and interactions 

The ligand library containing 150 NP compounds was virtually screened against each 

of the three dominant protein conformations independently using the molecular 

docking protocol for AutoDock 4.2 [20], resulting in 450 initial dockings with 10 search 

runs each. From the initial VS analysis, the top 10 ligands were selected based on their 

lowest binding energy values (Figure 2), as that indicated the optimal binding pose 

[15,21]. Furthermore, a re-scoring analysis (Table 2) was carried out to validate the 

results from the initial VS analysis, following the same protocol. The positive control 

(rufomycin I) and the top 10 ligands were docked against protein conformation 1, 2, 

and 3 respectively, resulting in 33 dockings with 100 search runs each. Out of the 10 

selected ligands, compound NP132 (ID: SN00055391) with the strongest binding 

affinity (–9.20 kcal/mol) was identified as a potential inhibitor for ClpC1-NTD. As 

expected, rufomycin I also displayed a strong binding affinity (–14.59 kcal/mol) with the 

protein.  



9 

 

Figure 2: Top 10 ligands from initial virtual screening analysis identified based on 

lowest binding energy with their corresponding Super Natural II database IDs. 

 

Table 2: The re-scoring results for the positive control and the top 10 ligands with their 

respective lowest binding energy values. 

Ligands Lowest binding energy (kcal/mol) Average binding 

energy 

(kcal/mol) 

Conformation 

1 

Conformation 

2 

Conformation 

3 

Rufomycin I –10.58 –17.64 –15.54 –14.59a 

NP132 –8.15 –8.76 –10.68 –9.20b 

NP031 –8.38 –9.00 –9.71 –9.03 

NP044 –8.08 –9.39 –9.48 –8.98 

NP086 –7.96 –8.82 –10.04 –8.94 

NP032 –8.88 –8.56 –9.31 –8.92 

NP038 –8.84 –8.35 –9.50 –8.90 
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NP073 –8.44 –8.68 –9.55 –8.89 

NP039 –8.33 –8.83 –9.12 –8.76 

NP037 –7.88 –8.54 –9.51 –8.64 

NP011 –7.83 –8.13 –8.86 –8.27 

a,bthe lowest binding energy values indicating the most stable complexes.  

 

Further analysis was carried out to determine the interactions between the selected 

protein (conformation 1) and ligand (NP132) complex with the lowest binding energy. 

The lowest binding energy (more negative) value indicates that the protein and ligand 

complex is in the lowest energy state and thus closest to the native configuration [21]. 

Conformation 1 was selected, as it represented 9,094 of the total 10,001 conformations 

produced. The two protein residues (Arg-10 and Lys-85) were connected to the 

respective O atoms of NP132 with three hydrogen bonds (H-bonds) (Table 3 and 

Figure 3). Experimental evidence suggested that cyclomarin A and ecumicin bind to 

Lys-85 [7], and ClpS adaptor protein which interacts with ClpC1-NTD, binds to Arg-10 

[22]. This demonstrated that compound NP132 bounded to the same side of ClpC1-

NTD as the known inhibitors cyclomarin A and ecumicin. Furthermore, the presence of 

H-bonds between ligand and the active site of protein could be an indication of 

inhibitory activity [23]. Moreover, Arg-10 and Lys-85 are within a highly conserved 

region in Mycobacterium species [24]. Conservation of Arg-10 and Lys-85 across 

bacterial species and H-bond interactions with the same residues suggests that they 

may be essential for survival and play a role in inhibitory behaviour [25,26]. The bond 

lengths formed were also significant as shorter H-bond lengths meant stronger bonds 

[27]. Additionally, H-bonds formation indicated that the ligand remained stable in the 

binding site of protein [28]. 
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Table 3: The protein (conformation 1) and ligand (NP132) atoms involved in H-bonds 

formation and the respective distance between them. 

