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Abstract12

Folds naturally appear on nanometrically thin (also called 2D) materials after exfoliation, eventu-13

ally creating folded edges across the resulting flakes. In the present work, we investigate the ad-14

hesion and flexural properties of single and multilayered 2D materials upon folding. This is ac-15

complished by measuring and modeling mechanical properties of folded edges, which allow the16

experimental determination of the scaling for the bending stiffness (^) of a multilayered 2D mate-17

rial with its number of layers (=). In the case of talc, we obtain ^ ∝ =3 for = ≥ 5, establishing that18

there is no interlayer sliding upon folding, at least in this thickness range. Such a result, if applica-19

ble to other materials, would imply that layers in folds might be either compressed (at the inner part20

of the fold) or stretched (at its outer part), leading to changes in their vibrational properties relative21

to a flat flake. This hypothesis was confirmed by near-field tip-enhanced Raman spectroscopy of a22

multilayer graphene fold.23
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Introduction27

Layered materials such as graphite, talc, and transition metal dichalcogenides, held together by28

strong covalent bonds within layers and by relatively weak van der Waals interlayer interactions,29

have been the primary source of 2D materials [1]. Such 2D materials depict unusual mechanical30

properties associated with their flexural properties [2-7]. For instance, 2D materials, unlike 3D31

materials, can bend over themselves to form folds [4-7], whose curvature radii are functions of the32

ratio between the interlayer adhesion energy (U) and the layer bending stiffness (^) [4]. Uncertain-33

ties in measured values of U can be large, experimental values of U for graphite ranging from 0.1234

up to 0.72 have been reported N/m [8-15]. Regarding the bending stiffness ^, experimental values35

have been obtained through radial deformations [16], lattice dynamics [17], deformations of sus-36

pended layers [2,5], and bubbles profiles[18]. A recent and interesting issue regarding the bending37

stiffness is its dependence on the thickness or the number of layers of the 2D material [18].38

The quantification and understanding of the structural/dynamic response of multilayered 2D mate-39

rials upon bending is also an important issue regarding technological applications, such as flexible40

reinforcements for brittle biomedical implants Mota et al.[19] and ultralight resonators suited as41

transducers of extremely small force or mass changes Will et al.[20]. It is important to emphasize42

that the quality factor of the resonators depends on its maximum resonant frequency, which is in-43

trinsically related to the flexural properties of the employed 2D material. These properties strongly44

depend on the in-plane movement of individual layers upon bending, which can also generate heat45

and, therefore, reduce the performance of those devices.46

In this work, we present a method to obtain interlayer adhesion energies and the bending stiffness47

of 2D materials by experimentally probing the mechanical response of folded edges to deformation.48

A folded edge is defined as an edge region of the 2D material where it folds over itself during the49
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exfoliation process. Our method is based on AFM measurements of the geometry and mechanical50

response of folded edges, and on the fitting of the experimental data by an analytical continuum51

model parameterized solely by U, ^, and the total thickness 3 of the 2D folded material. The appli-52

cability of the analytical model is corroborated by comparison with classical molecular dynamics53

simulations. Because folds naturally occur in flakes of varying thickness, corresponding to mul-54

tilayers with a different number of primitive layers, the proposed method provides a direct way to55

investigate the scaling of the bending stiffness of 2D materials with flake thickness (or, equiva-56

lently, with the number of layers). In the case of talc, we obtain ^ ∝ ℎ3 for materials thicker than57

five layers, establishing that there is no interlayer sliding upon folding, at least in this thickness58

range. Such result implies that layers in folds might be either compressed or stretched, leading to59

changes in their vibrational properties relative to a flat flake, which was confirmed by near-field60

tip-enhanced Raman spectroscopy of multilayer graphene folds.61

Results and Discussion62

A 2D folded material deposited on a substrate presents a cross-section geometry similar to that in-63

dicated in Fig. 1 (see, for instance, Wang et al [18] and references therein for electron microscope64