Protein Residue 

Name-Position & 

Atom 

Ligand 

Atom 

H-bond 

Distance 

(Å) 

Arg-10:1HH1 O 2.024 

Lys-85:HZ3 O 2.152 

Lys-85:HZ3 O 1.922 

 

 

Figure 3: The protein (conformation 1) and ligand (NP132) complex with the lowest 

binding energy. The H-bonds (green lines) formation between conformation 1 residues 

(blue) and NP132 (ball and stick model), generated using UCSF Chimera. 
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Protein and ligand complex MD simulation 

The stability of the protein conformation 1 and ligand NP132 complex was further 

evaluated during a 100,000 ps MD simulation. The energy and trajectory analyses 

were analogous to the protein MD simulation, whereby the protein-ligand complex was 

successfully minimised (–745,200 kJ/mol), the temperature (300 K) and pressure (1 

bar) remained constant, and the total energy (–532,200 kJ/mol) indicated that the 

system had attained equilibrium (Supporting Information File 1, Figure S3). 

Furthermore, the MD trajectory showed an overall stable trend for the calculated RMSD 

value (Figure 4A) for the ligand atoms (purple). However, for the Carbon-alpha (Cα) 

backbone of the protein (black) and the protein-ligand complex (orange), RMSD values 

were ~0.50 nm at 70,000 ps. Since a smaller deviation indicates a more stable 

structure, the larger RMSD values could be due to the presence of NP132 disrupting 

the protein structure. Moreover, the Rg value for the protein (Figure 1B) was ~1.55 nm 

and for the complex (Figure 4C) was ~1.61 nm. A higher Rg value for the complex 

could indicate a lack of compactness [29] which may also be due to the presence of 

NP132. However, the solvent-accessible surface area (SASA) plot (Figure 4D) had a 

value of 91.06 for the complex, which indicated that the structure had remained intact. 

Additionally, the ligand did not dislodge from the protein but remained bounded with H-

bonds (Figure 4E). Also, the farthest distance between the ligand and protein was 

recorded to be 0.25 nm. To conclude, the complex remained compact and stable 

throughout the MD simulation.  
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Figure 4: Trajectory analysis carried out to investigate stability and fluctuation during 

100,000 ps MD complex simulation. (A) Protein, ligand, and complex RMSD plot. (B) 
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Protein RMSF plot. (C) Protein-ligand complex Rg plot. (D) Protein-ligand complex 

SASA plot. (E) Protein-ligand complex H-bond pattern plot. 

 

Physicochemical and pharmacokinetic properties of NP132 and 

rufomycin I 

Lipinski’s rule of five constitutes the physicochemical properties of small drug-like 

compounds (see Supporting Information File 1, Table S2). Since NP132 followed 

Lipinski’s rule of five, this indicates that the compound will have high solubility, 

permeability, and bioavailability [30]. Contrarily, rufomycin I violated three of Lipinski’s 

rule of five as the molecular weight was greater than 500 Dalton, lipophilicity (logP) 

was also greater than 5, and there were more than 5 H-bond donors. In addition, 

NP132 was non-toxic, and rufomycin I exhibited low toxicity in humans. For a 

compound to have good oral bioavailability, following at least two Lipinski’s rule of five 

is required [31]. Furthermore, for an oral drug, the uptake of a compound through the 

intestines is essential [32]. The absorption, distribution, metabolism, excretion, and 

toxicity (ADMET) profile (Table 4) indicated that the gastrointestinal absorption rate for 

the potent compound NP132 was high as opposed to rufomycin I, which could be 

attributed to its larger size. As stated by [33], the larger the size (molecular weight) of 

a compound, the lower the absorption rate will be. The results further showed that 

NP132 and rufomycin I would not permeate the blood-brain barrier. This physiological 

barrier prevents the therapeutic compounds in blood from crossing into the brain, 

leading to lower brain toxicity [34]. 

 

Table 4: The in silico ADMET profile for compounds NP132 and rufomycin I using 

SwissADME and pkCSM. 
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 Compound 

Parameters: NP132 Rufomycin I 

Gastrointestinal absorption High Low 

Blood-brain barrier permeant No No 

CYP3A4 inhibition Non-inhibitor Inhibitor 

Total clearance (log ml/min/kg) 0.773 –0.081 

AMES toxicity Non-toxic Non-toxic 

 

The CYP3A4 inhibition was also studied as this is the most abundant of the 

Cytochrome P450 (CYP) enzymes and is involved in the metabolism of many drugs 

[35]. Since NP132 was a non-inhibitor, it could be metabolised by the liver [36]. On the 

contrary, rufomycin I inhibited CYP3A4 probably due to its high logP value (5.1774) 

and large molecular weight (1012.20 Dalton) (Supporting Information File 1, Table S2), 

which may cause severe side effects [37]. Additionally, the excretion rates of the 

compounds from the body were determined. Where the 0.773 log ml/min/kg and –

0.081 log ml/min/kg values for a total clearance of NP132 and rufomycin I respectively 

meant that NP132 would be excreted quickly by the kidneys, while rufomycin I would 

have a slower excretion rate. Lastly, AMES toxicity was used to test for mutagenicity, 

and both NP132 and rufomycin I were non-mutagenic. Therefore, they might have a 

high probability of passing the toxicity tests in vitro and in vivo [38]. 

 

Conclusion  

Drug resistance to TB has made most of the available treatments inefficient, which has 

led to a search for novel treatment options. One of the targets being studied currently 
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is the chaperone protein ClpC1 involved in protein homeostasis and is essential for 

Mtb survival and proliferation in the host. In this in silico study, the ensemble-based 

virtual screening approach was utilised to search for potential inhibitors by targeting 

the N-terminal domain (binding domain) of the ClpC1 protein. Taking into consideration 

protein and ligand flexibility, several potential inhibitors were identified based on their 

strong binding affinities. However, the compound NP132 (ID: SN00055391) with the 

strongest binding affinity and significant H-bonds formation was tested further for its 

stability with the protein. Observing the complex MD simulation data, the protein 

structure seemed slightly disrupted, probably due to the presence of the ligand NP132 

nonetheless, the complex remained compact and stable. Furthermore, comparing the 

potent compound NP132 against the positive control rufomycin I indicated that NP132 

could be a more suitable inhibitor, as determined by the physicochemical, 

pharmacokinetic, and toxicological properties studied. The small drug-like compound 

NP132 followed Lipinski’s rule of five and was non-toxic and non-mutagenic. It could 

also be absorbed rapidly into the bloodstream and metabolised by the CYP3A4 

enzyme for quick removal from the body. The results from these in silico analyses 

should be further studied by in vitro and in vivo assays for determining the inhibitory 

action of promising compound NP132 on ClpC1-NTD. 

 

Experimental  

Data collection and optimisation  

A crystallographic structure (PDB ID: 6CN8) was selected from Protein Data Bank 

based on its high resolution. This structure was pre-processed using UCSF Chimera 

1.13.1 [39] where the crystallised water, ligand, and ions were removed. Then the 
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missing residues in the loop region were refined using MODELLER 9.21 [40], and the 

model with the lowest zDOPE score was chosen from the seven models that were 

generated. This model was validated through PROCHECK server [41] to evaluate the 

stereochemical properties of the modelled protein. Furthermore, the ligands were 

obtained from Super Natural II, a natural product compounds database. The Lipinski’s 

rule of five criteria which constitutes that the molecular weight of compounds is less 

than 500 Dalton, logP is not greater than 5, there are not more than 10 H-bond 

acceptors, and 5 H-bond donors [14] was applied to extract the ligands used in this 

study. The library also included a positive control (PubChem CID: 76871757) extracted 

from PubChem database. 

 

Protein MD simulation 

The modelled protein structure was subjected to an MD simulation using GROMACS 

5.0.4 [42] on an Intel® Core™ i7-4930K machine with 96 Gib memory (RAM) equipped 

with GeForce GTX780 Ti as the graphics processing unit (GPU) and running on Ubuntu 

Linux package. This stage included the computational generation of protein ensemble 

and the selection of dominant conformations in the protein trajectory [11].  