images). Fig. 1(a) shows an AFM image of a talc flake (green shades) with approximately 10 lay-65

ers, which was exfoliated onto a Si oxide substrate (blue shades). During the exfoliation/deposition66

processes, such a talc flake folded back and forth over itself, creating a well-defined folded stripe,67

shown in yellow shades. Fig. 1(b) shows a 3D-perspective zoom of the dashed rectangle region68

in Fig. 1(a). The red dotted line schematically indicates the back-and-forth folding process which69

yielded such double-edged folded stripe. Some morphological parameters of a fold can be read-70

ily determined from the AFM images, such as its maximum height �, its total thickness 3, and its71

layer thickness ℎ (see the inset in Fig. 1(c) for parameter definition). Fig. 1(c) shows the measured72

values of two of those parameters, '0 = (� − ℎ)/2 and the flake thickness ℎ for nine talc folds. The73

measured values of thickness ℎ, from 1.2 nm to 30.0 nm, indicate that the measured folds involve74

materials from monolayer talc to ≈ 30-layer talc. The corresponding values of the radius '0 span75
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1Figure 1: (a) AFM image of a double-folded edge in a talc flake (green-yellow shades) with ≈ 10
layers deposited on a Si-SiOx substrate (blue shades). (b) Perspective view of the region inside the
rectangle shown in (a). The dotted line in (b) is a guide for the eye, indicating the formation of the
double-folded edges. (C) Values of '0 for fold edges in talc flakes whose thickness are between 1
and 30 nm. In red, fitted curve '0 = 0ℎ1, where 1 = 1.75 and 0 = 0.38 (m−0.75). the inset shows a
schematic drawing of a folded edge showing the relevant measured quantities (3, ℎ and �). '0 =

(� − ℎ)/2 and 30 = 3 − ℎ, are parameters for the proposed continuous model.

from 2.15 nm to 162 nm, that is, an increase of two orders of magnitude. The figure also shows a76

fitted curve '0 = 0ℎ1, where 1 = 1.75 and and 0 = 0.38 (m−0.75).77

To obtain ^ (bending stiffness) and U (adhesion energy) from the AFM data, we propose a contin-78

uum variational model (see Supporting Information: Deposited folded edges) for the folded edges79

with the geometry depicted in Fig. 2. This figure shows both cross-section geometries for folded80

edges in graphene monolayer, panel (a), and in three-layered graphene, panel (b), obtained through81

MD simulations (details about MD simulations are found in Supplementary Information). As can82

be seen in Fig. 2 (a), the model geometry consists of a sequence of straight lines and circular arcs83
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Figure 2: Figure 2. Gray circles: carbon atom positions in cross-sections of folded edges in
graphene monolayer, panel (a), and in three-layered graphene, panel (b), as obtained through MD
simulations. In both panels the red and black lines that superimpose the atomic positions depict
the geometry of folded edges within our variational model, which consists of a sequence of straight
lines and circular arcs with radii: '0 (red arcs) and A0 (black arcs). In panel (a), the values of '0
and A0 are obtained through our model, Eqs. (1) and (2), using experimental values of 30, ^ and U.
In panel (b), '0 and A0 are obtained through MD simulations.

with two possible radii: the external radius '0 (red arcs) and the radius A0 of a half-soliton-like84

region (black arcs). Within our model, the concave up and the concave down arcs of half-soliton-85

like region always have the same radius and length. Therefore, the model lines must pass in the86

middle of the flake for folded edges in flakes more than one atom thick, as it is shown in the inset87

of Fig. 1 (c) and in Fig. 2 (b) for the three-layered folded edge. The panels of Fig. 2 show that the88

model geometry describes very well the morphology of folded edges in flakes with different thick-89

nesses (the model lines nearly superimpose atomic positions in both panels of Fig. 2). Within this90

model, mathematical relations between the geometrical parameters ('0, A0, and 30), and the adhe-91

sion (U) and flexural (^) properties can be obtained variationally. The variational procedure within92

the model consists of the minimization of an energy functional that contains two terms: the curva-93
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ture energy �2 =
∫
^/(2'2)3( where ' is the local curvature radius and ^ is the bending stiffness,94

and the adhesion energy �0 = U(0, where (0 is the contact area and U is the adhesion energy per95

the unit area between the 2D material and the precursor substrate. As a result of the variational96

procedure, we obtain (see Supporting Information):97

A0 =

√
3
2
^

U
(1)98

and99

3c − 3c
2'20

( ^
U

)
+ 8
√
2'0 − 3

(
3
2
^

U

)1/4
= 0. (2)100

Equations (1) and (2) can be used to determine either the folded edge geometry from the prop-101

erties of the 2D material (^/U and thickness) or vice-versa. In the particular case of the folded102

edge in graphene monolayer shown in 2 (a), we use literature values for U = 0.37 N/m [14] and103

^ = 0.231 aJ [21] to determine A0 and '0. On the other hand, in the case of the folded edge in104

three-layered graphene, we use the values of '0 = 0.81 nm and 30 = 1.01 nm from MD simulations105

to obtain
√
^/U = 1.88 nm. Considering U the same for both graphene folded edges, we thus found106

^ = 1.3 aJ for three-layered graphene, which is roughly 6 times the value reported for the graphene107

monolayer (^ = 0.231 aJ). Thus, MD results indicate that the scaling of ^ with the number of lay-108

ers in multi-layered graphene is non-linear. The scaling of ^ in a real 2D material will be discussed109

below.110

Equation 2 allows us to obtain the ratio ^/U for talc folds through measured values for '0 and 30.111

Fig. 3 shows the quantity & =
√
ℎU/^ =

√
ℎ/

√
^/U versus 1/ℎ for the nine measured talc sam-112

ples. ℎ is a directly measured quantity (see Fig.1), and
√
^
U
as we mentioned earlier, is obtained113

from Eq. 2. Assuming that U is constant for a given material, the behavior of & as a function of ℎ,114

&(ℎ), will be solely dependent on the behavior of ^ as a function of ℎ. In the limit of thick materi-115

als, we would expect that adjacent layers do not slide relative to each other upon an elastic bend-116
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Figure 3:
√
ℎU/^ =

√
ℎ/

√
^/U versus 1/ℎ for the nine measured talc samples. ℎ is a directly mea-

sured quantity (see Fig. 1), and
√
^/U is obtained from Eq. 2 with the measured values of '0 and ℎ.

The red and blue lines correspond to the ideal non-sliding (^ ∝ ℎ3) and the sliding (^ ∝ ℎ) limits,
respectively. The values for the thinnest samples (monolayer, 3-layer and 5-layer talc) are explicitly
indicated.

ing deformation. In this non-sliding limit, we expect that ^ ∝ ℎ3, as predicted by the classical117

Euler-Bernoulli beam theory. In another limit, which we will call a sliding limit, we will assume118

the possibility that adjacent layers freely slide upon bending deformations. In this limit, which im-119

plicitly includes the monolayer case, we obtain ^ ∝ ℎ. Both limits have been recently considered120

in the analysis of experimental profiles of bubbles in 2D materials [18]. In our present analysis,121

the functional form of & leads to two asymptotic limits as a function of 1/ℎ: & ∝ 1/ℎ in the non-122

sliding limit, and & =constant in the sliding limit. Both limits are indicated in Fig. 3 as red and123

blue lines, fitted respectively to the seven thickest samples and the monolayer sample. Therefore,124

Fig. 3 indicates that individual layers of multilayer talc with at least more than 4 layers do not slide125

upon folding. In contrast, we were not able to observe any sample behaving according to the pro-126

posed sliding limit, besides the (trivial, by definition) monolayer case. The 4- and 2-layer cases127

were absent in our samples, and the 3-layer case shows an anomalous behavior relative to the other128

samples, being much stiffer than expected: it might, for instance, possess a distinct morphology.129