Conformational ensemble generation 

According to a study by [43], the TIP3P water model is the best fit for the CHARMM 

force field. Therefore, during protein MD simulation the CHARMM36 force field [44] 

was used for topology generation. Then, the system was solvated using the TIP3P 

water model [45] in a cubic box with a minimum distance of 1 nm. Next, two Na+ ions 

were added to the system to neutralise the total net charge of –2 and followed by 

energy minimisation (steepest descent method for 50,000 steps) to remove steric 

clashes and inappropriate geometry [18]. The minimised system was subjected to the 
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number of particles, volume, and temperature (NVT) equilibration run for 200 ps under 

constant temperature condition, and the number of particles, pressure, and 

temperature (NPT) equilibration run for 500 ps under constant pressure condition. 

Finally, the production run was conducted for a 100,000 ps time scale under constant 

temperature (300 K) and pressure (1 bar) using the Langevin thermostat and piston 

methods [46] respectively. The time step for the MD simulation was 2 fs, and the 

particle mesh Ewald (PME) method [47] was used to analyse the long-range 

electrostatic interactions. The 100,000 ps production run was carried out to monitor the 

conformational changes of protein and generated snapshots every 10 ps interval, 

which resulted in 10,001 structures, including the initial structure. The graphs for MD 

simulation results were generated using modules in GROMACS and GRACE 5.1.22 

program [48]. 

RMSD-based clustering 

The protein trajectory was clustered based on RMSD using the GROMOS algorithm in 

GROMACS. A set of general guidelines was followed for determining the best RMSD 

cut-off value, listed below: 

1. The number of total clusters should be less than 40. 

2. There should not be many clusters with only one member. 

3. More than 90% of the trajectory should be represented in less than seven 

clusters. 

The RMSD cut-off value 1.70 Å, which fulfilled the above criteria was chosen and the 

representative conformations were separated for subsequent analyses. 
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Ensemble-based virtual screening 

The ligand library was screened against each of the selected protein conformations 

using AutoDock 4.2 [20]. The respective charges and hydrogens were added to 

prepare the protein conformations and ligands for molecular docking using 

AutoDockTools [20]. For each conformation, the grid box with dimensions 70×70×70 

with spacing 0.375 Å, was set up on the binding site. Then grid box was centred on 

coordinates x = –2.442, y = 6.599, and z = –6.208. The dockings were carried out using 

a Lamarckian genetic algorithm (LGA) [49] with 10 search runs for initial virtual 

screening and 100 search runs for the re-scoring analysis. Parameters including 

population size, number of energy evaluations and generations, and mutation and 

crossover rates were left at default. The ligand with the strongest binding affinity with 

the protein was selected for further analysis.    

 

Complex MD simulation 

To determine the stability of the selected protein-ligand complex, another MD 

simulation was carried out. The complex MD simulation protocol was similar to the 

protein MD simulation carried out previously. The exception in the protocol is on the 

ligand topology, which was generated using an external tool SwissParam [50] and later 

combined with protein topology. Then the system was subjected to solvation, 

neutralisation with three Na+ ions, and energy minimisation. The NVT equilibration run 

duration was the same however, the NPT equilibration run was conducted for 1,000 ps 

under constant pressure condition instead of 500 ps. Production run and analysis of 

complex MD trajectory involved similar procedures. 
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ADMET profile generation 

To investigate the behaviour of predicted potent compound and the positive control 

inside the human host, the in silico ADMET profile was generated using SwissADME 

[51] and pkCSM [52] web-based applications. The simplified molecular-input line-entry 

system (SMILES) was used as the input for SwissADME and pkCSM. These quick, 

accurate, and easy-to-use web servers provided information regarding the 

gastrointestinal absorption rate, blood-brain barrier permeability, inhibition of CYP3A4 

(an important CYP isoform), drug clearance from the body, and mutagenicity of the 

uploaded compounds. 

 

Supporting Information  

Supporting Information File 1: 

File Name: Additional results data  

File Format: docx 
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