From the above, we conclude that thick enough talc flakes behave like rigid objects, without in-130

terlayer sliding. Therefore, upon fold formation, the layers at the inner part of the fold will have131

a compressive in-plane strain, and those at the outer part will have an extensive (tensile) in-plane132
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Figure 4: (a) Near-field Raman image of the intensity of the G peak as a function of the lateral
distance, where the blue and dark blue regions correspond to the folded graphene flake and the sub-
strate, respectively, and the dashed white line marks the location of the edge of the fold. (b) Map of
relative Raman shift, where blue corresponds to lower frequencies and red to higher frequencies.
(c) Intensity (blue) and relative Raman shift (red) of the G peak as a function of the lateral distance.

strain. Such strains could modify the vibrational properties of a fold relative to the (flat) bulk of the133

flake and it should be universal to any 2D material, and not restricted to talc. This hypothesis was134

investigated employing a near-field tip-enhanced Raman spectroscopy (TERS) setup [22,23], which135

can probe strain variations across the edge of a folded graphene flake( Fig. 4). Panel (a) shows a136

near-field Raman map of the intensity of the G peak, where the blue and dark blue regions corre-137

spond to the folded graphene flake and the substrate, respectively, and the dashed white line marks138

the location of the edge of the fold. Fig. 4 (b) shows a map of the Raman shift for the same fold,139

it exhibits displacements towards high frequencies near the edge of the fold. To detect such dis-140

placements clearly, we average the horizontal lines in Fig. 4 (a) and (b), and depict the result in141

Fig. 4(c), where we plot the relative Raman shift (red curve) and intensity (blue curve) of the G142

peak as a function of the lateral distance. The vertical dotted black line in this panel marks the po-143

sition of the folded edge, where a change in the position of the G peak is also observed. It has been144

previously shown that compressive strain in graphene causes displacements in the G peak toward145

high frequencies [24]. For the folded few-layer graphene edge, both the outermost (tensile) and in-146

nermost (compressive) regions contribute to the Raman spectrum. However, the innermost layers147
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have smaller curvature radii compared to the outermost, which would give a net compressive con-148

tribution to the Raman. Therefore, the observed positive displacement in the G mode is consistent149

with our hypothesis that the outermost and innermost graphene regions in a multi-layered graphene150

folded edge tend to be stretched and compressed, respectively.151

We have so far addressed the ratio ^/U of talc folds, obtained from Eq. (2) with the measured val-152

ues of '0 and 3 for uncompressed folds. As already discussed, the quantity ^/U allowed us to ver-153

ify a prevalence of the non-sliding behavior, independently verified by Raman measurements. One154

might, however, be also interested in obtaining the absolute values of ^ and U from the AFM. In155

fact, to the best of our knowledge, no experimental measurement of U for talc has been reported so156

far. Now we will show that it is possible to obtain the value of U from AFM force curve measure-157

ments on folded edges. According to our model (see Supporting Information: Compressed folded158

edges), when a spherical probe compresses a folded edge, the mechanical response is given by:159

� (�)
√
2'B

=

[
(U? − U)

√
2'0 − 3
16A0

− (U + U?)
c

2

]
√
�

+
2A20cU
3

[arctan√ �
2'0−�

(2'0 − �)3/2
+

√
�

(2'0 − �)2'0

]
+
[
(U? − U) (2'0 − 3 − �)

8√A0
+
4U√A0
3

]
ln

(√
2'0 − 3 +

√
�

√
2'0 − 3 −

√
�

)
.

(3)160

where � is the deformation caused by the probe, 'B is the probe radius, and U? is the adhesion161

energy per unit area between the 2D sample and the probe. Despite its length, the Eq. (3) con-162

tains only two adjustable parameters - U and U? - as the AFM height profiles provide '0 and 3,163

while A0 can be obtained through Eqs. (1) and (2). Panel (a) of Figure 5 shows the fit of Eq. (3)164

to AFM force vs deformation measurements on a 5.3 nm thick talc fold. The obtained value of165

U = 0.60 N/m is consistent with the few theoretical results available (0.30 N/m [25] and 0.98 N/m166

[26]). Also, the obtained value of U? = 0.42 N/m indicates that the interaction between talc and the167

silicon probe is smaller than the interaction between talc layers. To combine data of several force168
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curve measurements in a single graph, we plotted the re-scaled force �/
√
2'BA0 as a function of the169

strain �/(2'0 − 3) as shown in Fig. 5(b). The red curve in this figure represents our model (see170

Supporting Information equation S13). The resulting values of U = 0.62 N/m and U? = 0.40 N/m171

are similar to those obtained in the fitting of panel (a), showing consistency between those results.172
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Figure 5: (a): best fit of Eq. 3 to measured AFM forces and deformations on a 5.3 nm thick
talc fold. (b): best fit of Eq. (3) to forces and deformations in folded edges of several talc flakes,
with thicknesses of 1.2, 2.9, 5.3, 6.7, 7.4 and 10.9 nm. The vertical axis is the re-scaled force,
�/
√
2'BA0, and the horizontal axis is the strain ( = �/(2'0 − 3) (see Supporting Information).

(c): best fit of Eq. (3) to AFM measurements on a fold in a 11-layer-thick graphene flake.

Unlike talc, there are several results in the literature on the interlayer adhesion energy of graphene173

[10-15], providing good references to evaluate the U predicted by of our model. Figure 5(c) shows174

the best fit of Eq. (3) to AFM measurements for a 11-layer-thick graphene fold. To fit the exper-175
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imental data, we used '0 = 4.5 nm and 3 = 5.25 nm obtained from the height profile and A0 =176

11.7 nm obtained through Eqs. (1) and (2). The obtained value of U = 0.25 N/m is within the range177

of values obtained experimentally (from 0.12 up to 0.72 N/m [8-15]). It is worth mentioning that178

our result (U=0.25 N/m) compares well with other direct experimental determination of U (0.27179

N/m [12] and 0.37 N/m [14]) in which layers of graphene in highly oriented pyrolytic graphite were180

mechanically manipulated using a probe. Besides, the value obtained for the interaction between181

graphite and the silicon probe (U?=0.24 N/m) is consistent with the values reported in the litera-182

ture [27,28] (0.28 and 0.37 N/m).183

Conclusions184

In summary, we have shown that it is possible to obtain the interlayer adhesion energy and the185

bending stiffness of 2D layered materials by fitting results of AFM force curves on naturally oc-186

curring folded edges to an expression predicted by a simple model for those edges. The obtained187

interlayer adhesion energy for graphene (0.25 N/m) and talc (0.62 N/m) are in good agreement with188

recent experimental results [12,14], and theoretical predictions [25,29], respectively. The proposed189

method also allows the investigation of bending stiffness dependence with the flake thickness. For190

talc flakes with a thickness equal or larger than 5.3 nm, we obtained a scaling relation (^ ∝ ℎ3) that191

is consistent with the Euler-Bernoulli beam theory. Such a result implies that, in this non-sliding192

regime, layers in 2D materials folds are either stretched (at the outer part of the fold) or compressed193

(at the inner part). This was confirmed by near-field Raman spectroscopy. Even though it is ap-194

plied here to homo-layers, the present methodology could also, bring invaluable insights about the195

interlayer interaction in the growing field of 2D materials hetero-layers, probing the mechanical196

properties of typical interfaces such as graphene/hBN, graphene/TMDs, hBN/TMDS or any other197

technologically relevant two-dimensional heterostructure.198

Supporting Information199

Supporting information features the theoretical models for deposited and compressed folded edges,200
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the experimental methods ( including sample preparations, SPM characterization and Near-field201
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